JPH0941131A - Production of high purity iridium or ruthenium sputtering target - Google Patents

Production of high purity iridium or ruthenium sputtering target

Info

Publication number
JPH0941131A
JPH0941131A JP21422095A JP21422095A JPH0941131A JP H0941131 A JPH0941131 A JP H0941131A JP 21422095 A JP21422095 A JP 21422095A JP 21422095 A JP21422095 A JP 21422095A JP H0941131 A JPH0941131 A JP H0941131A
Authority
JP
Japan
Prior art keywords
purity
ingot
target
raw material
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21422095A
Other languages
Japanese (ja)
Inventor
Akira Mori
暁 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP21422095A priority Critical patent/JPH0941131A/en
Publication of JPH0941131A publication Critical patent/JPH0941131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a high purity Ir or Ru sputtering target. SOLUTION: (1) An Ir source material is molten by electron beams to obtain an Ir ingot, which is housed in a metal container and hot rolled to obtain a high purity Ir sputtering target having >=99.999wt.% purity. (2) An Ru source material is molten by electron beams to obtain an Ru ingot, which is housed in a metal container and hot rolled to obtain a high purity Ru sputtering target having >=99.999wt.% purity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高純度Ir薄膜
またはRu薄膜を形成するための高純度IrまたはRu
スパッタリングターゲットの製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a high-purity Ir or Ru thin film for forming a high-purity Ir thin film or Ru thin film.
The present invention relates to a method for manufacturing a sputtering target.

【0002】[0002]

【従来の技術】従来、高集積度半導体メモリーのキャパ
シタの電極にはスパッタリングにより形成されたPt膜
が使用されていた。しかし、Pt膜はドライエッチング
による加工性が悪いことおよび誘電体である(BaS
r)TiO3 のTiとSi基板のSiがPt膜に拡散し
て複合化合物を形成し、キャパシタ特性を変化させるな
どの欠点があるために、近年、半導体メモリーのキャパ
シタ用電極にIrまたはRu膜を使用することが検討さ
れはじめている。
2. Description of the Related Art Conventionally, a Pt film formed by sputtering has been used as an electrode of a capacitor of a highly integrated semiconductor memory. However, the Pt film has poor workability due to dry etching and is a dielectric (BaS).
r) Ti of TiO 3 and Si of a Si substrate diffuse into a Pt film to form a complex compound, which causes a change in capacitor characteristics. Therefore, in recent years, an Ir or Ru film has been used for a capacitor electrode of a semiconductor memory. The use of is beginning to be considered.

【0003】このキャパシタ用電極となるIrまたはR
u膜は、Ir粉末またはRu粉末をそれぞれホットプレ
スして得られたホットプレスIrターゲットまたはホッ
トプレスRuターゲットをスパッタリングすることによ
り得られるが、一方、IrまたはRuを溶解したのち熱
間圧延して得られた溶解Irターゲットまたは溶解Ru
ターゲットを用いてスパッタリングすることにより形成
することもできる。
Ir or R to be the electrode for this capacitor
The u film can be obtained by sputtering a hot-pressed Ir target or a hot-pressed Ru target obtained by hot-pressing Ir powder or Ru powder, respectively, while melting the Ir or Ru and then hot-rolling it. Obtained dissolved Ir target or dissolved Ru
It can also be formed by sputtering using a target.

【0004】ホットプレスIrターゲットを用いて形成
されたIr膜と溶解Irターゲットを用いて形成された
Ir膜を比較すると、溶解Irターゲットを用いて形成
されたIr膜の方が膜質が優れている。またホットプレ
スRuターゲットを用いて形成されたRu膜よりも溶解
Ruターゲットを用いて形成されたRu膜の方が膜質が
優れている。したがって、近年の高集積度半導体メモリ
ーのキャパシタ電極用Ir膜またはRu膜は、それぞれ
溶解Irターゲットまたは溶解Ruターゲットを用いて
スパッタリングを行うことにより形成している。
Comparing an Ir film formed using a hot-pressed Ir target and an Ir film formed using a dissolved Ir target, the Ir film formed using a dissolved Ir target is superior in film quality. . Further, the film quality of the Ru film formed using the molten Ru target is superior to that of the Ru film formed using the hot-pressed Ru target. Therefore, the Ir film or Ru film for the capacitor electrode of the recent highly integrated semiconductor memory is formed by sputtering using a dissolved Ir target or a dissolved Ru target, respectively.

