JPH0941225A - Production of silicon carbide fiber - Google Patents

Production of silicon carbide fiber

Info

Publication number
JPH0941225A
JPH0941225A JP14978196A JP14978196A JPH0941225A JP H0941225 A JPH0941225 A JP H0941225A JP 14978196 A JP14978196 A JP 14978196A JP 14978196 A JP14978196 A JP 14978196A JP H0941225 A JPH0941225 A JP H0941225A
Authority
JP
Japan
Prior art keywords
fiber
firing
primary
atmosphere
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14978196A
Other languages
Japanese (ja)
Other versions
JP2938389B2 (en
Inventor
Hiroshi Ichikawa
宏 市川
Michio Takeda
道夫 武田
Junichi Sakamoto
淳一 坂本
Akinori Saeki
明徳 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP14978196A priority Critical patent/JP2938389B2/en
Publication of JPH0941225A publication Critical patent/JPH0941225A/en
Application granted granted Critical
Publication of JP2938389B2 publication Critical patent/JP2938389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a silicon carbide fiber having 1.00-1.10 atomic ratio of C/Si and a high strength and a high elasticity especially at a high temperature, and excellent in oxidation resistance and creep property at the high temperature. SOLUTION: This method for producing a silicon carbide fiber consists of the process of obtaining a primary burnt fiber with the primary burning of a fiber made as infusible by making the precursor fiber of an organic silicon- based polymer infusible, with a gradual temperature elevation, and the process of obtaining the silicon carbide fiber by the secondary burning of the primary burnt fiber. Although the primary burning is performed under at least one or more atmosphere selected from a hydrogen gas, a diluted hydrogen gas and an inert gas, it is preferably performed under the hydrogen gas or the diluted hydrogen gas atmosphere at least within a temperature range of 600-800 deg.C, and also the secondary burning is performed under a diluted hydrogen chloride gas or the diluted hydrogen gas atmosphere at 1500-2200 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】従来のSiC繊維の製造方
法、例えば米国特許4,100,233号に開示された
方法によれば、C/Si原子比が1.31以上で、酸素
をO/Si原子比で0.35以上含有するSiC繊維、
すなわち酸素や余剰炭素を多く含有するSiC繊維しか
得られなかった。このようなSiC繊維は高温耐熱性、
高温強度、高温度でのクリープ性が、その繊維中に含ま
れる酸素や余剰炭素によって劣化してしまうという問題
があった。
BACKGROUND OF THE INVENTION According to a conventional method for producing a SiC fiber, for example, the method disclosed in US Pat. No. 4,100,233, the C / Si atomic ratio is 1.31 or more and oxygen is O / Si. SiC fiber containing 0.35 or more in atomic ratio,
That is, only a SiC fiber containing a large amount of oxygen and excess carbon was obtained. Such SiC fiber has high temperature heat resistance,
There was a problem that the high temperature strength and the creep property at high temperature were deteriorated by oxygen and surplus carbon contained in the fiber.

【0002】本発明は炭化ケイ素繊維の製造方法に関
し、より詳しくは、一次焼成工程では水素ガス含有雰囲
気、さらに二次焼成工程ではある特定の高温度で塩化水
素ガスまたはハロゲンガス含有雰囲気を採用することに
よって、C/Si原子比が1.0〜1.1であり、特に
高温での耐熱性、耐酸化性、クリープ性に優れた炭化ケ
イ素繊維を製造する方法に関する。
The present invention relates to a method for producing silicon carbide fibers, and more specifically, it employs a hydrogen gas-containing atmosphere in the primary firing step and a hydrogen chloride gas or halogen gas-containing atmosphere at a certain high temperature in the secondary firing step. Accordingly, the present invention relates to a method for producing a silicon carbide fiber having a C / Si atomic ratio of 1.0 to 1.1 and being excellent in heat resistance, oxidation resistance and creep property particularly at high temperature.

【0003】[0003]

【従来の技術】従来の炭化ケイ素繊維(SiC繊維)の
製造方法、例えば米国特許4,100,233号に開示
された方法によれば、炭素とケイ素の原子比(C/S
i)が1.31以上で、しかも酸素を酸素とケイ素の原
子比(O/Si)で0.35以上含有するSiC繊維し
か得られなかった。
2. Description of the Related Art According to a conventional method for producing silicon carbide fiber (SiC fiber), for example, the method disclosed in US Pat. No. 4,100,233, the atomic ratio of carbon to silicon (C / S
Only SiC fibers having i) of 1.31 or more and oxygen containing 0.35 or more in oxygen / silicon atomic ratio (O / Si) were obtained.

【0004】このような酸素や余剰炭素を多く含有する
SiC繊維を高温で処理した場合、たとえそれが不活性
雰囲気中であっても、繊維自身の中に含まれる酸素によ
ってケイ素や炭素が酸化されて繊維が劣化してしまうた
め、高温耐熱性、高温強度、高温度でのクリープ性に劣
るという問題があった。
When such a SiC fiber containing a large amount of oxygen and excess carbon is treated at a high temperature, silicon and carbon are oxidized by the oxygen contained in the fiber itself, even in an inert atmosphere. As a result, the fiber deteriorates, and there is a problem in that it is inferior in high temperature heat resistance, high temperature strength, and creep property at high temperature.

【0005】従来、炭化ケイ素繊維は、ポリカルボシラ
ン等を紡糸して得られた前駆体繊維を一定条件で不融化
し、次いで窒素ガス等の不活性ガス雰囲気中で昇温する
ことによって焼成して製造されていた。また最近では、
本出願人により水素ガスを含有した雰囲気での焼成方法
も提案されている(例えば、特願平6−291956
号)。
Conventionally, silicon carbide fibers are obtained by infusibilizing a precursor fiber obtained by spinning polycarbosilane or the like under certain conditions, and then firing by heating in an atmosphere of an inert gas such as nitrogen gas. Was manufactured. Also recently
The applicant has also proposed a firing method in an atmosphere containing hydrogen gas (for example, Japanese Patent Application No. 6-291956).
issue).

