JP2574179B2 - Method for producing super heat resistant high strength silicon carbide fiber - Google Patents

Method for producing super heat resistant high strength silicon carbide fiber

Info

Publication number
JP2574179B2
JP2574179B2 JP1252270A JP25227089A JP2574179B2 JP 2574179 B2 JP2574179 B2 JP 2574179B2 JP 1252270 A JP1252270 A JP 1252270A JP 25227089 A JP25227089 A JP 25227089A JP 2574179 B2 JP2574179 B2 JP 2574179B2
Authority
JP
Japan
Prior art keywords
silicon carbide
fiber
oxygen
carbide fiber
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1252270A
Other languages
Japanese (ja)
Other versions
JPH03119113A (en
Inventor
忠男 瀬口
正信 西井
清人 岡村
宏 市川
道夫 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GENSHIRYOKU KENKYUSHO
Nippon Carbon Co Ltd
Original Assignee
NIPPON GENSHIRYOKU KENKYUSHO
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GENSHIRYOKU KENKYUSHO, Nippon Carbon Co Ltd filed Critical NIPPON GENSHIRYOKU KENKYUSHO
Priority to JP1252270A priority Critical patent/JP2574179B2/en
Publication of JPH03119113A publication Critical patent/JPH03119113A/en
Application granted granted Critical
Publication of JP2574179B2 publication Critical patent/JP2574179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリカルボシランなどの有機ケイ素高分子化
合物を原料とする高強度、高弾性率なうえ耐熱性に非常
にすぐれた炭化ケイ素繊維の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a silicon carbide fiber having a high strength, a high elastic modulus and a very high heat resistance, which is made of an organic silicon polymer compound such as polycarbosilane. It relates to a manufacturing method.

(従来技術およびその問題点) 有機ケイ素高分子化合物を前駆体として製造される炭
化ケイ素繊維の製造工程は紡糸、不融化、焼成に分けら
れる。
(Prior art and its problems) The production process of silicon carbide fiber produced using an organosilicon polymer compound as a precursor can be divided into spinning, infusibilization and firing.

紡糸工程は、ポリカルボシランなどの有機ケイ素高分
子化合物を溶融紡糸して細径の前駆体を得る工程であ
る。
The spinning step is a step in which an organosilicon polymer compound such as polycarbosilane is melt-spun to obtain a thin precursor.

不融化工程は前記前駆体繊維を酸化性雰囲気、一般的
には空気中で熱処理して架橋反応を起こさせ、繊維を不
溶、不融なものにする工程である。
The infusibilization step is a step in which the precursor fiber is heat-treated in an oxidizing atmosphere, generally in the air, to cause a crosslinking reaction to make the fiber insoluble and infusible.

焼成工程は前記不融化処理を行った繊維を無酸素雰囲
気又は真空下で1200℃程度に高温処理して無機化させて
炭化ケイ素繊維を得る工程である。
The firing step is a step of obtaining a silicon carbide fiber by subjecting the fiber subjected to the infusibilization treatment to a high temperature treatment at about 1200 ° C. in an oxygen-free atmosphere or under vacuum to make it inorganic.

しかしこの従来の方法は、酸素により有機ケイ素高分
子化合物の架橋を行うことによって不融化させている為
得られる炭化ケイ素繊維は8〜20%の酸素を含有してい
る。それ故従来の方法で得られる炭化ケイ素繊維は1300
℃以上の高温下では脱CO反応と炭化ケイ素結晶粒子の粗
大化が起こる為特に1500℃以上では繊維強度劣化が著し
い。
However, in this conventional method, the organosilicon polymer compound is made infusible by crosslinking with an oxygen, so that the obtained silicon carbide fibers contain 8 to 20% of oxygen. Therefore, the silicon carbide fiber obtained by the conventional method is 1300
At temperatures higher than ℃, the CO removal reaction and the coarsening of silicon carbide crystal particles occur, so that the fiber strength deteriorates remarkably especially at temperatures above 1500 ° C.

