JP2963021B2 - Method for producing silicon carbide fiber - Google Patents

Method for producing silicon carbide fiber

Info

Publication number
JP2963021B2
JP2963021B2 JP29195694A JP29195694A JP2963021B2 JP 2963021 B2 JP2963021 B2 JP 2963021B2 JP 29195694 A JP29195694 A JP 29195694A JP 29195694 A JP29195694 A JP 29195694A JP 2963021 B2 JP2963021 B2 JP 2963021B2
Authority
JP
Japan
Prior art keywords
gas atmosphere
silicon carbide
hydrogen gas
atmosphere
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29195694A
Other languages
Japanese (ja)
Other versions
JPH07189039A (en
Inventor
宏 市川
義一 今井
道夫 武田
淳一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26558773&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2963021(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP29195694A priority Critical patent/JP2963021B2/en
Publication of JPH07189039A publication Critical patent/JPH07189039A/en
Application granted granted Critical
Publication of JP2963021B2 publication Critical patent/JP2963021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は炭化ケイ素繊維の製造方
法に関し、より詳しくは、焼成工程における少なくとも
一部の温度範囲において水素ガス雰囲気又は稀釈水素ガ
ス雰囲気を焼成雰囲気として採用した、耐酸化性に優れ
かつ高強度、高弾性率であり、しかも各種金属基材との
濡れ性が良好な炭化ケイ素繊維の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing silicon carbide fibers, and more particularly, to an oxidation resistant method employing a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere as a firing atmosphere in at least a part of the temperature range in a firing step. The present invention relates to a method for producing a silicon carbide fiber having excellent strength, high strength, high elastic modulus, and good wettability with various metal substrates.

【0002】[0002]

【従来の技術】従来、炭化ケイ素繊維は、ポリカルボシ
ラン等を紡糸して得られた前駆体繊維を一定条件で不融
化し、次いで窒素ガス等の不活性ガス雰囲気中で昇温す
ることによって焼成して製造されていた。
2. Description of the Related Art Conventionally, a silicon carbide fiber is prepared by infusing a precursor fiber obtained by spinning polycarbosilane or the like under a certain condition, and then heating the same in an inert gas atmosphere such as nitrogen gas. It was manufactured by firing.

【0003】かかる従来の方法によって製造された炭化
ケイ素繊維は、ある程度の高強度、高弾性率を有するも
のの、化学量論的組成を有する炭化ケイ素に比較すると
特に弾性率が低く、また炭化ケイ素に加えて余剰の炭素
を比較的多く含むため耐酸化性が不充分であった。従っ
て、かかる従来の炭化ケイ素繊維は高温での使用が制限
されるという問題があった。また、上記従来の炭化ケイ
素繊維は、余剰炭素(フリーカーボン)を比較的多く含
むことから、各種金属基材との濡れ性が悪く、これらと
の複合材料とした時の接着性に劣るという問題も生じ
た。
[0003] The silicon carbide fiber produced by such a conventional method has a certain high strength and a high elastic modulus, but has a particularly low elastic modulus as compared with silicon carbide having a stoichiometric composition. In addition, oxidation resistance was insufficient due to the relatively large amount of excess carbon. Accordingly, there has been a problem that the use of such conventional silicon carbide fibers at high temperatures is limited. Further, since the conventional silicon carbide fiber contains a relatively large amount of surplus carbon (free carbon), it has poor wettability with various metal base materials and poor adhesion when used as a composite material with these materials. Also occurred.

【0004】近年、炭化ケイ素繊維は高温ガスタービン
の各種部材等の構成材料として期待されているが、従来
の炭化ケイ素繊維は上述の課題を有するため、未だ実用
に供し得ないのが実情である。
In recent years, silicon carbide fiber has been expected as a constituent material of various members of a high-temperature gas turbine, but the conventional silicon carbide fiber cannot be put to practical use yet because of the above-mentioned problems. .

【0005】[0005]

【発明が解決しようとする課題】本発明は、これら従来
技術の課題を解消し、高強度、高弾性率であると共に、
高温での耐酸化性に優れ、しかも各種金属基材との濡れ
性が良好な炭化ケイ素繊維の製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention solves these problems of the prior art and has a high strength and a high elastic modulus.
An object of the present invention is to provide a method for producing a silicon carbide fiber which has excellent oxidation resistance at high temperatures and good wettability with various metal substrates.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記目的を
達成すべく鋭意研究した結果、焼成工程における少なく
とも一部の温度範囲において水素ガス雰囲気又は稀釈水
素ガス雰囲気を焼成雰囲気として採用することによって
上記目的が達成されることを見出し、本発明に到達し
た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and have found that a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere is used as a firing atmosphere in at least a part of the temperature range in a firing step. The present inventors have found that the above objects can be achieved by the present invention, and reached the present invention.