【0006】この水素ガス含有雰囲気での焼成により脱
酸素、脱炭素反応が起こり、C/Si原子比を化学量論
的組成である1付近に制御すること並びに含有酸素量を
低減することが可能となった。しかし、この焼成は高温
下で行われるために微妙な反応制御が難しく、しばしば
脱炭素反応が進み過ぎてC/Si原子比が1を通り越し
てしまう。
It is possible to control the C / Si atomic ratio to around 1 which is a stoichiometric composition and to reduce the oxygen content, by deoxidizing and decarbonizing by this firing in an atmosphere containing hydrogen gas. Became. However, since this calcination is performed at a high temperature, it is difficult to delicately control the reaction, and the decarbonization reaction often proceeds so much that the C / Si atomic ratio exceeds 1.

【0007】このC/Si原子比が1未満の繊維の表面
には遊離ケイ素が存在するため、空気中や酸素含有雰囲
気中において1500℃以上の高温で熱処理を行うと、
遊離ケイ素が酸素と反応して繊維の著しい劣化が起こ
り、耐酸化性の面では依然として不十分であった。また
C/Si原子比が1以上の繊維でも、その表面には若干
の遊離ケイ素、また内部には余剰炭素が存在しており、
従って、かかる従来の炭化ケイ素繊維は高温での使用が
制限されるという問題があった。
Since free silicon is present on the surface of the fibers having a C / Si atomic ratio of less than 1, when heat treatment is performed at a high temperature of 1500 ° C. or higher in air or an oxygen-containing atmosphere,
The free silicon reacted with oxygen to cause remarkable deterioration of the fiber, and the oxidation resistance was still insufficient. Further, even in a fiber having a C / Si atomic ratio of 1 or more, some free silicon exists on the surface thereof, and excess carbon exists inside,
Therefore, there is a problem that such conventional silicon carbide fibers are restricted in use at high temperatures.

【0008】近年、炭化ケイ素繊維は高温ガスタービン
の各種部材等の構成材料として期待されているが、従来
の炭化ケイ素繊維では上述の課題を有するほか、高温で
の耐酸化性やクリープ性についても十分でないため、未
だ実用に供し得ないのが実情である。
In recent years, silicon carbide fibers have been expected as a constituent material for various members of high-temperature gas turbines, but conventional silicon carbide fibers have the above-mentioned problems, and also have high oxidation resistance and creep resistance at high temperatures. Since it is not enough, it cannot be put to practical use.

【0009】[0009]

【発明が解決しようとする課題】本発明は、これら従来
技術の課題を解消し、炭素とケイ素の原子比が1.0〜
1.1であり、特に高温において高強度、高弾性率であ
ると共に、高温での耐酸化性、クリープ性に優れた炭化
ケイ素繊維の製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves these problems of the prior art, and the atomic ratio of carbon to silicon is 1.0 to.
It is 1.1, and an object thereof is to provide a method for producing a silicon carbide fiber which has a high strength and a high elastic modulus at a high temperature, as well as an excellent oxidation resistance and a creep property at a high temperature.

【0010】[0010]

【課題を解決するための手段】本発明者らは上記目的を
達成すべく鋭意研究した結果、従来の焼成工程に加え
て、ある特定の高温度で塩化水素ガスまたはハロゲンガ
スを含有する雰囲気を焼成雰囲気として用いる二次焼成
工程を設けることによって上記目的が達成されることを
見出し、本発明に到達した。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that, in addition to the conventional firing step, an atmosphere containing hydrogen chloride gas or halogen gas at a certain high temperature is used. The present invention has been accomplished by finding that the above object can be achieved by providing a secondary firing step used as a firing atmosphere.

【0011】すなわち本発明の炭化ケイ素繊維の製造方
法は、有機ケイ素系ポリマーの前駆体繊維を不融化した
不融化繊維を、昇温しながら一次焼成して一次焼成繊維
を得る工程と、さらに該一次焼成繊維を二次焼成して炭
化ケイ素繊維を得る工程を具備する方法であって、前記
一次焼成を、水素ガス、希釈水素ガスおよび不活性ガス
から選ばれる少なくとも1以上の雰囲気で行うが、少な
くとも600〜800℃の温度範囲では水素ガスまたは
希釈水素ガス雰囲気で行い、かつ、前記二次焼成を、希
釈塩化水素ガスまたは希釈ハロゲンガス雰囲気下、15
00〜2200℃で行うことにより、炭素とケイ素の原
子比C/Siが1.00〜1.10の炭化ケイ素繊維を
製造する方法である。
That is, the method for producing a silicon carbide fiber according to the present invention comprises a step of primary firing of infusible fiber obtained by infusifying a precursor fiber of an organosilicon polymer at a temperature to obtain a primary fired fiber, A method comprising the step of secondarily firing a primary fired fiber to obtain a silicon carbide fiber, wherein the primary firing is performed in at least one atmosphere selected from hydrogen gas, diluted hydrogen gas and an inert gas, In a temperature range of at least 600 to 800 ° C., hydrogen gas or diluted hydrogen gas atmosphere is used, and the secondary firing is performed in a diluted hydrogen chloride gas or diluted halogen gas atmosphere.
It is a method for producing a silicon carbide fiber having an atomic ratio C / Si of carbon and silicon of 1.00 to 1.10.

【0012】[0012]

【発明の実施の形態】以下、本発明の製造方法について
さらに詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The manufacturing method of the present invention will be described in more detail below.