また特開昭53−103025号に開示されている様な放射線
による不融化は酸素の存在化で照射を行なうと前記の熱
酸化法から得られる炭化ケイ素繊維と同様に7〜30%の
酸素を含み同様の問題が生ずる。
In the case of infusibilization by radiation as disclosed in JP-A-53-103025, when irradiation is performed in the presence of oxygen, 7 to 30% of oxygen is released in the same manner as the silicon carbide fiber obtained from the above-mentioned thermal oxidation method. Similar problems arise.

そこで前駆体繊維を非酸化性雰囲気又は真空中で照射
した場合、比較的酸素の導入は少なくなる。しかし照射
終了後も前記体ポリマー中にラジカルが多量に存在する
ことが確認されており、空気中にとりだすとラジカルと
酸素はすみやかに反応し、結局焼成して得られる繊維に
は4〜12%の量のかなり多量の酸素を含むこととなる。
不融化後、大気中に取り出すことなく焼成することは工
業的には操作上、きわめて非能率である。
Therefore, when the precursor fibers are irradiated in a non-oxidizing atmosphere or in a vacuum, the introduction of oxygen is relatively small. However, it has been confirmed that a large amount of radicals are present in the body polymer even after the end of the irradiation. When the radicals are taken out into the air, the radicals and oxygen react promptly, and the fiber obtained by sintering eventually has 4 to 12% Will contain a significant amount of oxygen.
Firing after infusibilization without taking it out to the atmosphere is industrially extremely inefficient in operation.

(発明の目的) 本発明の目的は上述のような問題を解消し、きわめて
高い耐熱性をもつ高強度炭化ケイ素繊維を製造する方法
を提供することにある。
(Object of the Invention) An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a high-strength silicon carbide fiber having extremely high heat resistance.

(発明の構成) 上述の如き本発明の目的は有機ケイ素高分子化合物を
紡糸することによって得られる前駆体繊維を無酸素雰囲
気下又は真空下で放射線照射を行って不融化し、つい
で、酸素に接触させることなく無酸素雰囲気下又は真空
下にて不融化の際の放射線照射線量率の1.1〜107倍で電
子線を照射し、繊維を200℃以上に発熱させて不活性処
理を行ったのち無酸素雰囲気下又は真空下で焼成するこ
とにより達成される。
(Constitution of the Invention) The object of the present invention as described above is to make the precursor fiber obtained by spinning an organosilicon polymer compound infusible by irradiating it under an oxygen-free atmosphere or under vacuum, and then convert the precursor fiber to oxygen. It irradiated with an electron beam under an oxygen-free atmosphere without contacting or under vacuum at 1.1 to 10 7 times the radiation dose rate at the time of the infusible, was deactivated by heating the fibers to 200 ° C. or higher It is achieved by firing in an oxygen-free atmosphere or under vacuum.

本発明の方法では前駆体繊維を放射線照射を開始して
から不活性処理後冷却が完了するまで酸素と接触させな
い点に大きな特長をもつ。
The method of the present invention has a great feature in that the precursor fibers are not brought into contact with oxygen from the start of irradiation with radiation until the cooling is completed after the inert treatment.