【0007】すなわち、本発明は、有機ケイ素系高分子
化合物を紡糸することによって得られる前駆体繊維を不
融化して不融化繊維を得る工程と、次いで該不融化繊維
を焼成して炭化ケイ素繊維を得る工程とを具備する炭化
ケイ素繊維の製造方法であって、前記焼成を水素ガス雰
囲気、稀釈水素ガス雰囲気及び不活性ガス雰囲気からな
る群から選択されるいずれかの雰囲気で行なうが、50
0℃〜950℃の温度範囲内の少なくとも一部の温度範
囲は水素ガス雰囲気又は稀釈水素ガス雰囲気で行なうこ
とを特徴とする炭化ケイ素繊維の製造方法である。
That is, the present invention provides a process for infusing precursor fibers obtained by spinning an organosilicon polymer compound to obtain infusible fibers, and then firing the infusible fibers to produce silicon carbide fibers. Wherein the firing is performed in any one of the atmosphere selected from the group consisting of a hydrogen gas atmosphere, a diluted hydrogen gas atmosphere, and an inert gas atmosphere.
At least a part of the temperature range from 0 ° C. to 950 ° C. is a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere.

【0008】以下、本発明の製造方法についてさらに詳
細に説明する。
Hereinafter, the production method of the present invention will be described in more detail.

【0009】本発明では、有機ケイ素系高分子化合物を
紡糸することによって得られる前駆体繊維を用いる。原
料として使用される有機ケイ素系高分子化合物として
は、ポリカルボシラン、ポリシラザン、ポリシロキサン
等が挙げられる。また、かかる有機ケイ素系高分子化合
物としては、炭素、ケイ素、酸素及び窒素の他に、ホウ
素、チタン、ジルコニウム、アルミニウム等の金属元素
を含有する高分子化合物でもよい。なお、炭化ケイ素繊
維の前駆体繊維としては、ポリカルボシラン繊維が一般
的である。
In the present invention, a precursor fiber obtained by spinning an organosilicon polymer is used. Examples of the organosilicon polymer compound used as a raw material include polycarbosilane, polysilazane, polysiloxane, and the like. In addition, such an organic silicon-based polymer compound may be a polymer compound containing a metal element such as boron, titanium, zirconium, and aluminum in addition to carbon, silicon, oxygen, and nitrogen. In addition, as a precursor fiber of a silicon carbide fiber, a polycarbosilane fiber is generally used.

【0010】上記有機ケイ素系高分子化合物を溶融紡
糸、乾式紡糸等の紡糸手段によって繊維形状に加工して
なる前駆体繊維は、次に不融化される。不融化方法とし
ては、酸素、酸化物、不飽和炭化水素化合物等との化学
的反応を利用する方法や、電子線、紫外線等の各種放射
線を利用して架橋反応を生じさせる方法等の従来公知の
方法が適宜採用される。また、不融化の際の諸条件、例
えば雰囲気、温度、時間、具体的方法等は、採用する不
融化方法等に応じて適宜選択される。
The precursor fiber obtained by processing the organosilicon-based polymer compound into a fiber shape by spinning means such as melt spinning or dry spinning is then made infusible. As the infusibilizing method, conventionally known methods such as a method utilizing a chemical reaction with oxygen, an oxide, an unsaturated hydrocarbon compound, and the like, and a method of causing a crosslinking reaction using various radiations such as an electron beam and ultraviolet rays. Is appropriately adopted. In addition, various conditions at the time of infusibilization, for example, atmosphere, temperature, time, a specific method, and the like are appropriately selected according to the employed infusibilization method and the like.

【0011】このようにして不融化された繊維は、次い
で、下記条件の下で昇温することによって焼成され、炭
化ケイ素繊維が得られる。
The fiber thus infusibilized is then fired by raising the temperature under the following conditions to obtain a silicon carbide fiber.

【0012】本発明では、かかる昇温下での焼成を水素
ガス雰囲気、稀釈水素ガス雰囲気及び不活性ガス雰囲気
からなる群から選択されるいずれかの雰囲気で行なう
が、500℃〜950℃の温度範囲内の少なくとも一部
の温度範囲、好ましくは650℃〜850℃の温度範囲
内の少なくとも一部の温度範囲、は水素ガス雰囲気又は
稀釈水素ガス雰囲気で行なう必要がある。このように焼
成工程における特定温度範囲内の少なくとも一部の温度
範囲の焼成雰囲気として水素ガス又は稀釈水素ガスから
なる還元性雰囲気を採用することによって、前駆体繊維
の熱分解反応及び脱炭素反応が進行し、得られる炭化ケ
イ素繊維の化学的組成が制御、すなわち余剰炭素量が抑
制される。
According to the present invention, the calcination at the elevated temperature is performed in any atmosphere selected from the group consisting of a hydrogen gas atmosphere, a diluted hydrogen gas atmosphere, and an inert gas atmosphere. At least a part of the temperature range within the range, preferably at least a part of the temperature range of 650 ° C. to 850 ° C., needs to be performed in a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere. By employing a reducing atmosphere composed of hydrogen gas or diluted hydrogen gas as the firing atmosphere in at least a part of the specific temperature range in the firing step, the thermal decomposition reaction and the decarbonization reaction of the precursor fiber are performed. As the chemical composition proceeds, the chemical composition of the obtained silicon carbide fiber is controlled, that is, the amount of excess carbon is suppressed.