【0013】本発明では、有機ケイ素系ポリマー(高分
子化合物)を紡糸することによって得られる前駆体繊維
を用いる。原料として使用される有機ケイ素系ポリマー
としては、ポリカルボシラン、ポリシラザン、ポリシロ
キサン等が挙げられる。また、かかる有機ケイ素系ポリ
マーとしては、炭素、ケイ素、酸素および窒素の他に、
ホウ素、チタン、ジルコニウム、アルミニウム等の金属
元素を含有するポリマーでもよい。なお、炭化ケイ素繊
維の前駆体繊維としては、ポリカルボシラン繊維が一般
的である。
In the present invention, a precursor fiber obtained by spinning an organosilicon polymer (polymer compound) is used. Examples of the organosilicon polymer used as a raw material include polycarbosilane, polysilazane, and polysiloxane. Further, as such an organic silicon-based polymer, in addition to carbon, silicon, oxygen and nitrogen,
A polymer containing a metal element such as boron, titanium, zirconium, or aluminum may be used. In addition, polycarbosilane fibers are generally used as the precursor fibers of the silicon carbide fibers.

【0014】上記有機ケイ素系ポリマーを従来公知の溶
融紡糸、乾式紡糸等の紡糸手段によって繊維形状に加工
してなる前駆体繊維は、次に不融化される。不融化方法
としては、酸素、酸化物、不飽和炭化水素化合物等との
化学的反応を利用する方法や、電子線、紫外線等の各種
放射線を利用して架橋反応を生じさせる方法等の従来公
知の方法が適宜採用される。また、不融化の際の諸条
件、例えば雰囲気、温度、時間、具体的方法等は、採用
する不融化方法等に応じて適宜選択される。
The precursor fiber obtained by processing the above-mentioned organosilicon polymer into a fiber shape by a conventionally known spinning means such as melt spinning and dry spinning is then infusibilized. As the infusibilizing method, conventionally known methods such as a method utilizing a chemical reaction with oxygen, an oxide, an unsaturated hydrocarbon compound, and the like, and a method of causing a crosslinking reaction using various radiations such as an electron beam and ultraviolet rays. Is appropriately adopted. Further, various conditions at the time of infusibilization, for example, atmosphere, temperature, time, specific method and the like are appropriately selected according to the infusibilizing method to be adopted.

【0015】このようにして不融化された繊維を、次
に、昇温しながら少なくとも600〜800℃の温度範
囲では水素ガスまたは希釈水素ガス雰囲気で一次焼成を
行うことにより、C/Si原子比が1.10〜0.85
の一次焼成繊維が得られる。つまり、600℃未満およ
び800℃超の温度範囲では、水素ガス、希釈水素ガス
または不活性ガスのいずれの雰囲気で一次焼成してもよ
い。一次焼成開始温度は通常室温であり、終了温度は1
200〜1300℃が好ましい。
The infusibilized fiber is then subjected to a primary firing in a hydrogen gas or diluted hydrogen gas atmosphere at a temperature range of at least 600 to 800 ° C. while raising the temperature, whereby the C / Si atomic ratio is increased. Is 1.10 to 0.85
A primary fired fiber is obtained. That is, in the temperature range below 600 ° C. and above 800 ° C., primary firing may be performed in any atmosphere of hydrogen gas, diluted hydrogen gas, or inert gas. The primary firing start temperature is usually room temperature, and the end temperature is 1
200-1300 degreeC is preferable.

【0016】ここで不活性ガスとしては、窒素ガス、ア
ルゴンガス、ヘリウムガス等が挙げられる。またここで
いう「希釈水素ガス雰囲気」とは、水素ガスと不活性ガ
スが混合した雰囲気をいい、不活性ガスとしては上記の
ものが挙げられる。
Examples of the inert gas include nitrogen gas, argon gas, helium gas and the like. The "diluted hydrogen gas atmosphere" referred to here is an atmosphere in which hydrogen gas and an inert gas are mixed, and examples of the inert gas include the above.

【0017】上記一次焼成の例として、まず、全一次焼
成工程を希釈水素ガス雰囲気下で行う方法が挙げられ
る。この希釈水素ガス雰囲気中の水素ガス含有量は10
vol.%以上であることが好ましく、50〜70vo
l.%が最適である。また昇温速度は10〜1000℃
/Hrが好ましく、室温から好ましくは最高温度120
0〜1300℃に昇温し、さらに必要に応じて一定時間
保持して一次焼成を終了する。
As an example of the above-mentioned primary calcination, first, there is a method in which all the primary calcination steps are performed in a diluted hydrogen gas atmosphere. The hydrogen gas content in this diluted hydrogen gas atmosphere is 10
vol. % Or more, preferably 50 to 70 vo
l. % Is optimal. The temperature rising rate is 10 to 1000 ° C.
/ Hr is preferred, room temperature to preferably maximum temperature 120
The temperature is raised to 0 to 1300 ° C., and if necessary, held for a certain period of time to complete the primary firing.

【0018】例えば、雰囲気中の水素ガス含有量を50
〜70vol.%に設定した場合、室温から1200〜
1300℃まで約100℃/Hrの昇温速度で焼成する
ことにより、C/Si原子比が1.10〜0.85の一
次焼成繊維を得ることができる。また水素ガス含有量が
これよりも低い場合には、昇温速度を遅くして焼成を行
う必要があることは言うまでもない。
For example, if the hydrogen gas content in the atmosphere is 50
~ 70 vol. When set to%, room temperature is 1200 to
By firing up to 1300 ° C. at a heating rate of about 100 ° C./Hr, it is possible to obtain a primary fired fiber having a C / Si atomic ratio of 1.10 to 0.85. Needless to say, if the hydrogen gas content is lower than this, it is necessary to slow the temperature rising rate and perform the firing.