すなわち前駆体繊維を無酸素雰囲気下又は真空下で放
射線照射することにより酸素の関与しない架橋反応が起
こることから不融化が達成され、引き続き不融化の際の
放射線照射線量率1.1〜107倍の電子線照射を行なって繊
維を200℃以上に発熱させる不活性処理を無酸素雰囲気
下又は、真空下で行うと残存しているラジカルが消滅す
るためる、繊維を冷却後たとえ大気中にとりだしても酸
素との反応に対して不活性となる。従って焼成後に得ら
れる炭化ケイ素繊維は従来の方法のものに対して1〜3
%と格段に酸素含有量が少なく例えば1500℃の高温にお
いても脱CO反応と炭化ケイ素結晶粒子の粗大化は殆んど
起こらない。このようにして耐熱性に極めて優れた高強
度炭化ケイ素繊維を効率よく製造することができる。
That the precursor fiber since the crosslinking reaction does not oxygen involvement occurs by irradiation under or under vacuum oxygen-free atmosphere infusibilization is achieved, subsequently during infusibilized radiation dose rate 1.1 to 10 7 times Under an oxygen-free atmosphere or under vacuum to perform an inert treatment to irradiate the fiber to 200 ° C or more by performing electron beam irradiation, the remaining radicals disappear, even if the fiber is cooled and even taken out to the atmosphere Inert with respect to the reaction with oxygen. Therefore, the silicon carbide fiber obtained after firing is 1 to 3 compared to the conventional method.
%, The oxygen content is remarkably small, and even at a high temperature of, for example, 1500 ° C., almost no CO removal reaction and coarsening of silicon carbide crystal particles occur. Thus, high-strength silicon carbide fibers having extremely excellent heat resistance can be efficiently produced.

本発明の方法における出発原料は、ケイ素と炭素とを
主な骨格成分とする下記に示すような(a)〜(d)の
構造の有機ケイ素高分子化合物を使用する。それに含有
される低分子重合体を溶媒抽出するなどして除去する
か、加熱重合、熟成するなどして紡糸に適する分子量と
する。
As a starting material in the method of the present invention, an organosilicon polymer compound having the following structures (a) to (d) containing silicon and carbon as main skeleton components is used. The low-molecular polymer contained therein is removed by solvent extraction or the like, or is heated and polymerized or aged to obtain a molecular weight suitable for spinning.

(d) 前記(a)〜(c)記載の骨格成分を鎖状、環
状及び三次元構造のうち、少なくとも一つの部分構造と
して含むもの、または(a)〜(c)の混合物上記有機
ケイ素高分子化合物の内ポリカルボシランはシリコーン
工業で最も一般的で安価なジクロロジメチルシランを縮
合させて得ることができるので、工業的には最も好まし
い。
(D) one containing the skeletal component described in the above (a) to (c) as at least one partial structure among a chain, cyclic and three-dimensional structure, or a mixture of (a) to (c). Of the molecular compounds, polycarbosilane is industrially most preferable because it can be obtained by condensing dichlorodimethylsilane, which is the most common and inexpensive in the silicone industry.

上記有機ケイ素高分子化合物は加熱溶融紡糸、又はベ
ンゼン、キシレン等の溶液を用いた乾式紡糸等によりた
とえば直径5〜50μmの前駆体繊維を得る。高強度炭化
ケイ素繊維を得るためには細径であればあるほど好まし
い。
The organosilicon polymer compound is used to obtain precursor fibers having a diameter of, for example, 5 to 50 μm by heat spinning or dry spinning using a solution of benzene, xylene, or the like. In order to obtain a high-strength silicon carbide fiber, a smaller diameter is more preferable.

本発明の方法において前駆体繊維を不融化するには電
子線、ガンマ線といった電離性放射線が用いられる。
In order to make the precursor fiber infusible in the method of the present invention, ionizing radiation such as electron beam and gamma ray is used.

電子線照射を行なう場合、電子線加熱電圧は20KV〜10
MVの範囲が好ましい。また照射は線量率1〜105Gy/s、
線量0.1〜100MGyが好ましい。加速電圧が20KV未満では
電子線の透過力が弱く繊維の不融化処理が不十分となる
恐れがあり、逆に10MVをこえると放射化が起こること、
また装置が高額となり実用的とはいえない。
When performing electron beam irradiation, the electron beam heating voltage is 20 KV to 10
The MV range is preferred. Irradiation dose rate 1 ~ 10 5 Gy / s,
A dose of 0.1-100 MGy is preferred. If the accelerating voltage is less than 20 KV, the penetration power of the electron beam may be weak and the infusibilization treatment of the fiber may be insufficient, and if it exceeds 10 MV, activation may occur,
In addition, the equipment is expensive and not practical.