【0013】本発明においては水素ガス雰囲気又は稀釈
水素ガス雰囲気が使用されるが、純粋な水素ガス雰囲気
が好ましい。また、稀釈水素ガス雰囲気とは、窒素ガ
ス、アルゴンガス、ヘリウムガス等の不活性ガスで希釈
した水素ガスからなる雰囲気をいい、稀釈水素ガス雰囲
気中の水素ガス含有量は10vol%以上である。な
お、アンモニアガスを用いた場合も脱炭素反応が生起さ
れるが、前駆体繊維の窒化が同時に起こるため、得られ
る炭化ケイ素繊維の機械的特性、耐熱性は不充分とな
る。
In the present invention, a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere is used, but a pure hydrogen gas atmosphere is preferable. The diluted hydrogen gas atmosphere refers to an atmosphere composed of a hydrogen gas diluted with an inert gas such as a nitrogen gas, an argon gas, and a helium gas, and the hydrogen gas content in the diluted hydrogen gas atmosphere is 10 vol% or more. When ammonia gas is used, a decarbonization reaction occurs, but the nitriding of the precursor fiber occurs at the same time, so that the mechanical properties and heat resistance of the obtained silicon carbide fiber become insufficient.

【0014】また、本発明においては、焼成雰囲気とし
て上記水素ガス雰囲気又は稀釈水素ガス雰囲気と共に不
活性ガス雰囲気が採用されるが、焼成を完全に水素ガス
雰囲気又は稀釈水素ガス雰囲気で行なってもよい。本発
明にかかる不活性ガスとしては、窒素ガス、アルゴンガ
ス、ヘリウムガス等が挙げられる。
Further, in the present invention, an inert gas atmosphere is employed together with the above-mentioned hydrogen gas atmosphere or diluted hydrogen gas atmosphere as the sintering atmosphere, but the sintering may be performed completely in a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere. . Examples of the inert gas according to the present invention include a nitrogen gas, an argon gas, and a helium gas.

【0015】本発明においては、上記のように不融化繊
維を昇温焼成する過程の500℃〜950℃、好ましく
は650℃〜850℃、の温度範囲内の少なくとも一部
の温度範囲における焼成雰囲気が水素ガス雰囲気又は稀
釈水素ガス雰囲気であればよい。すなわち、不融化繊維
を焼成する雰囲気である水素ガス雰囲気、稀釈水素ガス
雰囲気及び不活性ガス雰囲気からなるガス雰囲気のう
ち、水素ガス雰囲気又は稀釈水素ガス雰囲気を焼成工程
における500℃〜950℃、好ましくは650℃〜8
50℃、の温度範囲内の少なくとも一部の温度範囲にお
いて使用する必要がある。従って、本発明においては、
500℃〜950℃の温度範囲内における焼成雰囲気が
全て不活性ガス雰囲気であってはならない。上記温度範
囲内の焼成雰囲気が完全に不活性ガス雰囲気では、脱炭
素反応が起こらず、得られる炭化ケイ素繊維に多くのフ
リーカーボンが残存するからである。
In the present invention, the firing atmosphere in at least a part of the temperature range of 500 ° C. to 950 ° C., preferably 650 ° C. to 850 ° C. in the process of raising the temperature of the infusibilized fiber as described above. May be a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere. That is, among the gas atmospheres composed of a hydrogen gas atmosphere which is an atmosphere for firing the infusible fiber, a diluted hydrogen gas atmosphere and an inert gas atmosphere, a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere is formed at 500 ° C. to 950 ° C. in the firing step, preferably. Is 650 ° C-8
It must be used in at least a part of the temperature range of 50 ° C. Therefore, in the present invention,
All firing atmospheres in the temperature range of 500 ° C. to 950 ° C. must not be inert gas atmospheres. If the firing atmosphere within the above temperature range is completely an inert gas atmosphere, a decarbonization reaction does not occur, and a large amount of free carbon remains in the obtained silicon carbide fiber.

【0016】なお、焼成開始温度〜500℃未満、並び
に950℃超〜焼成終了温度の温度範囲における焼成雰
囲気は、水素ガス雰囲気、稀釈水素ガス雰囲気及び不活
性ガス雰囲気からなる群から選択されるいずれでもよい
が、500℃〜950℃の温度範囲以外では脱炭素反応
が僅かしか起こらないこと及び経済的理由から不活性ガ
ス雰囲気が好ましい。
The firing atmosphere in the temperature range from the firing start temperature to less than 500 ° C. and the temperature range from over 950 ° C. to the firing end temperature is any one selected from the group consisting of a hydrogen gas atmosphere, a diluted hydrogen gas atmosphere, and an inert gas atmosphere. However, an inert gas atmosphere is preferable in a temperature range other than 500 ° C. to 950 ° C., since a slight decarbonization reaction occurs and economical reasons.