【0019】また、別の一次焼成方法として、純粋な水
素ガス雰囲気で焼成を始め、昇温途中において水素ガス
雰囲気から不活性ガス雰囲気に切り替える方法がある。
C/Si原子比を1.10〜0.85にするには、この
切り替え温度は800℃以上である必要があり、好まし
くは800〜1200℃、さらに好ましくは800〜9
50℃である。不活性ガス雰囲気への切り替え温度が8
00℃より低いと、脱炭素反応が僅かしか起こらず、得
られる炭化ケイ素繊維中に多くの遊離炭素が残存するか
らである。そして、切り替えられた不活性ガス雰囲気に
おいて、好ましくは最高温度1200〜1300℃に昇
温し、さらに必要に応じて一定時間保持して一次焼成を
終了する。また昇温速度は10〜1000℃/Hrが好
ましい。
As another primary firing method, there is a method in which firing is started in a pure hydrogen gas atmosphere and the hydrogen gas atmosphere is switched to an inert gas atmosphere while the temperature is rising.
In order to set the C / Si atomic ratio to 1.10 to 0.85, this switching temperature needs to be 800 ° C. or higher, preferably 800 to 1200 ° C., and more preferably 800 to 9
50 ° C. Switching temperature to inert gas atmosphere is 8
This is because if the temperature is lower than 00 ° C., a slight decarbonization reaction occurs and a large amount of free carbon remains in the obtained silicon carbide fiber. Then, in the switched inert gas atmosphere, the maximum temperature is preferably raised to 1200 to 1300 ° C., and if necessary, held for a certain period of time to finish the primary firing. The rate of temperature increase is preferably 10 to 1000 ° C / Hr.

【0020】一例として、水素ガスから不活性ガスへの
切り替え温度を800℃に設定した場合、室温から12
00〜1300℃まで約100℃/Hrの昇温速度で焼
成することにより、C/Si原子比が1.10〜0.8
5の一次焼成繊維が得られる。また切り替え温度がこれ
よりも高い場合には、昇温速度を速めて焼成を行うこと
は言うまでもない。
As an example, when the temperature for switching the hydrogen gas to the inert gas is set to 800 ° C., room temperature to 12
By firing at a temperature rising rate of about 100 ° C / Hr from 00 to 1300 ° C, the C / Si atomic ratio is 1.10 to 0.8.
5 primary calcined fibers are obtained. Needless to say, when the switching temperature is higher than this, the heating rate is increased to perform the firing.

【0021】更に別の一次焼成方法として、600〜8
00℃の温度範囲では水素ガスまたは希釈水素ガス雰囲
気で焼成を行い、室温〜600℃未満および800℃超
〜一次焼成終了の温度範囲では不活性ガス雰囲気で行う
方法が挙げられる。この場合昇温速度は10〜1000
℃/Hrが好ましく、室温から好ましくは最高温度12
00〜1300℃に昇温し、さらに必要に応じて一定時
間保持して一次焼成を終了する。
As another primary firing method, 600 to 8
In the temperature range of 00 ° C., firing is performed in a hydrogen gas or diluted hydrogen gas atmosphere, and in the temperature range of room temperature to less than 600 ° C. and above 800 ° C. to completion of primary firing, an inert gas atmosphere is used. In this case, the temperature rising rate is 10 to 1000
℃ / Hr is preferred, room temperature to preferably maximum temperature 12
The temperature is raised to 00 to 1300 ° C., and if necessary, held for a certain period of time to finish the primary firing.

【0022】本発明では、上記いずれの方法を用いても
所望の一次焼成繊維が得られる。なお、その他の方法と
して、水素ガス雰囲気のみで全一次焼成を行ってもよ
い。
In the present invention, the desired primary fired fiber can be obtained by using any of the above methods. As another method, all primary firing may be performed only in a hydrogen gas atmosphere.

【0023】このように、一次焼成工程の少なくとも6
00〜800℃の温度範囲において、還元作用を持つ水
素ガスまたは希釈水素ガス雰囲気を採用することによっ
て、前駆体繊維の熱分解反応および脱炭素反応が進行す
る。その結果、得られる一次焼成繊維の化学的組成が制
御され、すなわち余剰炭素量や酸素量が抑制される。
Thus, at least 6 of the primary firing step
By adopting a hydrogen gas or diluted hydrogen gas atmosphere having a reducing action in the temperature range of 00 to 800 ° C., the pyrolysis reaction and decarbonization reaction of the precursor fiber proceed. As a result, the chemical composition of the obtained primary fired fiber is controlled, that is, the excess carbon amount and oxygen amount are suppressed.

【0024】この一次焼成工程において、不融化繊維を
水素ガスまたは希釈水素ガス雰囲気中に保持する時間、
温度範囲等の具体的条件は、使用する不融化繊維の量、
水素ガス濃度等の諸条件に応じて、得られる一次焼成繊
維のC/Si原子比が1.10〜0.85となるように
適宜選択される。
In this primary firing step, the time for holding the infusible fiber in a hydrogen gas or diluted hydrogen gas atmosphere,
Specific conditions such as temperature range, the amount of infusible fiber used,
According to various conditions such as hydrogen gas concentration, the C / Si atomic ratio of the obtained primary fired fiber is appropriately selected to be 1.10 to 0.85.

【0025】上記のようにして一次焼成された繊維は、
最後に希釈塩化水素ガス雰囲気下、ケイ素の融点〜沸点
付近の温度である1500〜2200℃で二次焼成され
る。その結果、一次焼成繊維表面の遊離ケイ素が除去さ
れ、C/Si原子比が1.00〜1.10の炭化ケイ素
繊維が得られる。ここで「希釈塩化水素ガス雰囲気」と
は、塩化水素ガスと不活性ガスが混合した雰囲気をい
い、不活性ガスとしては窒素ガス、アルゴンガス、ヘリ
ウムガス等が例示できる。
The fibers primarily fired as described above are
Finally, in a diluted hydrogen chloride gas atmosphere, secondary firing is performed at 1500 to 2200 ° C., which is a temperature near the melting point to the boiling point of silicon. As a result, free silicon on the surface of the primary fired fiber is removed, and a silicon carbide fiber having a C / Si atomic ratio of 1.00 to 1.10. Here, the “diluted hydrogen chloride gas atmosphere” means an atmosphere in which hydrogen chloride gas and an inert gas are mixed, and examples of the inert gas include nitrogen gas, argon gas, helium gas and the like.