線量率が1Gy/s未満のときは不融化処理に時間がかか
りすぎて不経済となり、逆に105Gy/sをこえると前駆体
繊維が発熱、溶融してしまい繊維形状が保持できない恐
れがあり不適切である。
When the dose rate is less than 1 Gy / s, the infusibilization process takes too long to be uneconomical, and when it exceeds 10 5 Gy / s, the precursor fiber may generate heat and melt, and the fiber shape may not be retained. Yes and inappropriate.

線量は0.1MGy未満では不融化は不十分で焼成時に溶融
し形状を保持できず、逆に100MGyをこえると不融化は十
分であるが照射時間が長くなり不経済である。
When the dose is less than 0.1 MGy, the infusibilization is insufficient and it melts at the time of firing and the shape cannot be maintained. On the other hand, when the dose exceeds 100 MGy, the infusibilization is sufficient but the irradiation time is long and uneconomical.

繊維を保持させる容器は照射面に金属箔を備えた真空
置換の可能な構造をもつものがよい。
The container for holding the fibers is preferably provided with a metal foil on the irradiation surface and having a structure capable of vacuum replacement.

ガンマ線照射を行う場合、線源として60Coなどを用
い、線量率0.1〜102Gy/s、線量0.1〜100MGyが好まし
い。線量率0.1Gy/s未満では不融化処理に時間がかかり
すぎて不経済、逆に102Gy/sをこえる線源は実用的とは
いえない。
When performing gamma irradiation, using a 60 Co as a radiation source, dose rate 0.1 to 10 2 Gy / s, the dose 0.1~100MGy are preferred. If the dose rate is less than 0.1 Gy / s, the infusibilization process takes too much time and is uneconomical. Conversely, a source exceeding 10 2 Gy / s is not practical.

線量は0.1MGy未満では不融化不十分で焼成時に溶融
し、形状を保持できず逆に100MGyをこえると不融化は十
分であるが照射時間が長くなり不経済である。
If the dose is less than 0.1 MGy, it is insufficiently infusibilized and melts at the time of firing, and the shape cannot be maintained. Conversely, if it exceeds 100 MGy, the infusibilization is sufficient but the irradiation time is long and uneconomical.

繊維を保持させる容器は真空置換の可能な構造をもつ
ものであればよい。
The container for holding the fibers may have a structure capable of vacuum replacement.

この不融化に際しては、雰囲気を無酸素又は真空とす
る必要があるが加熱は特に要しない。
At the time of infusibility, the atmosphere needs to be oxygen-free or vacuum, but heating is not particularly required.

前駆体繊維を放射線照射によって不融化した後もラジ
カルが多量に残存しており、活性なのでそのまま空気中
にとりだすと酸素と反応を起こしてしまう。そこでラジ
カルを消滅させる為に不融化した繊維に電子線照射して
急激に発熱させ不活性処理を行う。
Even after the precursor fiber is made infusible by irradiation with radiation, a large amount of radicals remain, and since it is active, if it is taken out directly into the air, it reacts with oxygen. Therefore, in order to eliminate radicals, the infusibilized fiber is irradiated with an electron beam to rapidly generate heat, thereby performing an inert treatment.

電子線照射は、上記不融化の際の放射線照射量率の1.
1〜107倍の線量率で行なうのが好適でこの範囲の下限よ
り小さいと実用的に効果がなく上限をこえると工業上実
用的ではない。この不活性処理は電子線照射により繊維
の温度を200℃以上に上げるのが肝要で他の熱源は必要
としない。
Electron beam irradiation is the radiation dose rate of 1.
Not industrially practical exceeds the upper limit there is no practical effect and suitably smaller than the lower limit of this range is carried out at a dose rate of 1 to 10 7 times. It is important for this inert treatment to raise the temperature of the fiber to 200 ° C. or more by electron beam irradiation, and no other heat source is required.

