JPH03220318A - Production of high-strength silicon carbide-based ceramic yarn by radiation oxidation - Google Patents

Production of high-strength silicon carbide-based ceramic yarn by radiation oxidation

Info

Publication number
JPH03220318A
JPH03220318A JP1294670A JP29467089A JPH03220318A JP H03220318 A JPH03220318 A JP H03220318A JP 1294670 A JP1294670 A JP 1294670A JP 29467089 A JP29467089 A JP 29467089A JP H03220318 A JPH03220318 A JP H03220318A
Authority
JP
Japan
Prior art keywords
yarn
oxygen
radiation
fiber
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1294670A
Other languages
Japanese (ja)
Other versions
JP2843617B2 (en
Inventor
Tadao Seguchi
瀬口 忠男
Kiyoto Okamura
清人 岡村
Takashi Nishi
西 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP29467089A priority Critical patent/JP2843617B2/en
Publication of JPH03220318A publication Critical patent/JPH03220318A/en
Application granted granted Critical
Publication of JP2843617B2 publication Critical patent/JP2843617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To shorten infusibilizing process, to uniformly infusibilize precursor yarn and to obtain the title yarn having excellent uniformity by infusibilizing precursor yarn in an inert gas atmosphere by irradiation of ionizing radiation and burning the yarn in another inert gas. CONSTITUTION:Precursor yarn obtained by spinning an organosilicone-based polymer compound is infusibilized uniformly in the interior of yarn in pure oxygen, in air or in an atmosphere of an inert gas such as helium gas or hydrogen gas blended with 0.05-30wt.% oxygen by using gamma rays at 0.1-100Gy/s dose rate and 10<4>-10<7> Gy irradiation dose. Then the yarn is burnt in an inert gas atmosphere such as nitrogen gas at 800-1,500 deg.C to give the objective yarn. The surface layer in thickness from 0.1mum to the center of yarn may be selectively infusibilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は放射線酸化によって、不融化に必要な酸化の度
合を正確に制御できる方法、及び前駆体繊維の不融化を
表面から内部まで選択的に行う方法を提供することにあ
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a method for accurately controlling the degree of oxidation necessary for infusibility by radiation oxidation, and a method for selectively infusibility of precursor fibers from the surface to the inside. The goal is to provide a way to do this.

〔従来技術〕[Prior art]

有機ケイ素系高分子化合物を前駆体として製造される炭
化ケイ素系繊維の製造工程は紡糸、不融化、焼成に分け
られるが、不融化の工程を空気中などの酸素雰囲気で熱
処理する熱酸化の方法で行っている。
The manufacturing process of silicon carbide fibers, which are produced using organosilicon polymer compounds as precursors, can be divided into spinning, infusibility, and firing, but the infusibility process is performed using a thermal oxidation method in which heat treatment is performed in an oxygen atmosphere such as air. I'm doing it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この従来の方法では、酸化の度合を一定に制御
することが困難であり、また、不融化に用する時間が長
く、全体の製造工程の律速になっていた。
However, in this conventional method, it is difficult to control the degree of oxidation at a constant level, and the time required for infusibility is long, which is rate-limiting for the entire manufacturing process.

〔課題を解決するための手段〕[Means to solve the problem]

有機ケイ素系高分子繊維を不融化するために、酸素を反
応させる方法として、放射線照射を利用するが、この特
徴は酸化を室温で行うことができ、酸化の度合を正確に
制御でき、かつ、酸化に分布を作り出すことができる点
にある。放射線照射によって、高分子繊維には温度にほ
とんどかかわりなく、ラジカル、イオン等の反応活性種
が生成され、その濃度は放射線の線量に比例する。酸素
が存在する条件では、酸素はそれら反応活性種と優先的
に反応して酸化される。放射線照射時の温度が室温程度
では、熱酸化速度はきわめて小さいので、酸化反応の量
は放射線の線量にほぼ比例する。
In order to make organosilicon polymer fibers infusible, radiation irradiation is used as a method of reacting with oxygen. The point is that it can create a distribution in oxidation. Radiation irradiation generates reactive species such as radicals and ions in polymer fibers almost regardless of temperature, and their concentration is proportional to the radiation dose. Under conditions where oxygen is present, oxygen preferentially reacts with these reactive species and is oxidized. When the temperature during radiation irradiation is around room temperature, the thermal oxidation rate is extremely low, so the amount of oxidation reaction is approximately proportional to the radiation dose.

したがって、この比例係数を求めることによって、酸化
の度合は照射線量によって正確に制御できること記なる
Therefore, by determining this proportionality coefficient, the degree of oxidation can be accurately controlled by the irradiation dose.