【0026】本発明における二次焼成は、次に挙げる方
法によってなされる。
The secondary firing in the present invention is performed by the following method.

【0027】まず一つの方法は、一次焼成を行った炉内
において、引き続き二次焼成を行う、いわゆる連続法で
ある。希釈塩化水素ガス雰囲気中の塩化水素ガスの含有
量は0.1〜25vol.%、つまり不活性ガスに対す
る塩化水素ガスの混合比でいうと約0.1〜30vo
l.%に設定するのが好ましく、1500〜2200℃
の間の任意の温度で二次焼成する。また、焼成時間は1
0秒以上が好ましい。
First, one method is a so-called continuous method in which secondary firing is continuously performed in the furnace in which primary firing has been performed. The content of hydrogen chloride gas in the diluted hydrogen chloride gas atmosphere is 0.1 to 25 vol. %, That is, the mixing ratio of hydrogen chloride gas to inert gas is about 0.1 to 30 vo
l. % Is preferably set to 1500 to 2200 ° C.
Secondary firing is performed at any temperature between. The firing time is 1
0 second or more is preferable.

【0028】また、上記の連続法に対して、一次焼成と
は別の炉内で二次焼成を行う、いわゆるバッチ法によっ
て行っても良い。つまり、不活性ガス雰囲気下において
室温から温度を上昇させて二次焼成を始め、1500〜
2200℃の間の任意の温度になった時に塩化水素ガス
を炉内に流して希釈塩化水素ガス雰囲気とし、数時間か
けて二次焼成する方法である。そして、二次焼成後に温
度を下げて炭化ケイ素繊維の製造を終了する。この場
合、希釈塩化水素ガス雰囲気中の塩化水素ガスの含有量
は0.1〜25vol.%、昇温速度は300〜700
℃/Hrが好ましい。
In addition to the above continuous method, the secondary baking may be performed in a furnace different from the primary baking, that is, a so-called batch method. In other words, in an inert gas atmosphere, the temperature is raised from room temperature to start secondary firing,
This is a method in which hydrogen chloride gas is caused to flow into the furnace at an arbitrary temperature between 2200 ° C. to form a diluted hydrogen chloride gas atmosphere, and secondary firing is performed for several hours. Then, after the secondary firing, the temperature is lowered to finish the production of the silicon carbide fiber. In this case, the hydrogen chloride gas content in the diluted hydrogen chloride gas atmosphere is 0.1 to 25 vol. %, Heating rate is 300 to 700
C / Hr is preferred.

【0029】以上述べた様に、まず一次焼成によって繊
維の凡その化学組成を整える。次に高温での二次焼成に
よって、一次焼成により繊維表層に滲み出した遊離ケイ
素が溶融あるいは気化し、これが二次焼成雰囲気中に含
まれる塩化水素と反応して、塩化ケイ素となって除去さ
れ、最終的にC/Si原子比が1.00〜1.10の炭
化ケイ素繊維が得られるものと考えられる。この作用に
より、得られた炭化ケイ素繊維は高温で熱処理を行って
もほとんど劣化が生じない。なお上述した二次焼成は、
塩化水素ガスのかわりに塩素ガス等のハロゲンガスを用
いて行ってもよい。
As described above, first, the chemical composition of the fiber is adjusted by primary firing. Next, by secondary calcination at high temperature, the free silicon exuded on the fiber surface layer by primary calcination is melted or vaporized, and this reacts with hydrogen chloride contained in the secondary calcination atmosphere to be removed as silicon chloride. It is considered that finally, a silicon carbide fiber having a C / Si atomic ratio of 1.00 to 1.10 can be obtained. Due to this action, the obtained silicon carbide fiber is hardly deteriorated even when heat-treated at a high temperature. The above-mentioned secondary firing is
A halogen gas such as chlorine gas may be used instead of hydrogen chloride gas.

【0030】このように塩化水素またはハロゲンガスを
含んだ雰囲気において二次焼成を行う工程を導入するこ
とによって、余剰ケイ素が除去され、その結果高弾性率
を有し、耐熱性、高温での耐酸化性、クリープ性に優れ
た炭化ケイ素繊維が得られる。
By introducing the step of performing the secondary calcination in the atmosphere containing hydrogen chloride or halogen gas as described above, excess silicon is removed, resulting in high elastic modulus, heat resistance, and acid resistance at high temperature. It is possible to obtain a silicon carbide fiber having excellent chemical conversion and creep properties.

【0031】[0031]

【実施例】以下、実施例等に基づいて本発明をより具体
的に説明する。なお各表中のC/Siは原子比、N2
HClは体積比である。
EXAMPLES The present invention will be described in more detail with reference to the following examples. C / Si in each table is atomic ratio, N 2 /
HCl is by volume.

【0032】実施例1および比較例1〜2 下記の基本骨格を持つ平均分子量が約2000のポリカ
ルボシランを溶融紡糸して、直径12〜14μmの前駆
体繊維を得た。
Example 1 and Comparative Examples 1 and 2 Polycarbosilane having the following basic skeleton and an average molecular weight of about 2000 was melt-spun to obtain a precursor fiber having a diameter of 12 to 14 μm.