不活性処理における繊維の温度は200℃以上であれば
よいが2200℃をこえてはならない。通常200〜1000℃で
十分である。200℃未満ではラジカル消滅速度が遅く、
また2200℃をこえると炭化ケイ素の昇華が始まり繊維が
分解してしまうのでいずれも好ましくない。また、1000
℃をこえ必要以上に高温にすることはエネルギー効率上
からも好ましいことではない。
The temperature of the fiber in the inert treatment may be 200 ° C. or higher, but must not exceed 2200 ° C. Usually 200-1000 ° C is sufficient. If the temperature is lower than 200 ° C, the radical disappearance rate is slow,
On the other hand, when the temperature exceeds 2200 ° C., sublimation of silicon carbide starts and the fibers are decomposed, which is not preferable. Also, 1000
It is not preferable from the viewpoint of energy efficiency to raise the temperature to a temperature higher than the required temperature.

この不活性処理によってラジカルを消滅させた繊維
は、そのまま焼成することも勿論できるが、常法のよう
に一度大気中に取り出す場合100℃以上のままでは酸素
と反応してしまうので、100℃以下まで一度冷却した後
空気中に取り出さねばならない。
The fiber from which radicals have been eliminated by this inert treatment can, of course, be fired as it is, but if it is taken out to the atmosphere once as usual, it will react with oxygen if it is kept at 100 ° C or higher, so 100 ° C or lower Once cooled, they must be taken out into the air.

こうして100℃以下まで一度冷却して得た繊維は空気
中に取り出しても、もはや酸素を取込むことはない。
Even if the fiber obtained by cooling once to 100 ° C. or less is taken out into the air, it no longer takes in oxygen.

ついでこの繊維は焼成を行うことにより炭化ケイ素繊
維に転換できる。焼成温度は800〜2200℃が好ましく更
に好ましくは1000〜1700℃がよい。また焼成雰囲気は真
空、窒素、アルゴン等がよい。焼成温度が800℃未満で
は、無機化合物への転換が不十分で炭化ケイ素繊維本来
の耐熱性を発現しない。また2200℃を越えると炭化ケイ
素の昇華が始まり繊維が分解してしまうので好ましくな
い。
The fibers can then be converted to silicon carbide fibers by firing. The firing temperature is preferably from 800 to 2200 ° C, more preferably from 1000 to 1700 ° C. The firing atmosphere is preferably vacuum, nitrogen, argon or the like. If the firing temperature is lower than 800 ° C., conversion to an inorganic compound is insufficient and the inherent heat resistance of the silicon carbide fiber is not exhibited. On the other hand, when the temperature exceeds 2200 ° C., sublimation of silicon carbide starts and fibers are decomposed, which is not preferable.

(発明の効果) 上述のような本発明方法によれば従来公知の方法に比
べてきわめて高い耐熱性をもつ高強度炭化ケイ素繊維を
効率よく製造することができるようになり、宇宙、航空
用として又は窯業、鉄鋼業他一般産業用或いは民生用と
して従来適用不可能だった分野に供することができる。
(Effects of the Invention) According to the method of the present invention as described above, a high-strength silicon carbide fiber having extremely high heat resistance can be efficiently produced as compared with a conventionally known method, and it can be used for space and aviation. Or, it can be used in the ceramic industry, the steel industry, and other general industrial or consumer use fields which were not previously applicable.

本発明の炭化ケイ素繊維を単繊維、ヤーン、ロービン
グケーブル、ストランド、フィラメント、チョップドフ
ィラメントとしてまた繊維径が小さくしなやかなので二
次加工によって織布、スリーブ、ロープとして、また金
属、セラミックス等との複合材料として利用でき、例え
ば繊維状発熱体、防火織布、原子炉材料、核融合炉材
料、ロケット材料、各種耐火材料などに用いればその高
強度、高弾性、軽量、耐摩耗性等の特長から極めて有用
である。
The silicon carbide fiber of the present invention is used as a single fiber, a yarn, a roving cable, a strand, a filament, a chopped filament, and as a woven fabric, a sleeve, a rope by secondary processing because the fiber diameter is small and flexible, and a composite material with metal, ceramics, and the like. For example, when used for fibrous heating elements, fireproof woven fabric, nuclear reactor materials, fusion reactor materials, rocket materials, various refractory materials, etc., they have extremely high strength, high elasticity, light weight, wear resistance, etc. Useful.