【0017】本発明にかかる焼成工程において、不融化
繊維を水素ガス雰囲気又は稀釈水素ガス雰囲気中に保持
する時間、温度範囲等の具体的条件は、使用する不融化
繊維の量、水素ガス濃度等の諸条件に応じて、得られる
炭化ケイ素繊維のC/Siモル比が好ましくは1.35
以下、より好ましくは1.10以下、特に好ましくは
1.05以下となるように適宜選択される。
In the firing step according to the present invention, specific conditions such as the time and temperature range for keeping the infusible fiber in a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere include the amount of the infusible fiber used, the hydrogen gas concentration, and the like. According to the above conditions, the C / Si molar ratio of the obtained silicon carbide fiber is preferably 1.35.
The following is appropriately selected so that it is more preferably 1.10 or less, particularly preferably 1.05 or less.

【0018】本発明にかかる焼成工程における具体的な
雰囲気操作は上記条件を満たせば特に制限されないが、
以下に焼成工程における好ましい雰囲気操作を具体的に
説明する。
The specific atmosphere operation in the firing step according to the present invention is not particularly limited as long as the above conditions are satisfied.
Hereinafter, a preferable atmosphere operation in the firing step will be specifically described.

【0019】先ず前記不融化繊維を不活性ガス雰囲気、
水素ガス雰囲気又は稀釈水素ガス雰囲気中で昇温下に焼
成を始める。そして、不活性ガス雰囲気中で焼成を始め
た場合は、950℃以下で焼成雰囲気を不活性ガス雰囲
気から水素ガス雰囲気又は稀釈水素ガス雰囲気に切り替
える。上記切り替え温度が950℃を越えると、脱炭素
反応が僅かしか起こらず、得られる炭化ケイ素繊維に多
くのフリーカーボンが残存するからである。上記の水素
ガス雰囲気又は稀釈水素ガス雰囲気への切り替え温度
は、好ましくは450〜650℃、更に好ましくは45
0〜550℃である。
First, the infusible fiber is placed in an inert gas atmosphere,
The firing is started at an elevated temperature in a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere. Then, when firing is started in an inert gas atmosphere, the firing atmosphere is switched from an inert gas atmosphere to a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere at 950 ° C. or lower. If the switching temperature exceeds 950 ° C., only a small amount of decarbonization reaction occurs, and a large amount of free carbon remains in the obtained silicon carbide fiber. The switching temperature to the hydrogen gas atmosphere or the diluted hydrogen gas atmosphere is preferably 450 to 650 ° C., more preferably 45 ° C.
0-550 ° C.

【0020】次いで、上記の水素ガス雰囲気又は稀釈水
素ガス雰囲気での焼成を昇温下で行ない、そのまま焼成
を完了してもよいが、好ましくは焼成雰囲気を水素ガス
雰囲気又は稀釈水素ガス雰囲気から不活性ガス雰囲気に
切り替える。不活性ガス雰囲気への切り替え温度は50
0℃以上である必要があり、好ましくは650〜120
0℃、更に好ましくは700〜950℃である。不活性
ガス雰囲気への切り替え温度が500℃より低いと、脱
炭素反応が僅かしか起こらず、得られる炭化ケイ素繊維
に多くのフリーカーボンが残存するからである。
Next, firing in the above-mentioned hydrogen gas atmosphere or diluted hydrogen gas atmosphere may be performed at an elevated temperature to complete the firing as it is. However, preferably, the firing atmosphere is changed from a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere. Switch to active gas atmosphere. Switching temperature to inert gas atmosphere is 50
0 ° C. or higher, preferably 650-120 ° C.
0 ° C., more preferably 700 to 950 ° C. If the switching temperature to the inert gas atmosphere is lower than 500 ° C., only a small amount of decarbonization reaction occurs, and a large amount of free carbon remains in the obtained silicon carbide fiber.

【0021】そして、上記の不活性ガス雰囲気、水素ガ
ス雰囲気又は稀釈水素ガス雰囲気において、好ましくは
最高温度1200〜2000℃に昇温し、更に必要に応
じて保持して焼成を終了する。なお、かかる焼成工程に
おける焼成時間、昇温速度等の焼成条件は特に限定され
ず、従来公知の条件等が適宜選択されるが、昇温速度と
しては10〜1000℃/Hrが好ましい。
Then, in the above-mentioned inert gas atmosphere, hydrogen gas atmosphere or diluted hydrogen gas atmosphere, the temperature is preferably raised to a maximum temperature of 1200 to 2000 ° C., and if necessary, the firing is completed. The firing conditions such as the firing time and the heating rate in the firing step are not particularly limited, and conventionally known conditions and the like are appropriately selected, but the heating rate is preferably 10 to 1000 ° C./Hr.