例えば、有機ケイ素系高分子の一つであるポリカルボシ
ランについて、放射線酸化による酸素の反応量は照射線
量1 kGyに対して、ポリカルボシラン1g当り8 
Xl0−’molであることから、40kGyで1.0
%、400kGyで10%の酸素を反応させることがで
きる。
For example, for polycarbosilane, which is an organosilicon polymer, the amount of oxygen reacted by radiation oxidation is 8 per gram of polycarbosilane for an irradiation dose of 1 kGy.
Since it is Xl0-'mol, it is 1.0 at 40 kGy.
%, 10% oxygen can be reacted at 400 kGy.

次いで、放射線酸化の分布については、放射線照射で生
成する反応活性種は前駆体樹脂の内部に均一であるのに
対して、酸素は繊維の表面から供給されるために、その
供給速度が小さい場合には、繊維の表面層で全て酸化し
てしまい、その内部は全く酸化されないことが起る。こ
の酸化層の厚さは酸素の供給速度すなわち前駆体繊維へ
の透過速度と放射線の線量率によって決められる。放射
線酸化した後、繊維の断面を調べてみると、第1図に示
すように表面層が酸化され、その層の厚さLは次式で与
えられることがわかった。
Next, regarding the distribution of radiation oxidation, the reactive species generated by radiation irradiation are uniform inside the precursor resin, whereas oxygen is supplied from the surface of the fiber, so if the supply rate is small, In this case, the surface layer of the fiber is completely oxidized, and the inside layer is not oxidized at all. The thickness of this oxidized layer is determined by the oxygen supply rate, ie, the rate of penetration into the precursor fibers, and the radiation dose rate. When the cross section of the fiber was examined after being oxidized by radiation, it was found that the surface layer was oxidized as shown in FIG. 1, and the thickness L of that layer was given by the following equation.

ここで、Lは(C1ll、Dは酸素の拡散係数Ccd/
S〕、Sは溶解度係数(mol/g、atm)である、
#I素の透過係数はDとSの積である。Φは放射線酸化
によって酸化層で反応する酸素の量1wol/g、Gy
)である、また、Po2は放射線照射下の繊維雰囲気の
酸素分圧(atml、rは線量率である。
Here, L is (C1ll, D is the oxygen diffusion coefficient Ccd/
S], S is the solubility coefficient (mol/g, atm),
The transmission coefficient of #I element is the product of D and S. Φ is the amount of oxygen reacting in the oxidized layer by radiation oxidation, 1 wol/g, Gy
), and Po2 is the oxygen partial pressure in the fiber atmosphere under radiation irradiation (atml, r is the dose rate).

例えば、酸素分圧300torrの雰囲気でガンマ線を
線量率10kGy/hで照射したときの酸化層は5−と
なり、同じ酸素分圧で、電子線を250kGy/hで照
射したときの酸化層は1μとなる。
For example, when irradiated with gamma rays at a dose rate of 10 kGy/h in an atmosphere with an oxygen partial pressure of 300 torr, the oxide layer becomes 5-, and when irradiated with electron beams at 250 kGy/h at the same oxygen partial pressure, the oxide layer becomes 1μ. Become.

以上のように、本発明は、酸素の分圧及び線量率を選択
することによって、酸化による不融化層を任意に変えら
れる方法である。また、(1)式かられかるように、酸
素の拡散係数および溶解度係数は温度によって変るので
、照射温度を変化させても、酸化層を変えることが可能
である。この方法を種々の条件で組み合せて適用するこ
とにより、繊維内の酸化不融化を任意の分布で与えるこ
とが可能になる。
As described above, the present invention is a method in which the infusible layer due to oxidation can be arbitrarily changed by selecting the partial pressure and dose rate of oxygen. Further, as can be seen from equation (1), the diffusion coefficient and solubility coefficient of oxygen change depending on the temperature, so even if the irradiation temperature is changed, it is possible to change the oxidized layer. By applying this method in combination under various conditions, it becomes possible to impart oxidative infusibility within the fibers in an arbitrary distribution.