(実施例) 次に本発明の実施例について説明する。(Example) Next, an example of the present invention will be described.

実施例1 炭化ケイ素繊維の前駆体ポリマーとして数平均分子量
約2000のポリカルボシランを溶融紡糸して平均直径12μ
mの前駆体繊維を得た。
Example 1 Polycarbosilane having a number average molecular weight of about 2,000 was melt-spun as a precursor polymer of silicon carbide fiber, and the average diameter was 12 μm.
m of precursor fibers were obtained.

この前駆体繊維をヘリウム気流下で6×103Gy/sの線
量率、9MGyの線量で電子線照射して不融化を行った。
The precursor fiber was irradiated with an electron beam at a dose rate of 6 × 10 3 Gy / s and a dose of 9 MGy in a helium stream to make it infusible.

照射後の繊維は空気中に取り出すことなく引き続きヘ
リウム気流下で線量率1.5×104Gy/sで繊維を200℃以上
に発熱させて不活性処理を行った。この時の線量は1MGy
であった。これを室温まで冷却させてから取り出した。
After irradiation, the fibers were not removed into the air, but were continuously heated under a helium stream at a dose rate of 1.5 × 10 4 Gy / s to generate heat at 200 ° C. or higher, thereby performing an inert treatment. The dose at this time is 1MGy
Met. This was allowed to cool to room temperature before being removed.

本不融化繊維はアルゴン気流中昇温速度100℃/hで120
0℃および1500℃1時間焼成して炭化ケイ素繊維を得
た。
This infusibilized fiber is heated at a rate of 100 ° C / h in an argon stream at 120
Calcination was performed at 0 ° C. and 1500 ° C. for 1 hour to obtain a silicon carbide fiber.

焼成後の炭化ケイ素繊維の特性は であった。The characteristics of the silicon carbide fiber after firing Met.

1500℃焼成後も繊維強度の低下があまりなく優れた耐
熱性をもつ炭化ケイ素繊維を製造することができた。従
って、実施例1により得た炭化ケイ素繊維は1500℃での
使用に際しても十分な強度、弾性率を有することがわか
る。
Even after firing at 1500 ° C., there was no significant decrease in fiber strength, and silicon carbide fibers having excellent heat resistance could be produced. Therefore, it can be seen that the silicon carbide fiber obtained in Example 1 has sufficient strength and elastic modulus even when used at 1500 ° C.

実施例2 実施例1と同様の方法により前駆体繊維を得てこれを
硬質ガラス管中に真空封入してガンマ線照射を行った。
Example 2 A precursor fiber was obtained in the same manner as in Example 1, and the precursor fiber was vacuum-sealed in a hard glass tube and irradiated with gamma rays.

線源は60Coで線量率5.5Gy/s、線量14MGyで照射した。The source was irradiated with 60 Co at a dose rate of 5.5 Gy / s and a dose of 14 MGy.

照射後の繊維はガラス管中に封入したまま電子線を線
量率9×104Gy/sで照射して200℃以上に繊維を発熱させ
て不活性処理を行い、室温まで冷却させてから繊維をと
りだした。この時の線量は2MGyであった。
The irradiated fiber is irradiated with an electron beam at a dose rate of 9 × 10 4 Gy / s while being encapsulated in a glass tube, and the fiber is heated to 200 ° C. or more to inactivate the fiber, cooled to room temperature, and then cooled. I took out. The dose at this time was 2 MGy.

続いて実施例1と同様の方法で焼成を行い、炭化ケイ
素繊維を得た。得られた炭化ケイ素繊維の特性は実施例
1のものと同様にすぐれた耐熱性を示した。
Subsequently, firing was performed in the same manner as in Example 1 to obtain silicon carbide fibers. The characteristics of the obtained silicon carbide fiber showed excellent heat resistance as in the case of Example 1.