【0033】[0033]

【化1】 続いて、上記前駆体繊維をそれぞれ表1に示す方法で不
融化して不融化繊維を得た。かかる不融化処理の条件は
それぞれ以下の通りである。 (電子線不融化) 雰囲気:He、電子線加速電圧:2MeV、電子線電
流:3mA、照射時間:10Hr (O2 不融化) 雰囲気:Air、昇温速度:10℃/Hr、最高温度:
200℃ 次に、上記不融化繊維をそれぞれ表1に示す条件下で1
300℃迄昇温して一次焼成し、一次焼成繊維を得た。
かかる焼成処理における昇温速度は100℃/Hrであ
る。
Embedded image Subsequently, the precursor fibers were infusibilized by the methods shown in Table 1 to obtain infusibilized fibers. The conditions for such infusibilizing treatment are as follows. (Electron beam infusibilization) Atmosphere: He, electron beam accelerating voltage: 2 MeV, electron beam current: 3 mA, irradiation time: 10 Hr (O 2 infusibilization) Atmosphere: Air, heating rate: 10 ° C./Hr, maximum temperature:
200 ° C. Next, each of the infusible fibers was subjected to 1 under the conditions shown in Table 1.
The temperature was raised to 300 ° C and primary firing was performed to obtain a primary fired fiber.
The rate of temperature rise in such a firing treatment is 100 ° C./Hr.

【0034】最後に、上記一次焼成繊維をそれぞれ表1
に示す条件下で二次焼成し、炭化ケイ素繊維を得た。得
られた炭化ケイ素繊維のC/Si原子比、引張り強度お
よび引張り弾性率を表1に示す。
Finally, each of the above primary fired fibers is shown in Table 1.
Secondary firing was performed under the conditions shown in to obtain silicon carbide fibers. Table 1 shows the C / Si atomic ratio, tensile strength and tensile elastic modulus of the obtained silicon carbide fiber.

【0035】[0035]

【表1】 この表1から、二次焼成を塩化水素ガス含有雰囲気中1
800℃で行った実施例1の炭化ケイ素繊維は、比較例
1〜2に比べて高い引張り弾性率を有することが判っ
た。
[Table 1] From this table 1, the secondary firing was performed in an atmosphere containing hydrogen chloride gas 1
It was found that the silicon carbide fiber of Example 1 made at 800 ° C. had a higher tensile elastic modulus than those of Comparative Examples 1-2.

【0036】次に、このようにして得られた炭化ケイ素
繊維について、耐熱試験、耐酸化性試験および耐高温ク
リープ試験を下記の方法によって行った。結果を表2に
示す。 [耐熱試験]炭化ケイ素繊維を、それぞれアルゴンガス
雰囲気中、1800℃で1時間曝露した後の引張り強度
を測定した。 [耐酸化性試験]炭化ケイ素繊維をそれぞれ空気中で1
400℃の温度に10時間曝露した後の引張り強度を測
定し、この引張り強度と試験前の引張り強度との比を求
めて耐酸化性を評価した。 [耐高温クリープ試験]炭化ケイ素繊維をそれぞれ12
00℃の温度に1時間曝露して、耐高温クリープ試験を
行い、応力緩和比を測定した。
Next, the silicon carbide fiber thus obtained was subjected to a heat resistance test, an oxidation resistance test and a high temperature creep test by the following methods. Table 2 shows the results. [Heat Resistance Test] Each of the silicon carbide fibers was exposed to argon gas atmosphere at 1800 ° C. for 1 hour, and the tensile strength was measured. [Oxidation resistance test] Silicon carbide fibers in air 1
The tensile strength after exposure to a temperature of 400 ° C. for 10 hours was measured, and the oxidation resistance was evaluated by obtaining the ratio of this tensile strength and the tensile strength before the test. [High temperature resistance creep test] 12 silicon carbide fibers each
The sample was exposed to a temperature of 00 ° C. for 1 hour, a high temperature creep resistance test was performed, and the stress relaxation ratio was measured.

【0037】[0037]

【表2】 この表2から、二次焼成において塩化水素ガス含有雰囲
気を用いた実施例1の炭化ケイ素繊維は、塩化水素ガス
を含まない雰囲気を用いた比較例1〜2に比べて、耐熱
性、耐酸化性、耐高温クリープ性の何れも優れているこ
とが判った。表1では引張り強度がやや比較例1〜2の
ものより劣った実施例1も、耐酸化性試験後の引張り強
度においては高い値を示しており、よって試験前後の強
度比も高い値を保持していた。
[Table 2] From this Table 2, the silicon carbide fiber of Example 1 using the hydrogen chloride gas-containing atmosphere in the secondary firing has higher heat resistance and oxidation resistance than Comparative Examples 1 and 2 using the hydrogen chloride gas-free atmosphere. It was found that both the heat resistance and the high temperature creep resistance were excellent. In Table 1, also in Example 1 in which the tensile strength is slightly inferior to that of Comparative Examples 1 and 2, the tensile strength after the oxidation resistance test also shows a high value, and thus the strength ratio before and after the test also retains a high value. Was.

【0038】従って、本発明により得られる炭化ケイ素
繊維は、1400℃程度の空気中で充分に使用に供し得
るものであり、1800℃程度の高温下での不活性雰囲
気中における使用にも充分耐えることが判明した。
Therefore, the silicon carbide fiber obtained by the present invention can be sufficiently used in the air at about 1400 ° C., and can withstand use in an inert atmosphere at a high temperature of about 1800 ° C. It has been found.

【0039】実施例2〜4および比較例3 実施例1で用いたのと同じポリカルボシランを原料とし
て、一次焼成までを下記の共通方法〜で行った。つ
ぎに、表3に示したように、雰囲気中の塩化水素ガスの
混合率だけを変えて二次焼成を1800℃で10秒間行
い、その結果得られた炭化ケイ素繊維についての特性を
表3に示した。 不融化;電子線不融化 一次焼成;室温から800℃までが水素ガス雰囲気、
800℃から1300℃までがアルゴンガス雰囲気(一
次焼成後、C/Si=1.04) なお、その他の詳しい条件は実施例1に準拠した。
Examples 2 to 4 and Comparative Example 3 Using the same polycarbosilane as that used in Example 1 as a raw material, the steps up to the primary firing were carried out by the following common methods. Next, as shown in Table 3, secondary firing was performed at 1800 ° C. for 10 seconds while changing only the mixing ratio of hydrogen chloride gas in the atmosphere, and Table 3 shows the characteristics of the resulting silicon carbide fibers. Indicated. Infusibilization; electron beam infusibilization primary firing; hydrogen gas atmosphere from room temperature to 800 ° C,
Argon gas atmosphere from 800 ° C. to 1300 ° C. (C / Si = 1.04 after primary firing) Note that other detailed conditions were in accordance with Example 1.