以上の方法で放射線酸化不融化した繊維を焼成すると、
得られた炭化ケイ素系セラミック繊維の特性は不融化時
の酸素濃度分布に依存することにある。これは不融化の
際に取り込まれた酸素の大部分がセラミック化した繊維
に残存するからである6表面層のみの酸化で不融化され
たものから得られるセラミック繊維は表面層に酸化物が
高濃度に分布することになり、内部とは異った原子組成
となる。セラミック繊維の表面改質などを行う必要のあ
る場合には、このような表面層のみを酸化させて得られ
るセラミック繊維は特徴のある材料となる。
When the fibers made infusible by radiation oxidation by the above method are fired,
The properties of the obtained silicon carbide ceramic fiber depend on the oxygen concentration distribution during infusibility. This is because most of the oxygen taken in during infusibility remains in the ceramicized fiber.6 Ceramic fibers obtained from infusibility by oxidation of only the surface layer have a high level of oxides in the surface layer. The concentration will be distributed, and the atomic composition will be different from that inside. When it is necessary to perform surface modification of ceramic fibers, the ceramic fibers obtained by oxidizing only the surface layer become distinctive materials.

〔発明の効果〕〔Effect of the invention〕

上述の発明により、不融化の工程が短縮され、かつ均一
の不融化が可能となり、最終製品の均一性が著るしく向
上することになる。また、繊維の表面層を部分的に不融
化することによって、特殊な特性を有するセラミック繊
維の製造が期待できる。また、表面層のみを不融化させ
、高温での焼成によって、内部の酸化されないkころが
、高耐熱性繊維として製造できる。
The invention described above shortens the infusibility process and enables uniform infusibility, thereby significantly improving the uniformity of the final product. Moreover, by partially making the surface layer of the fiber infusible, it is expected that ceramic fibers with special properties can be produced. Further, by making only the surface layer infusible and firing at high temperature, the inner K roller, which is not oxidized, can be produced as a highly heat-resistant fiber.

〔実施例] 以下、本発明を実施例に基いて説明する。〔Example] The present invention will be explained below based on examples.

実施例1 炭化ケイ素繊維の前駆体ポリマーとして、ポリカルボシ
ランの繊維を酸素圧600torrの雰囲気下で室温に
おいてCo−60ガンマ線で、線量率10kGy/hで
30.40.50h照射した後、アルゴン気流中、12
00℃で焼成した。いずれの場合も、炭化ケイ素繊維が
得られ、その強度は3〜4 GPaであった。
Example 1 Polycarbosilane fibers as a precursor polymer for silicon carbide fibers were irradiated with Co-60 gamma rays at room temperature under an oxygen pressure of 600 torr for 30,40,50 hours at a dose rate of 10 kGy/h, and then irradiated with an argon stream. Middle, 12
It was fired at 00°C. In both cases, silicon carbide fibers were obtained, the strength of which was 3-4 GPa.

なお、このガンマ線照射後のポリカルボシラン繊維の酸
素の濃度は線量に比例して増大し、400kGyのとき
に未照射試料1gに対して酸素重量0.1gであった。
The oxygen concentration in the polycarbosilane fibers after this gamma ray irradiation increased in proportion to the dose, and at 400 kGy, the oxygen weight was 0.1 g per 1 g of the unirradiated sample.

実施例2 同上のポリカルボシラン繊維を酸素圧300torrの
雰囲気下で室温において、ガンマ線の線量率1OkGy
/hで30.40.50h照射した後、アルゴン気流中
で1200“Cで焼成した。いずれの場合も炭化ケイ素
繊維が得られ、その強度は、4〜5 GPa (300
kGy照射で不融化したとき最大値5 GPa)であっ
た。
Example 2 The same polycarbosilane fibers as above were heated at room temperature in an atmosphere with an oxygen pressure of 300 torr at a gamma ray dose rate of 1 OkGy.
/h for 30.40.50 h and then calcined at 1200"C in an argon stream. In both cases silicon carbide fibers were obtained, the strength of which was 4-5 GPa (300
The maximum value was 5 GPa) when it was made infusible by kGy irradiation.

この条件で不融化したとき、酸化層は表面から約4,8
−と推定され、径15aの繊維の中心部は酸化されてい
ないことがわかった。
When infusible under these conditions, the oxide layer is about 4.8
-, and it was found that the center of the fiber with a diameter of 15a was not oxidized.