【0022】このように焼成工程における特定温度範囲
内の少なくとも一部の温度範囲の焼成雰囲気として水素
ガス雰囲気又は稀釈水素ガス雰囲気を採用することによ
って、高強度、高弾性率で、高温での耐酸化性に優れ、
しかも各種金属基材との濡れ性が良好な炭化ケイ素繊維
が得られる。なお、本発明にかかる焼成工程において、
雰囲気中にホウ素を添加してもよい。かかるホウ素は炭
化ホウ素に変換するため、得られる炭化ケイ素繊維は耐
酸化性がより向上する。
By employing a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere as the firing atmosphere in at least a part of the specific temperature range in the firing step, high strength, high elastic modulus, and high temperature acid resistance Excellent chemical properties,
In addition, silicon carbide fibers having good wettability with various metal substrates can be obtained. In the firing step according to the present invention,
Boron may be added to the atmosphere. Since such boron is converted to boron carbide, the resulting silicon carbide fiber has more improved oxidation resistance.

【0023】[0023]

【実施例】以下、実施例等に基づいて本発明をより具体
的に説明する。実施例1〜11および比較例1〜4 表1に示す有機ケイ素系高分子化合物を溶融紡糸して、
直径20μmの前駆体繊維を得た。使用した有機ケイ素
系高分子化合物はそれぞれ以下のものである。 (ポリカルボシラン) 平均分子量:約2000 基本骨格:
The present invention will be described below in more detail with reference to examples and the like. Examples 1 to 11 and Comparative Examples 1 to 4 The organic silicon-based polymer compounds shown in Table 1 were melt-spun,
A precursor fiber having a diameter of 20 μm was obtained. The organosilicon polymer compounds used are as follows. (Polycarbosilane) Average molecular weight: about 2000 Basic skeleton:

【0024】[0024]

【化1】 (ポリチタノカルボシラン) 平均分子量:約3000 基本骨格:Embedded image (Polytitanocarbosilane) Average molecular weight: about 3000 Basic skeleton:

【0025】[0025]

【化2】 上記基本骨格中、l,m,nはそれぞれ整数である。Embedded image In the above basic skeleton, l, m, and n are each an integer.

【0026】続いて、上記前駆体繊維をそれぞれ表1に
示す方法で不融化して不融化繊維を得た。かかる不融化
処理の条件はそれぞれ以下の通りである。 (電子線不融化) 雰囲気:He、電子線加速電圧:2MeV、電子線電
流:3mA、 照射時間:10Hr (アセチレン−紫外線不融化) 雰囲気:N2 50%+C22 50%、 紫外線波長:365nm及び435nm、 照射時間:8Hr (O2 不融化) 雰囲気:Air、昇温速度:10℃/Hr、最高温度:
200℃ 次に、上記不融化繊維をそれぞれ表1に示す条件下で1
300℃迄昇温して焼成し、炭化ケイ素繊維を得た。か
かる焼成処理における昇温速度は100℃/Hrであ
る。
Subsequently, the precursor fibers were made infusible by the methods shown in Table 1 to obtain infusible fibers. The conditions of the infusibilization treatment are as follows. (Electron beam infusibility) Atmosphere: He, electron beam acceleration voltage: 2 MeV, electron beam current: 3 mA, irradiation time: 10 Hr (acetylene-ultraviolet infusibility) Atmosphere: N 2 50% + C 2 H 2 50%, ultraviolet wavelength: 365 nm and 435 nm, irradiation time: 8 Hr (O 2 infusible) Atmosphere: Air, heating rate: 10 ° C./Hr, maximum temperature:
200 ° C. Next, the infusibilized fibers were each treated under the conditions shown in Table 1
The temperature was raised to 300 ° C. and baked to obtain a silicon carbide fiber. The rate of temperature rise in such a firing treatment is 100 ° C./Hr.

【0027】得られた炭化ケイ素繊維のC/Siモル
比、引張り強度、及び引張り弾性率を表2に示す。
The C / Si molar ratio, tensile strength, and tensile modulus of the obtained silicon carbide fiber are shown in Table 2.

【0028】また、実施例1〜5及び比較例1の結果か
ら、H2 ガス雰囲気からArガス雰囲気への切換温度と
C/Si並びにΔC/Siとの関係を求め、図1に示
す。
Further, from the results of Examples 1 to 5 and Comparative Example 1, the relationship between the switching temperature from the H 2 gas atmosphere to the Ar gas atmosphere and C / Si and ΔC / Si was determined, and is shown in FIG.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表2に示された結果から明らかなように、
本発明の方法による実施例1〜11の炭化ケイ素繊維
は、従来の方法による比較例1〜4の炭化ケイ素繊維に
比べてC/Siの値が低く、得られた炭化ケイ素繊維は
主としてβ−SiCからなり、余剰の炭素が少ないか又
は存在しないことが示されている。従って、本発明の方
法による炭化ケイ素繊維は耐酸化性が高く、しかも各種
金属基材との濡れ性が良好なものであった。これに対し
て、比較例1〜4の炭化ケイ素繊維はβ−SiC+Cか
らなり、余剰の炭素が多いことから、耐酸化性が不充分
であり、各種金属基材との濡れ性が悪いものであった。
As is clear from the results shown in Table 2,
The silicon carbide fibers of Examples 1 to 11 according to the method of the present invention have lower C / Si values than the silicon carbide fibers of Comparative Examples 1 to 4 according to the conventional method, and the obtained silicon carbide fibers are mainly β- It is shown to consist of SiC and have little or no excess carbon. Therefore, the silicon carbide fiber obtained by the method of the present invention had high oxidation resistance and good wettability with various metal substrates. On the other hand, the silicon carbide fibers of Comparative Examples 1 to 4 are composed of β-SiC + C and have a large amount of excess carbon, so that they have insufficient oxidation resistance and poor wettability with various metal base materials. there were.