【0005】溶解Irターゲットまたは溶解Ruターゲ
ットは、市販の純度99.9〜99.99重量%(3N
〜4N)のIr原料またはRu原料を溶解してIrイン
ゴットまたはRuインゴットを作製し、これらインゴッ
トを大気中で熱間圧延することにより製造する。
The dissolved Ir target or the dissolved Ru target has a commercially available purity of 99.9 to 99.99% by weight (3N).
~ 4N) Ir raw material or Ru raw material is melted to prepare an Ir ingot or Ru ingot, and these ingots are hot-rolled in the atmosphere for production.

【0006】Ir原料またはRu原料の溶解は、通常、
電気ビーム溶解またはプラズマアーク溶解により行なわ
れるが、電子ビーム溶解ではIrインゴットまたはRu
インゴット内部に気泡が発生しやすく、この気泡がイン
ゴットの熱間圧延時のクラック発生の原因となるため
に、通常はプラズマアーク溶解により行なわれている。
The dissolution of Ir raw material or Ru raw material is usually performed by
It is performed by electric beam melting or plasma arc melting, but in electron beam melting, Ir ingot or Ru is used.
Bubbles are likely to be generated inside the ingot, and these bubbles cause cracks during hot rolling of the ingot. Therefore, plasma arc melting is usually performed.

【0007】上記プラズマアーク溶解して得られた溶解
Irターゲットまたは溶解Ruターゲットは、市販のI
r原料またはRu原料の純度と同じ99.9〜99.9
9重量%(3N〜4N)の純度を有している。
The melted Ir target or the melted Ru target obtained by plasma arc melting is a commercially available I target.
99.9 to 99.9, which has the same purity as the r raw material or the Ru raw material
It has a purity of 9% by weight (3N to 4N).

【0008】[0008]

【発明が解決しようとする課題】しかし、高集積度半導
体メモリーのキャパシタ用電極としてのIr膜またはR
u膜は高純度であるほど好ましく、そのために一層高純
度の溶解Irターゲットまたは溶解Ruターゲットが求
められていた。
However, an Ir film or R as an electrode for a capacitor of a highly integrated semiconductor memory is used.
The higher the purity of the u film, the more preferable it is. Therefore, a higher purity of a dissolved Ir target or a dissolved Ru target has been demanded.

【0009】[0009]

【課題を解決するための手段】かかる観点から本発明者
等も一層高純度の溶解Irターゲットまたは溶解Ruタ
ーゲットの製造方法を開発すべく研究を行っていたとこ
ろ、 (a) Ir原料またはRu原料を電子ビーム溶解して
得られたIrインゴットまたはRuインゴットには内部
に気泡が生成するが、Ir原料またはRu原料よりも不
純物含有量が少なくなり、純度99.9重量%(3N)
のIr原料またはRu原料を電子ビーム溶解して得られ
たIrインゴットまたはRuインゴットは純度:99.
999重量%(5N)以上まで向上する。
From this point of view, the inventors of the present invention have been conducting research to develop a method for producing a higher purity dissolved Ir target or a dissolved Ru target. (A) Ir raw material or Ru raw material Bubbles are generated in the Ir ingot or Ru ingot obtained by electron beam melting, but the impurity content is smaller than that of the Ir raw material or Ru raw material, and the purity is 99.9% by weight (3N).
The Ir ingot or Ru ingot obtained by electron beam melting of the Ir raw material or Ru raw material of No. 3 has a purity of 99.
Improve to 999% by weight (5N) or more.

【0010】(b) 電子ビーム溶解して得られた9
9.999重量%以上のIrインゴットまたはRuイン
ゴットには気泡が含まれているが、これらIrインゴッ
トまたはRuインゴットを金属容器に入れて熱間圧延す
ると、熱間圧延中の割れは全く発生しない。などの知見
を得たのである。
(B) 9 obtained by electron beam melting
The Ir ingot or Ru ingot of 9.999% by weight or more contains air bubbles, but when these Ir ingot or Ru ingot are hot-rolled in a metal container, cracking during hot rolling does not occur at all. We have obtained such knowledge.

【0011】この発明は、かかる知見に基づいてなされ
たものであって、 (1) Ir原料を電子ビーム溶解し、得られたIrイ
ンゴットを金属容器に入れて熱間圧延する純度:99.
999重量%以上の高純度Irスパッタリングターゲッ
トの製造方法。
The present invention has been made on the basis of such findings. (1) The Ir raw material is melted by electron beam, and the obtained Ir ingot is put into a metal container and hot-rolled. Purity: 99.
A method for producing a high-purity Ir sputtering target of 999% by weight or more.