【0040】[0040]

【表3】 この表3から、まず、塩化水素を含まない雰囲気での二
次焼成によって得られた比較例3の炭化ケイ素繊維は、
強度劣化が著しいことが判った。また実施例2〜4は、
二次焼成を塩化水素ガスを含む雰囲気下1800℃で行
ったものであるが、塩化水素ガスが窒素ガスに対して1
〜10vol.%の濃度範囲では、濃度が高いほど引張
り強度、引張り弾性率が高い値となった。さらに塩化水
素ガス濃度が10vol.%の場合は、1800℃以上
での耐熱性にも優れていることが判った。
[Table 3] From Table 3, first, the silicon carbide fiber of Comparative Example 3 obtained by secondary firing in an atmosphere not containing hydrogen chloride was
It was found that the strength was significantly deteriorated. In addition, Examples 2 to 4
The secondary firing was performed at 1800 ° C. in an atmosphere containing hydrogen chloride gas.
-10 vol. In the concentration range of%, the higher the concentration, the higher the tensile strength and tensile modulus. Further, the hydrogen chloride gas concentration is 10 vol. %, It was found that the heat resistance at 1800 ° C. or higher was also excellent.

【0041】実施例5〜7および比較例4〜6 実施例1で用いたのと同じポリカルボシランを原料とし
てこれを溶融紡糸し、次にそれぞれ得られた前駆体繊維
を表4の条件下で不融化、一次焼成を行った。なお、そ
の他の条件は実施例1に準拠した。ついで、得られた一
次焼成繊維を、表4に示した雰囲気・温度で10秒間二
次焼成を行った。
Examples 5 to 7 and Comparative Examples 4 to 6 The same polycarbosilane as that used in Example 1 was used as a raw material and melt-spun. Then, the precursor fibers obtained respectively were subjected to the conditions shown in Table 4. Infusibilization and primary firing were performed. The other conditions were in accordance with Example 1. Then, the obtained primary fired fiber was subjected to secondary firing for 10 seconds in the atmosphere and temperature shown in Table 4.

【0042】二次焼成の雰囲気と温度の違いによる炭化
ケイ素繊維の外観を比較した結果を表4に示す。同表
中、窒素ガスのみの雰囲気を比較例として、また塩化水
素ガスが窒素ガスに対して10vol.%の雰囲気を実
施例としてそれぞれ示した。さらに二次焼成の温度の違
いによって、比較例4〜6と実施例5〜7として示し
た。なお同表中の記号は、繊維の強度を定性的に表した
もので、○は良好、△はやや弱い、×はもろく弱いこと
を各々示す。
Table 4 shows the results of comparing the appearances of the silicon carbide fibers due to the difference in the temperature and the atmosphere of the secondary firing. In the table, an atmosphere of only nitrogen gas was used as a comparative example, and hydrogen chloride gas was added at 10 vol. % Atmosphere is shown as an example. Further, the results are shown as Comparative Examples 4 to 6 and Examples 5 to 7 depending on the difference in the temperature of the secondary firing. The symbols in the table qualitatively represent the strength of the fiber, and ○ means good, Δ means weak, and x means brittle and weak.

【0043】[0043]

【表4】 表4より、二次焼成における塩化水素ガスの混合効果は
明らかである。窒素雰囲気下で二次焼成を行った各比較
例においては何れも劣化の著しい炭化ケイ素繊維しか得
られず、一方塩化水素を混合して二次焼成を行った各実
施例の場合には黒〜茶色の良好な繊維が得られた。これ
は、繊維表層に存在していた遊離ケイ素が塩化水素と反
応し、塩化ケイ素となって除去されたためと考えられ
る。しかし、2000℃以上では強度が若干低くなる。
[Table 4] From Table 4, the mixing effect of hydrogen chloride gas in the secondary firing is clear. In each of the comparative examples that were subjected to the secondary firing under a nitrogen atmosphere, only significantly deteriorated silicon carbide fibers were obtained, while in the case of each of the examples in which hydrogen chloride was mixed and the secondary firing was performed, black- A good brown fiber was obtained. It is considered that this is because the free silicon existing in the surface layer of the fiber reacted with hydrogen chloride to form silicon chloride and was removed. However, at 2000 ° C or higher, the strength is slightly lowered.

【0044】[0044]