【0032】また、図1に示された結果から、水素ガス
雰囲気中で脱炭素反応が進行するのは主に500〜95
0℃の温度範囲内であり、脱炭素反応が特に活発に進行
するのは650〜850℃の温度範囲内であることが判
明した。
Further, from the results shown in FIG. 1, the reason why the decarbonization reaction proceeds in the hydrogen gas atmosphere is mainly 500 to 95%.
It was found that the temperature was within the temperature range of 0 ° C, and that the decarbonization reaction proceeded particularly actively was within the temperature range of 650 to 850 ° C.

【0033】更に、実施例1〜8の炭化ケイ素繊維は、
従来の方法による比較例1の炭化ケイ素繊維と同様に高
水準の引張り強度を有しており、中でも実施例1〜3,
6及び8、特に実施例2及び6の炭化ケイ素繊維は、比
較例1の炭化ケイ素繊維に比べて高い引張り強度を有し
ていた。更に、実施例1〜8の炭化ケイ素繊維はいずれ
も比較例1の炭化ケイ素繊維より高い引張り弾性率を有
しており、特に実施例2及び6の炭化ケイ素繊維は比較
例1の炭化ケイ素繊維に比べて極めて高い引張り弾性率
を有していた。
Further, the silicon carbide fibers of Examples 1 to 8
It has a high level of tensile strength similarly to the silicon carbide fiber of Comparative Example 1 by the conventional method.
6 and 8, particularly the silicon carbide fibers of Examples 2 and 6, had higher tensile strength than the silicon carbide fiber of Comparative Example 1. Furthermore, the silicon carbide fibers of Examples 1 to 8 all have a higher tensile modulus than the silicon carbide fiber of Comparative Example 1. In particular, the silicon carbide fibers of Examples 2 and 6 are the same as those of Comparative Example 1. Had an extremely high tensile modulus of elasticity.

【0034】また、不融化方法や出発原料が実施例1〜
8とは相違する実施例9〜11の炭化ケイ素繊維も、そ
れぞれ焼成雰囲気を不活性ガス雰囲気のみにした以外は
同様にして得られた比較例2〜4の炭化ケイ素繊維に比
べて、いずれも高い引張り強度及び高い引張り弾性率を
有するものであった。実験例1 (耐熱試験) 実施例1〜3及び6〜7並びに比較例1で得られた炭化
ケイ素繊維をそれぞれアルゴンガス雰囲気中で1500
℃の温度に10時間置き、耐熱性を評価した。かかる耐
熱試験後の各炭化ケイ素繊維の引張り強度及び引張り弾
性率を表3に示す。実験例2 (耐酸化性試験) 実施例1〜3及び6〜7並びに比較例1で得られた炭化
ケイ素繊維をそれぞれ空気中で1300℃の温度に10
時間曝露することによって耐酸化性を評価した。かかる
耐酸化性試験後の各炭化ケイ素繊維の引張り強度及び引
張り弾性率を表3に示す。
Further, the infusibilizing method and starting materials were the same as those of Examples 1 to 3.
The silicon carbide fibers of Examples 9 to 11, which are different from Example 8, were also compared with the silicon carbide fibers of Comparative Examples 2 to 4 obtained in the same manner except that the firing atmosphere was only the inert gas atmosphere. It had high tensile strength and high tensile modulus. Experimental Example 1 (Heat resistance test) The silicon carbide fibers obtained in Examples 1 to 3 and 6 to 7 and Comparative example 1 were each subjected to 1500 in an argon gas atmosphere.
The sample was placed at a temperature of 10 ° C. for 10 hours to evaluate heat resistance. Table 3 shows the tensile strength and tensile modulus of each silicon carbide fiber after the heat resistance test. Experimental Example 2 (Oxidation resistance test) The silicon carbide fibers obtained in Examples 1 to 3 and 6 to 7 and Comparative example 1 were each heated to 1300 ° C in air at a temperature of 10 ° C.
Oxidation resistance was evaluated by time exposure. Table 3 shows the tensile strength and tensile modulus of each silicon carbide fiber after the oxidation resistance test.