【0012】(2) Ru原料を電子ビーム溶解し、得
られたRuインゴットを金属容器に入れて熱間圧延する
純度:99.999重量%以上の高純度Ruスパッタリ
ングターゲットの製造方法、に特徴を有するものであ
る。
(2) A method for producing a high-purity Ru sputtering target in which a Ru raw material is melted by an electron beam and the obtained Ru ingot is placed in a metal container and hot-rolled. The purity is 99.999% by weight or more. I have.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例1 市販のIr原料を用意し、このIr原料の不純物濃度お
よび純度を測定し、それらの測定結果を表1に示した。
Example 1 A commercially available Ir raw material was prepared, the impurity concentration and the purity of this Ir raw material were measured, and the measurement results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】表1に示される純度のIr原料を、電圧:
10KV、電流値:0.8A、雰囲気:1×10-5Torr
の条件で電子ビーム溶解し、水冷ハース内で凝固させ
て、直径:150mm、厚さ:20mmの寸法を有するIr
円盤状インゴットを作製した。
Ir raw materials having the purities shown in Table 1 were charged at a voltage of:
10KV, current value: 0.8A, atmosphere: 1 × 10 -5 Torr
Electron beam melted under the conditions of No. 1 and solidified in a water-cooled hearth, and Ir having a size of diameter: 150 mm, thickness: 20 mm
A disc-shaped ingot was produced.

【0016】この電子ビーム溶解して得られたIr円盤
状インゴット(以下、EBIr円盤状インゴットとい
う)の不純物濃度および純度を測定し、その結果を表2
に示した。
The impurity concentration and the purity of the Ir disk-shaped ingot (hereinafter referred to as EBIr disk-shaped ingot) obtained by the electron beam melting were measured, and the results are shown in Table 2.
It was shown to.

【0017】[0017]

【表2】 [Table 2]

【0018】このEBIr円盤状インゴットを内部にB
N離型剤を塗布したSUS310Sステンレス鋼製の缶
に入れ、缶の内部をロータリーポンプで1Torr以下の真
空に引き、吸引した口を潰して封じ込め、1250℃に
加熱して熱間圧延し、機械加工によりステンレス缶を除
去し、直径:300mm、厚さ:5mmの寸法の溶解Irタ
ーゲットを作製した。上記機械加工によりステンレス缶
を除去して圧延されたIrターゲットの表面を目視によ
り観察したが、圧延時の割れは全く見られなかった。
The EBIr disc-shaped ingot is internally B
Put it in a can made of SUS310S stainless steel coated with N release agent, evacuate the inside of the can to a vacuum of 1 Torr or less with a rotary pump, crush the suctioned mouth and confine it, heat it to 1250 ° C, hot roll it, machine The stainless can was removed by processing, and a molten Ir target having a diameter of 300 mm and a thickness of 5 mm was prepared. The surface of the Ir target rolled by removing the stainless steel can by the above-mentioned machining was visually observed, but no cracks were observed during rolling.

【0019】従来例1 実施例1で用意したIr原料をAr雰囲気中のプラズマ
アーク溶解し、水冷ハース内で凝固させて直径:150
mm、厚さ:20mmの寸法を有するIr円盤状インゴット
を作製し、このプラズマアーク溶解して得られたIr円
盤状インゴット(以下、PAIr円盤状インゴットとい
う)の不純物濃度および純度を測定し、その結果を表3
に示した。
Conventional Example 1 The Ir raw material prepared in Example 1 was plasma arc melted in an Ar atmosphere and solidified in a water-cooled hearth to have a diameter of 150.
mm, thickness: An Ir disk-shaped ingot having a size of 20 mm was prepared, and the impurity concentration and the purity of the Ir disk-shaped ingot (hereinafter referred to as PAIr disk-shaped ingot) obtained by melting this plasma arc were measured. The results are shown in Table 3.
It was shown to.

【0020】[0020]

【表3】 [Table 3]

【0021】このPAIr円盤状インゴットを温度:1
250℃に加熱し、大気中で熱間圧延し、直径:300
mm、厚さ:5mmの寸法の溶解Irターゲットを作製し、
その表面を観察したが、圧延時の割れは全く見られなか
った。
The PAIr disc-shaped ingot was heated at a temperature of 1
Heated to 250 ℃, hot rolled in air, diameter: 300
mm, thickness: A molten Ir target having a size of 5 mm was prepared,
The surface was observed, but no cracks were observed during rolling.