【発明の効果】以上説明したように、本発明の製造方法
によれば、炭素とケイ素の原子比が1.0〜1.1であ
り、高温においても高強度、高弾性率を有し、また高温
での耐酸化性、クリープ性にも優れている炭化ケイ素繊
維を得ることが可能となる。
As described above, according to the production method of the present invention, the atomic ratio of carbon to silicon is 1.0 to 1.1, and the high strength and high elastic modulus are obtained even at high temperature. Further, it becomes possible to obtain a silicon carbide fiber having excellent oxidation resistance and creep resistance at high temperatures.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機ケイ素系ポリマーの前駆体繊維を不
融化した不融化繊維を、昇温しながら一次焼成して一次
焼成繊維を得る工程と、さらに該一次焼成繊維を二次焼
成して炭化ケイ素繊維を得る工程を具備する炭化ケイ素
繊維の製造方法であって、 前記一次焼成を、水素ガス、希釈水素ガスおよび不活性
ガスから選ばれる少なくとも1以上の雰囲気で行うが、
少なくとも600〜800℃の温度範囲では水素ガスま
たは希釈水素ガス雰囲気で行い、かつ、 前記二次焼成を、希釈塩化水素ガスまたは希釈ハロゲン
ガス雰囲気下、1500〜2200℃で行うことによ
り、炭素とケイ素の原子比C/Siが1.00〜1.1
0の炭化ケイ素繊維を製造する方法。
1. A step of primary-firing the infusible fiber obtained by infusibilizing the precursor fiber of the organosilicon-based polymer while raising the temperature to obtain a primary-firing fiber, and further secondary-firing the primary-firing fiber to carbonize it. A method for producing silicon carbide fibers, comprising the step of obtaining silicon fibers, wherein the primary firing is performed in at least one atmosphere selected from hydrogen gas, diluted hydrogen gas and inert gas,
Carbon and silicon are obtained by performing the secondary calcination in a hydrogen gas or diluted hydrogen gas atmosphere at least in the temperature range of 600 to 800 ° C., and by performing the secondary firing at 1500 to 2200 ° C. in a diluted hydrogen chloride gas or diluted halogen gas atmosphere. Atomic ratio C / Si of 1.00 to 1.1
A method for producing 0 silicon carbide fibers.
【請求項2】 前記二次焼成の雰囲気中の、塩化水素ガ
スまたはハロゲンガスの含有量が0.1〜25vol.
%である請求項1記載の方法。
2. The content of hydrogen chloride gas or halogen gas in the atmosphere of the secondary firing is 0.1 to 25 vol.
%. The method of claim 1 which is%.
【請求項3】 前記一次焼成の昇温速度が10〜100
0℃/Hrである請求項1または2記載の方法。
3. The temperature rising rate of the primary firing is 10 to 100.
The method according to claim 1 or 2, wherein the temperature is 0 ° C / Hr.
【請求項4】 前記一次焼成が1200〜1300℃で
終了する請求項1〜3いずれかに記載の方法。
4. The method according to claim 1, wherein the primary firing is completed at 1200 to 1300 ° C.
JP14978196A 1995-05-22 1996-05-22 Method for producing silicon carbide fiber Expired - Lifetime JP2938389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14978196A JP2938389B2 (en) 1995-05-22 1996-05-22 Method for producing silicon carbide fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14513895 1995-05-22
JP7-145138 1995-05-22
JP14978196A JP2938389B2 (en) 1995-05-22 1996-05-22 Method for producing silicon carbide fiber

Publications (2)

Publication Number Publication Date
JPH0941225A true JPH0941225A (en) 1997-02-10
JP2938389B2 JP2938389B2 (en) 1999-08-23

Family

ID=26476352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14978196A Expired - Lifetime JP2938389B2 (en) 1995-05-22 1996-05-22 Method for producing silicon carbide fiber

Country Status (1)

Country Link
JP (1) JP2938389B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158937A (en) * 1996-08-27 1998-06-16 Ube Ind Ltd Silicon carbide inorganic fiber and its production
US7404922B2 (en) 2001-04-03 2008-07-29 Japan Science And Technology Corporation Method for producing SiC fiber-reinforced SiC composite material by means of hot press
KR101377430B1 (en) * 2012-04-12 2014-04-01 한국세라믹기술원 Manufacturing apparatus and mehtod of slilion carbide fiber
JP2019137935A (en) * 2018-02-08 2019-08-22 株式会社Ihiエアロスペース Manufacturing method of silicon carbide fiber and silicon carbide fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158937A (en) * 1996-08-27 1998-06-16 Ube Ind Ltd Silicon carbide inorganic fiber and its production
US7404922B2 (en) 2001-04-03 2008-07-29 Japan Science And Technology Corporation Method for producing SiC fiber-reinforced SiC composite material by means of hot press
KR101377430B1 (en) * 2012-04-12 2014-04-01 한국세라믹기술원 Manufacturing apparatus and mehtod of slilion carbide fiber
JP2019137935A (en) * 2018-02-08 2019-08-22 株式会社Ihiエアロスペース Manufacturing method of silicon carbide fiber and silicon carbide fiber

Also Published As

Publication number Publication date
JP2938389B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
CA1095672A (en) Silicon carbide fibers having a high strength and a method for producing said fibers
US9045347B2 (en) Stiochiometric silicon carbide fibers from thermo-chemically cured polysilazanes
Toreki et al. Polymer-derived silicon carbide fibers with low oxygen content and improved thermomechanical stability
US8987402B2 (en) Stoichiometric silicon carbide fibers from thermo-chemically cured polysilazanes
EP1435405B1 (en) Process for producing reinforcing sic fiber for sic composite material
JP2963021B2 (en) Method for producing silicon carbide fiber
JPH0941225A (en) Production of silicon carbide fiber
JP2525286B2 (en) Method for producing super heat resistant silicon carbide fiber
US4975263A (en) Process for producing mesophase pitch-based carbon fibers
JP3244020B2 (en) Silicon carbide based inorganic fiber and method for producing the same
US5076845A (en) Process for producing formed carbon products
JP4142157B2 (en) Method for producing polycrystalline ceramic fiber
US5824281A (en) Process for producing silicon carbide fibers
JP2001295140A (en) Silicon carbine fiber having carbon film on surface of fiber, and method for producing the same
Idesaki et al. Fine silicon carbide fibers synthesized from polycarbosilane-polyvinylsilane polymer blend using electron beam curing
JP3279144B2 (en) High heat resistant ceramic fiber and method for producing the same
JPH06173117A (en) Production of carbon fiber coated with silicon carbide
EP0653391B1 (en) Process for producing silicon carbide fibers
JP2002317335A (en) Carbon fiber and method for producing the same
JP2002160930A (en) Porous quartz glass and method of producing the same
JPH01314734A (en) Production of pitch-based carbon fiber
JPH11229239A (en) Production of high-purity silicon nitride yarn
JP2001279098A (en) Organosilicon polymer, silicon carbide-based inorganic filament and their production
JPH03220318A (en) Production of high-strength silicon carbide-based ceramic yarn by radiation oxidation
JP2953605B2 (en) Method for producing inorganic long fibers

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term