【0035】[0035]

【表3】 [Table 3]

【0036】耐熱試験において、実施例1〜3及び6〜
7並びに比較例1の炭化ケイ素繊維はいずれも、150
0℃に加熱した後も外観は変化なくかつしなやかであっ
た。また、表3に示された結果から明らかなように、本
発明の方法による実施例1〜3及び6〜7、特に実施例
1〜2及び6〜7の炭化ケイ素繊維は、1500℃に加
熱した後も比較例1の炭化ケイ素繊維と同等あるいはそ
れ以上に引張り強度及び引張り弾性率が高水準に維持さ
れた。特に、実施例2及び6の炭化ケイ素繊維は、15
00℃に加熱した後も極めて高い引張り強度及び引張り
弾性率を有していた。
In the heat resistance test, Examples 1-3 and 6-
7 and the silicon carbide fiber of Comparative Example 1 were all 150
Even after heating to 0 ° C, the appearance was unchanged and supple. As is clear from the results shown in Table 3, the silicon carbide fibers of Examples 1 to 3 and 6 to 7, particularly Examples 1 to 2 and 6 to 7 according to the method of the present invention were heated to 1500 ° C. After that, the tensile strength and the tensile modulus were maintained at a high level equivalent to or higher than that of the silicon carbide fiber of Comparative Example 1. In particular, the silicon carbide fibers of Examples 2 and 6
Even after heating to 00 ° C., it had extremely high tensile strength and tensile modulus.

【0037】従って、本発明の方法による炭化ケイ素繊
維は、1500℃程度の温度で充分に使用に供し得るこ
とが判明した。
Therefore, it was found that the silicon carbide fiber obtained by the method of the present invention can be sufficiently used at a temperature of about 1500 ° C.

【0038】耐酸化性試験においては、表3に示された
結果から明らかなように、本発明の方法による実施例1
〜3及び6〜7、特に実施例2〜3及び6〜7の炭化ケ
イ素繊維は、空気中で1300℃に加熱した後も比較例
1の炭化ケイ素繊維以上に引張り強度及び引張り弾性率
が高水準に維持された。従って、本発明の方法による炭
化ケイ素繊維は、1300℃程度の高温下での空気中に
おける使用にも充分耐えることが判明した。
In the oxidation resistance test, as apparent from the results shown in Table 3, Example 1 according to the method of the present invention was used.
-3 and 6-7, in particular, the silicon carbide fibers of Examples 2-3 and 6-7 have higher tensile strength and tensile modulus than the silicon carbide fiber of Comparative Example 1 even after heating to 1300 ° C in air. It was maintained at the standard. Therefore, it was found that the silicon carbide fiber according to the method of the present invention can sufficiently withstand use in air at a high temperature of about 1300 ° C.

【0039】[0039]

【発明の効果】以上説明したように、本発明の製造方法
によれば、高強度かつ高弾性率で、高温での耐酸化性に
も優れている炭化ケイ素繊維が得られ、しかも本発明の
製造方法によれば得られる炭化ケイ素繊維のC/Siモ
ル比を1.34〜0.77といった値に制御することが
可能となり、従って各種金属基材との濡れ性が良好な炭
化ケイ素繊維を得ることが可能となる。
As described above, according to the production method of the present invention, a silicon carbide fiber having high strength and a high elastic modulus and excellent in oxidation resistance at a high temperature can be obtained. According to the production method, it is possible to control the C / Si molar ratio of the obtained silicon carbide fiber to a value of 1.34 to 0.77, and therefore, it is possible to obtain a silicon carbide fiber having good wettability with various metal base materials. It is possible to obtain.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 焼成途中におけるH2 ガス雰囲気からArガ
ス雰囲気への切換温度と、1300℃で焼成終了して得
た炭化ケイ素繊維のC/Si並びにΔC/Siとの関係
を示すグラフである。ここでΔC/Siとは脱炭素反応
の速度をモル比で示したものである。
FIG. 1 is a graph showing a relationship between a switching temperature from an H 2 gas atmosphere to an Ar gas atmosphere during firing and C / Si and ΔC / Si of a silicon carbide fiber obtained by finishing firing at 1300 ° C. Here, ΔC / Si indicates the rate of the decarbonization reaction in a molar ratio.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機ケイ素系高分子化合物を紡糸するこ
とによって得られる前駆体繊維を不融化して不融化繊維
を得る工程と、次いで該不融化繊維を焼成して炭化ケイ
素繊維を得る工程とを具備する炭化ケイ素繊維の製造方
法であって、前記焼成を水素ガス雰囲気、稀釈水素ガス
雰囲気及び不活性ガス雰囲気からなる群から選択される
いずれかの雰囲気で行なうが、500℃〜950℃の温
度範囲内の少なくとも一部の温度範囲は水素ガス雰囲気
又は稀釈水素ガス雰囲気で行なうことを特徴とする炭化
ケイ素繊維の製造方法。
1. a step of infusifying precursor fibers obtained by spinning an organosilicon-based polymer compound to obtain infusible fibers; and a step of firing the infusible fibers to obtain silicon carbide fibers. A method for producing a silicon carbide fiber comprising: performing the calcination in any atmosphere selected from the group consisting of a hydrogen gas atmosphere, a diluted hydrogen gas atmosphere, and an inert gas atmosphere; A method for producing silicon carbide fibers, characterized in that at least a part of the temperature range is performed in a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere.
【請求項2】 前記焼成を水素ガス雰囲気、稀釈水素ガ
ス雰囲気及び不活性ガス雰囲気からなる群から選択され
るいずれかの雰囲気で行なうが、650℃〜850℃の
温度範囲内の少なくとも一部の温度範囲は水素ガス雰囲
気又は稀釈水素ガス雰囲気で行なうことを特徴とする、
請求項1に記載の方法。
2. The calcination is performed in any atmosphere selected from the group consisting of a hydrogen gas atmosphere, a diluted hydrogen gas atmosphere, and an inert gas atmosphere, and at least a part of the temperature within a temperature range of 650 ° C. to 850 ° C. The temperature range is characterized by performing in a hydrogen gas atmosphere or a diluted hydrogen gas atmosphere,
The method of claim 1.
JP29195694A 1993-11-17 1994-11-02 Method for producing silicon carbide fiber Expired - Lifetime JP2963021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29195694A JP2963021B2 (en) 1993-11-17 1994-11-02 Method for producing silicon carbide fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30967593 1993-11-17
JP5-309675 1993-11-17
JP29195694A JP2963021B2 (en) 1993-11-17 1994-11-02 Method for producing silicon carbide fiber