【0022】上記実施例1および従来例1に示される結
果から、PAIr円盤状インゴットの純度はIr原料と
ほぼ同じであるが、EBIr円盤状インゴットはIr原
料に比べて不純物濃度が極めて少なく高純度化し、EB
Ir円盤状インゴットを缶に封入して熱間圧延すること
により従来のような圧延中の割れも全く見られなくなる
ことが分る。
From the results shown in the above-mentioned Example 1 and Conventional Example 1, the purity of the PAIr disc-shaped ingot is almost the same as that of the Ir raw material, but the EBIr disc-shaped ingot has an extremely small impurity concentration and a high purity as compared with the Ir raw material. EB
It can be seen that when the Ir disk-shaped ingot is enclosed in a can and hot-rolled, cracks during rolling as in the conventional case are not seen at all.

【0023】実施例2 市販のRu原料を用意し、このRu原料の不純物濃度お
よび純度を測定し、それらの測定結果を表4に示した。
Example 2 A commercially available Ru raw material was prepared, the impurity concentration and the purity of this Ru raw material were measured, and the measurement results are shown in Table 4.

【0024】[0024]

【表4】 [Table 4]

【0025】表4に示される純度のRu原料を実施例1
と同じ条件の電子ビーム溶解し、水冷ハース内で凝固さ
せて、直径:150mm、厚さ:20mmの寸法を有するR
u円盤状インゴット(以下、EBRu円盤状インゴット
という)を作製し、このEBRu円盤状インゴットの不
純物濃度および純度を測定し、その結果を表5に示し
た。
The Ru raw material having the purity shown in Table 4 was used in Example 1.
Electron beam melted under the same conditions as above, solidified in a water-cooled hearth, and has a diameter of 150 mm and a thickness of 20 mm.
A u-disc-shaped ingot (hereinafter referred to as an EBRu disc-shaped ingot) was prepared, and the impurity concentration and purity of this EBRu disc-shaped ingot were measured. The results are shown in Table 5.

【0026】[0026]

【表5】 [Table 5]

【0027】このEBRu円盤状インゴットを実施例1
と同じ缶に封入し、温度1300℃の熱間圧延により直
径:300mm、厚さ:5mmの寸法を有する溶解Ruター
ゲットを作製したが圧延時の割れは全く見られなかっ
た。
This EBRu disc-shaped ingot is used in Example 1.
A molten Ru target having a diameter of 300 mm and a thickness of 5 mm was prepared by enclosing it in the same can and hot-rolling it at a temperature of 1300 ° C., but no cracks were observed during rolling.

【0028】従来例2 一方、実施例2で用意したRu原料をAr雰囲気中のプ
ラズマアーク溶解し、水冷ハース内で凝固させて直径:
150mm、厚さ:20mmの寸法を有するRu円盤状イン
ゴットを作製し、このプラズマアーク溶解して得られた
Ru円盤状インゴット(以下、PARu円盤状インゴッ
トという)の不純物濃度および純度を測定し、その結果
を表6に示した。
Conventional Example 2 On the other hand, the Ru raw material prepared in Example 2 was plasma-arc melted in an Ar atmosphere and solidified in a water-cooled hearth to have a diameter:
A Ru disc-shaped ingot having a size of 150 mm and a thickness of 20 mm was prepared, and the impurity concentration and the purity of the Ru disc-shaped ingot (hereinafter, referred to as PARu disc-shaped ingot) obtained by plasma arc melting were measured, and the Ru disc-shaped ingot was measured. The results are shown in Table 6.

【0029】[0029]

【表6】 [Table 6]

【0030】このPARu円盤状インゴットを大気中温
度:1250℃の熱間圧延により直径:300mm、厚
さ:5mmの寸法を有する溶解Ruターゲットを作製し、
その表面を観察したが、圧延時の割れは全く見られなか
った。
This PARu disc-shaped ingot was hot-rolled at an atmospheric temperature of 1250 ° C. to produce a molten Ru target having a diameter of 300 mm and a thickness of 5 mm.
The surface was observed, but no cracks were observed during rolling.