比較例1 実施例1と同様の方法により得られた前駆体繊維を空
気中10℃/h 180℃で熱処理することにより不融化処理を
行った。
Comparative Example 1 A precursor fiber obtained by the same method as in Example 1 was heat-treated in air at 10 ° C / h at 180 ° C to perform infusibility treatment.

続いて実施例1と同様の方法で焼成を行い炭素ケイ素
繊維を得た。得られた炭化ケイ素繊維は1200℃焼成のも
のでは良好な強度特性を示したが、1500℃焼成のもので
は強度測定が不可能なほど弱くなっており取り扱いも困
難であった。
Subsequently, firing was performed in the same manner as in Example 1 to obtain carbon silicon fibers. The obtained silicon carbide fiber showed good strength characteristics when fired at 1200 ° C., but it was too weak to measure the strength when fired at 1500 ° C. and was difficult to handle.

比較例2 実施例1と同様の方法により得られた前駆体繊維を同
様に電子線照射して不融化を行い、繊維を室温まで冷却
させてから取り出した。
Comparative Example 2 The precursor fiber obtained in the same manner as in Example 1 was similarly irradiated with an electron beam to make it infusible, and the fiber was taken out after cooling to room temperature.

照射後の繊維は実施例1と同様の方法によって焼成し
炭化ケイ素繊維を得た。得られた炭化ケイ素繊維は1200
℃焼成のものでは良好な強度特性を示したが、1500℃焼
成のものでは強度は低く、耐熱性に劣ることがわかっ
た。
The irradiated fiber was fired in the same manner as in Example 1 to obtain a silicon carbide fiber. The obtained silicon carbide fiber is 1200
The sintering at ℃ C showed good strength characteristics, but the sintering at 1500 ° C showed low strength and poor heat resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市川 宏 神奈川県横浜市栄区庄戸2―5―16 (72)発明者 武田 道夫 富山県上新川郡大沢野町西大沢237 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Ichikawa 2-5-16 Shodo, Sakae-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Michio Takeda 237 Nishi-Osawa, Osawano-cho, Kamishinkawa-gun, Toyama Prefecture

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機ケイ素高分子化合物を紡糸することに
よって得られる前駆体繊維を無酸素雰囲気下又は真空下
で放射線照射を行って不融化し、ついで酸素に接触させ
ることなく無酸素雰囲気下又は真空下にて不融化の際の
放射線照射線量率の1.1〜107倍で電子線を照射し繊維を
200℃以上に発熱させて不活性処理を行った後無酸素雰
囲気下又は真空下で焼成することを特徴とする超耐熱性
高強度炭化ケイ素繊維の製造方法。
1. A precursor fiber obtained by spinning an organosilicon polymer compound is irradiated with radiation in an oxygen-free atmosphere or under vacuum to make it infusible, and then in an oxygen-free atmosphere without contacting with oxygen or the fiber was irradiated with electron beam at 1.1 to 10 7 times the radiation dose rate at the time of the infusible under vacuum
A method for producing a super-heat-resistant high-strength silicon carbide fiber, which comprises performing an inert treatment by generating heat at a temperature of 200 ° C. or higher, and then calcining in an oxygen-free atmosphere or under vacuum.
【請求項2】不融化の際の放射線照射は電子線を用い、
線量率1〜105Gy/s、照射線量0.1〜100MGyである請求項
1記載の超耐熱性高強度炭化ケイ素繊維の製造方法。
2. Irradiation at the time of infusibilization uses an electron beam,
Dose rate 1~10 5 Gy / s, the production method of the refractory high-strength silicon carbide fiber of claim 1, wherein the irradiation dose 0.1~100MGy.
【請求項3】不融化の際の放射線照射はガンマ線を用
い、線量率0.1〜1.0×102Gy/s、照射線量0.1〜100MGyで
ある請求項1記載の超耐熱性高強度炭化けい素繊維の製
造方法。
3. The ultra-heat-resistant high-strength silicon carbide fiber according to claim 1, wherein the radiation irradiation at the time of infusibility uses gamma rays, and the dose rate is 0.1 to 1.0 × 10 2 Gy / s and the irradiation dose is 0.1 to 100 MGy. Manufacturing method.
【請求項4】焼成温度が800〜2200℃の範囲である請求
項1乃至3の何れか1項記載の超耐熱性高強度炭化ケイ
素繊維の製造方法。
4. The method for producing a super-heat-resistant high-strength silicon carbide fiber according to claim 1, wherein the firing temperature is in the range of 800 to 2200 ° C.
JP1252270A 1989-09-29 1989-09-29 Method for producing super heat resistant high strength silicon carbide fiber Expired - Lifetime JP2574179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1252270A JP2574179B2 (en) 1989-09-29 1989-09-29 Method for producing super heat resistant high strength silicon carbide fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1252270A JP2574179B2 (en) 1989-09-29 1989-09-29 Method for producing super heat resistant high strength silicon carbide fiber