実施例3 同上のポリカルボシラン繊維を酸素圧600torrの
雰囲気で電子線照射した。電子線の加速電圧2TIev
、線量率り、25MGy/h(350Gy/s)で10
00.2000゜3000秒照射した後、アルゴン気流
中、1200℃で焼成した。得られた炭化ケイ素繊維の
強度は3〜4GPaであった。なお、この条件で照射し
たとき、試料温度は50〜60℃に上昇していた。しか
し、全体の酸化量は実施例1に比べて、1八となってお
り、酸化層の厚みは1.2−と推定された。電子線照射
で、ポリカルボシランの温度が上昇したために酸素の拡
散係数がガンマ線照射に比べて約3倍高くなり、(1)
式から計算される値よりも、その分大きくなっている。
Example 3 The same polycarbosilane fiber as above was irradiated with an electron beam in an atmosphere with an oxygen pressure of 600 torr. Acceleration voltage of electron beam 2TIev
, dose rate, 10 at 25 MGy/h (350 Gy/s)
After irradiating at 0.2000° for 3000 seconds, it was fired at 1200°C in an argon stream. The strength of the obtained silicon carbide fiber was 3 to 4 GPa. Note that when irradiated under these conditions, the sample temperature rose to 50 to 60°C. However, the total amount of oxidation was 18 compared to Example 1, and the thickness of the oxidized layer was estimated to be 1.2-. Due to electron beam irradiation, the temperature of polycarbosilane increased, so the oxygen diffusion coefficient became approximately three times higher than that with gamma ray irradiation, (1)
It is larger by that amount than the value calculated from the formula.

比較例1 実施例1と同しポリカルボシラン樹脂を1+30℃で熱
酸化し、酸化含有量が10%の不融化繊維にした後、実
施例1と同し焼成を行ったときに得られた炭化ケイ素繊
維の強度は2.5〜3.5GPaであった。
Comparative Example 1 The same polycarbosilane resin as in Example 1 was thermally oxidized at 1+30°C to make an infusible fiber with an oxidation content of 10%, and then fired in the same manner as in Example 1. The strength of the silicon carbide fibers was 2.5 to 3.5 GPa.

【図面の簡単な説明】[Brief explanation of drawings]

第11Fは、放射線酸化された後の繊維の酸化断面を示
す図である。 1−前駆体繊維、   2−断面。 L−一酸化層の厚さ
11F is a diagram showing an oxidized cross section of the fiber after being subjected to radiation oxidation. 1-precursor fiber, 2-cross section. L - Thickness of monoxide layer

Claims (1)

【特許請求の範囲】 1、有機ケイ素系高分子化合物を紡糸することによって
得られる前駆体繊維を純酸素又は空気中あるいはへリウ
ムガス、水素ガス等の不活性ガスに酸素を混合したガス
雰囲気で、電離性放射線照射で不融化させ、その後窒素
ガス等の不活性ガス雰囲気で焼成することを特徴とする
高強度炭化ケイ素系セラミック繊維の製造方法。 2、不融化の際の放射線はガンマ線あるいは電子線を用
い、線量率0.1〜100Gy/S、照射線量は10^
4〜10^7Gyである請求項1に記載の高強度炭化ケ
イ素系セラミック繊維の製造方法。 3、焼成温度は800〜1500℃の範囲である請求項
1又は2に記載の高強度炭化ケイ素系セラミック繊維の
製造方法。 4、前駆体繊維の放射線酸化による不融化を、繊維内部
まで均一に行うこと、及び繊維の表面層のみを選択的に
行い、かつ、その表面層の厚さをおおむね0.1μmか
ら繊維径の中心まで、任意に調整できることを特徴とす
る不融化処理の方法。 5、有機ケイ素系高分子化合物及びその繊維を放射線で
酸化させ、酸化される酸素の濃度あるいは量を0.05
〜30重量%まで任意に選択できる不融化処理の方法。
[Claims] 1. Precursor fibers obtained by spinning an organosilicon-based polymer compound in pure oxygen, air, or a gas atmosphere in which oxygen is mixed with an inert gas such as helium gas or hydrogen gas, A method for producing high-strength silicon carbide ceramic fibers, which comprises making the fibers infusible by irradiating them with ionizing radiation, and then firing them in an inert gas atmosphere such as nitrogen gas. 2. Gamma rays or electron beams are used for radiation during infusibility, dose rate is 0.1 to 100 Gy/S, and irradiation dose is 10^
The method for producing high-strength silicon carbide ceramic fibers according to claim 1, wherein the strength is 4 to 10^7 Gy. 3. The method for producing high-strength silicon carbide ceramic fibers according to claim 1 or 2, wherein the firing temperature is in the range of 800 to 1500°C. 4. The infusibility of the precursor fiber by radiation oxidation must be uniformly applied to the inside of the fiber, selectively performed only on the surface layer of the fiber, and the thickness of the surface layer must be from approximately 0.1 μm to the diameter of the fiber. A method of infusibility treatment characterized by being able to be arbitrarily adjusted up to the center. 5. Oxidize the organosilicon-based polymer compound and its fibers with radiation, and reduce the concentration or amount of oxidized oxygen to 0.05.
A method of infusibility treatment that can be arbitrarily selected up to 30% by weight.
JP29467089A 1989-11-13 1989-11-13 Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation Expired - Lifetime JP2843617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29467089A JP2843617B2 (en) 1989-11-13 1989-11-13 Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29467089A JP2843617B2 (en) 1989-11-13 1989-11-13 Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation

Publications (2)

Publication Number Publication Date
JPH03220318A true JPH03220318A (en) 1991-09-27
JP2843617B2 JP2843617B2 (en) 1999-01-06

Family

ID=17810787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29467089A Expired - Lifetime JP2843617B2 (en) 1989-11-13 1989-11-13 Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation

Country Status (1)

Country Link
JP (1) JP2843617B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283044A (en) * 1990-11-26 1994-02-01 Japan Atomic Energy Research Institute Super heat-resistant silicon carbide fibers from poly-carbosilane
JPH11139987A (en) * 1997-09-04 1999-05-25 Becton Dickinson & Co Additive formulation and its use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103025A (en) * 1977-02-16 1978-09-07 Tokushiyu Muki Zairiyou Kenkiy Method of producing siltcon carbide fiber
JPS5482435A (en) * 1977-12-10 1979-06-30 Tokushiyu Muki Zairiyou Kenkiy Continuous silicon carbide fiber and producing same
JPS57106719A (en) * 1980-12-25 1982-07-02 Tokushu Muki Zairyo Kenkyusho Production of continuous inorganic fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103025A (en) * 1977-02-16 1978-09-07 Tokushiyu Muki Zairiyou Kenkiy Method of producing siltcon carbide fiber
JPS5482435A (en) * 1977-12-10 1979-06-30 Tokushiyu Muki Zairiyou Kenkiy Continuous silicon carbide fiber and producing same
JPS57106719A (en) * 1980-12-25 1982-07-02 Tokushu Muki Zairyo Kenkyusho Production of continuous inorganic fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283044A (en) * 1990-11-26 1994-02-01 Japan Atomic Energy Research Institute Super heat-resistant silicon carbide fibers from poly-carbosilane
JPH11139987A (en) * 1997-09-04 1999-05-25 Becton Dickinson & Co Additive formulation and its use
JP4575529B2 (en) * 1997-09-04 2010-11-04 ベクトン・ディキンソン・アンド・カンパニー Additive formulation and method of use

Also Published As

Publication number Publication date
JP2843617B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
Okamura et al. Application of radiation curing in the preparation of polycarbosilane-derived SiC fibers
US9045347B2 (en) Stiochiometric silicon carbide fibers from thermo-chemically cured polysilazanes
US8987402B2 (en) Stoichiometric silicon carbide fibers from thermo-chemically cured polysilazanes
Sugimoto et al. Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation: II, free radical reaction
US5283044A (en) Super heat-resistant silicon carbide fibers from poly-carbosilane
JPH03220318A (en) Production of high-strength silicon carbide-based ceramic yarn by radiation oxidation
JPH06192917A (en) Production of silicon carbide fiber
Shimoo et al. Oxidation behavior of Si‐C‐O fibers (Nicalon) under oxygen partial pressures from 102 to 105 Pa at 1773 K
US5322822A (en) Ultra-high-strength refractory silicon carbide fiber and process for producing same
US6187705B1 (en) Creep-resistant, high-strength silicon carbide fibers
Pivin et al. Ion irradiation of preceramic polymer thin films
JP2963021B2 (en) Method for producing silicon carbide fiber
EP0890558B1 (en) Continuous method of producing silicon carbide fibers
KR0186007B1 (en) Curing preceramic polymers by exposure to nitrogen dioxide
Tang et al. Decarbonization mechanisms of polycarbosilane during pyrolysis in hydrogen for preparation of silicon carbide fibers
US5824281A (en) Process for producing silicon carbide fibers
Idesaki et al. Fine silicon carbide fibers synthesized from polycarbosilane-polyvinylsilane polymer blend using electron beam curing
JP2938389B2 (en) Method for producing silicon carbide fiber
Shimoo et al. Oxidation behavior and mechanical properties of low-oxygen SiC fibers prepared by vacuum heat-treatment of electron-beam-cured poly (carbosilane) precursor
Shimoo et al. Oxidation of low‐oxygen silicon carbide fibers (Hi‐Nicalon) in carbon dioxide
JP2001295140A (en) Silicon carbine fiber having carbon film on surface of fiber, and method for producing the same
JP2877424B2 (en) Method for producing ceramic fiber and coating material by radiation oxidation infusibilization of precursor polymer
US5091271A (en) Shaped silion carbide-eased ceramic article
JPH0949125A (en) Production of silicon nitride fiber
JPH0718520A (en) Production of silicon carbide fiber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12