Publications (2)

Publication Number Publication Date
JPH07189039A JPH07189039A (en) 1995-07-25
JP2963021B2 true JP2963021B2 (en) 1999-10-12

Family

ID=26558773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29195694A Expired - Lifetime JP2963021B2 (en) 1993-11-17 1994-11-02 Method for producing silicon carbide fiber

Country Status (1)

Country Link
JP (1) JP2963021B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3244020B2 (en) * 1996-08-27 2002-01-07 宇部興産株式会社 Silicon carbide based inorganic fiber and method for producing the same
JP5176192B2 (en) * 2000-12-25 2013-04-03 久米雄 臼田 Ceramic fiber used for fiber-reinforced metal composite material with fiber diameter of 30 μm or less and carbon component on fiber surface removed, and method for producing the same
CN100582330C (en) 2004-06-23 2010-01-20 帝人株式会社 Inorganic fiber, fiber structure and method for producing same
JP4823744B2 (en) * 2006-04-04 2011-11-24 株式会社荏原製作所 Pump sliding member and pump
CN101949073B (en) * 2010-08-11 2011-08-31 中国人民解放军国防科学技术大学 Preparation method of superfine zirconium oxide/silicon carbide fiber with radial and gradient distribution
CN101876094B (en) * 2010-08-11 2011-12-07 中国人民解放军国防科学技术大学 Preparation method of superfine zirconia/silicon carbide composite fibers
CN102912476A (en) * 2012-11-16 2013-02-06 天津工业大学 Preparation method of carbonized silicon (SiC) sub-micron fibers

Also Published As

Publication number Publication date
JPH07189039A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
US9045347B2 (en) Stiochiometric silicon carbide fibers from thermo-chemically cured polysilazanes
US20120237765A1 (en) Stiochiometric silicon carbide fibers from thermo-chemically cured polysilazanes
JP2963021B2 (en) Method for producing silicon carbide fiber
JP2525286B2 (en) Method for producing super heat resistant silicon carbide fiber
Narisawa et al. Use of blended precursors of poly (vinylsilane) in polycarbosilane for silicon carbide fiber synthesis with radiation curing
JP3244020B2 (en) Silicon carbide based inorganic fiber and method for producing the same
CN109402786A (en) Preparation method of near-stoichiometric SiC fibers
US5945362A (en) Silicon carbide fiber having excellent alkali durability
US6187705B1 (en) Creep-resistant, high-strength silicon carbide fibers
JP2938389B2 (en) Method for producing silicon carbide fiber
JP3279144B2 (en) High heat resistant ceramic fiber and method for producing the same
US5824281A (en) Process for producing silicon carbide fibers
EP0653391B1 (en) Process for producing silicon carbide fibers
JP2001295140A (en) Silicon carbine fiber having carbon film on surface of fiber, and method for producing the same
US6022820A (en) Silicon carbide fibers with low boron content
JP2609323B2 (en) Method for producing high performance silicon-based ceramic fiber
JP2904501B2 (en) Method for producing high-quality silicon-based ceramic fiber by irradiation
JP2523147B2 (en) Method for producing inorganic fiber
JPH1136142A (en) Crystalline silicon carbide fiber excellent in alkali resistance and its preparation
JP3381575B2 (en) Nonwoven fabric or woven fabric of crystalline silicon carbide fiber and method for producing the same
JP2574179B2 (en) Method for producing super heat resistant high strength silicon carbide fiber
JPH10130962A (en) Inorganic fiber and production thereof
JP2001279098A (en) Organosilicon polymer, silicon carbide-based inorganic filament and their production
JPS6252051B2 (en)
JP2514253B2 (en) Silicon carbide type molded product and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term