Publications (2)

Publication Number Publication Date
JPH03119113A JPH03119113A (en) 1991-05-21
JP2574179B2 true JP2574179B2 (en) 1997-01-22

Family

ID=17234904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1252270A Expired - Lifetime JP2574179B2 (en) 1989-09-29 1989-09-29 Method for producing super heat resistant high strength silicon carbide fiber

Country Status (1)

Country Link
JP (1) JP2574179B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525286B2 (en) * 1990-11-26 1996-08-14 日本原子力研究所 Method for producing super heat resistant silicon carbide fiber

Also Published As

Publication number Publication date
JPH03119113A (en) 1991-05-21

Similar Documents

Publication Publication Date Title
US6372192B1 (en) Carbon fiber manufacturing via plasma technology
FR2308590B1 (en)
Takeda et al. Thermal stability of the low oxygen silicon carbide fibers derived from polycarbosilane
JP2002097074A (en) Manufacture of silicon carbide composite material by applying radiation to silicon-based polymer
Takeda et al. Thermal stability of SiC fiber prepared by an irradiation-curing process
JP2525286B2 (en) Method for producing super heat resistant silicon carbide fiber
CN109402786B (en) Preparation method of near-stoichiometric SiC fibers
JP2574179B2 (en) Method for producing super heat resistant high strength silicon carbide fiber
US5322822A (en) Ultra-high-strength refractory silicon carbide fiber and process for producing same
US3677705A (en) Process for the carbonization of a stabilized acrylic fibrous material
JP4659299B2 (en) Manufacturing method of micro ceramic tube by irradiation of silicon-based polymer
JP2963021B2 (en) Method for producing silicon carbide fiber
McHenry et al. Elevated temperature strength of silicon carbide-on-carbon filaments
US3900556A (en) Process for the continuous carbonization and graphitization of a stabilized acrylic fibrous material
EP0448236B1 (en) Curing preceramic polymers by exposure to nitrogen dioxide
Idesaki et al. Fine silicon carbide fibers synthesized from polycarbosilane-polyvinylsilane polymer blend using electron beam curing
US3876444A (en) Method of treating high strength carbon fibers
JP2609323B2 (en) Method for producing high performance silicon-based ceramic fiber
JPH02258612A (en) Preparation of boron nitride from polycarbosilane
JP2817955B2 (en) Method for producing silicon carbide fiber excellent in high temperature properties
US5091271A (en) Shaped silion carbide-eased ceramic article
US4897229A (en) Process for producing a shaped silicon carbide-based ceramic article
JP2877424B2 (en) Method for producing ceramic fiber and coating material by radiation oxidation infusibilization of precursor polymer
Shimoo et al. Effect of Vacuum Heat Treatment on Electron‐Beam‐Irradiation‐Cured Polycarbosilane Fibers
JPH02258870A (en) Polycarbosilane treating method,product thereby obtained,and utilization of said treatment for manufacture of fibrous silicon carbide ceramic product in particular

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

EXPY Cancellation because of completion of term