【0031】上記実施例2および従来例2に示される結
果から、PARu円盤状インゴットの純度はRu原料と
ほぼ同じであるが、EBRu円盤状インゴットの純度は
Ru原料に比べて高純度化し、またEBRu円盤状イン
ゴットを缶に封入して熱間圧延することにより従来のよ
うな圧延中の割れは発生しないことが分る。
From the results shown in the above Example 2 and Conventional Example 2, the purity of the PARu disc-shaped ingot is almost the same as that of the Ru raw material, but the purity of the EBRu disc-shaped ingot is higher than that of the Ru raw material, and It can be seen that, by enclosing the EBRu disc-shaped ingot in a can and performing hot rolling, cracking during rolling unlike the conventional case does not occur.

【0032】[0032]

【発明の効果】この発明によると、公知の電子ビーム溶
解法を使用することにより、従来よりも高純度の溶解I
rターゲットまたは溶解Ruターゲットを製造すること
ができ、半導体産業の発展に大いに貢献しうるものであ
る。
According to the present invention, by using the known electron beam melting method, the melting I having a higher purity than ever can be obtained.
An r target or a molten Ru target can be manufactured, which can greatly contribute to the development of the semiconductor industry.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ir原料を電子ビーム溶解し、得られた
Irインゴットを金属容器に入れて熱間圧延することを
特徴とする高純度Irスパッタリングターゲットの製造
方法。
1. A method for producing a high-purity Ir sputtering target, which comprises melting an Ir raw material with an electron beam, placing the obtained Ir ingot in a metal container, and hot rolling.
【請求項2】 Ru原料を電子ビーム溶解し、得られた
Ruインゴットを金属容器に入れて熱間圧延することを
特徴とする高純度Ruスパッタリングターゲットの製造
方法。
2. A method for producing a high-purity Ru sputtering target, which comprises subjecting a Ru raw material to electron beam melting, placing the obtained Ru ingot in a metal container, and hot rolling.
JP21422095A 1995-07-31 1995-07-31 Production of high purity iridium or ruthenium sputtering target Pending JPH0941131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21422095A JPH0941131A (en) 1995-07-31 1995-07-31 Production of high purity iridium or ruthenium sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21422095A JPH0941131A (en) 1995-07-31 1995-07-31 Production of high purity iridium or ruthenium sputtering target

Publications (1)

Publication Number Publication Date
JPH0941131A true JPH0941131A (en) 1997-02-10

Family

ID=16652205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21422095A Pending JPH0941131A (en) 1995-07-31 1995-07-31 Production of high purity iridium or ruthenium sputtering target

Country Status (1)

Country Link
JP (1) JPH0941131A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066099A1 (en) * 1998-06-17 1999-12-23 Tanaka Kikinzoku Kogyo K.K. Target material for spattering
WO1999066098A1 (en) * 1998-06-16 1999-12-23 Tanaka Kikinzoku Kogyo K.K Method for preparation of target material for spattering
WO2000004202A1 (en) * 1998-07-14 2000-01-27 Japan Energy Corporation Method for preparing high purity ruthenium sputtering target and high purity ruthenium sputtering target
US6036741A (en) * 1997-07-31 2000-03-14 Japan Energy Corporation Process for producing high-purity ruthenium
JP2002105631A (en) * 2000-09-28 2002-04-10 Sumitomo Metal Mining Co Ltd High-purity ruthenium sputtering target and manufacturing method
JP2002322559A (en) * 2001-04-23 2002-11-08 Sumitomo Metal Mining Co Ltd High purity iridium sputtering target and production method therefor
US6875324B2 (en) 1998-06-17 2005-04-05 Tanaka Kikinzoku Kogyo K.K. Sputtering target material
WO2007043215A1 (en) * 2005-10-14 2007-04-19 Nippon Mining & Metals Co., Ltd. HIGH-PURITY Ru ALLOY TARGET, PROCESS FOR PRODUCING THE SAME AND SPUTTERED FILM
KR100856758B1 (en) * 2006-11-30 2008-09-05 희성금속 주식회사 Manufacturing method of the iridium and ruthenium sputtering target having a fine grain size

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036741A (en) * 1997-07-31 2000-03-14 Japan Energy Corporation Process for producing high-purity ruthenium
US6309529B1 (en) 1998-06-16 2001-10-30 Tanaka Kikinozoku Kogyo K.K. Method for producing sputtering target material
WO1999066098A1 (en) * 1998-06-16 1999-12-23 Tanaka Kikinzoku Kogyo K.K Method for preparation of target material for spattering
GB2343683B (en) * 1998-06-16 2003-04-23 Tanaka Precious Metal Ind Method for producing sputtering target material
GB2343683A (en) * 1998-06-16 2000-05-17 Tanaka Precious Metal Ind Method for preparation of target material for spattering
DE19981314C2 (en) * 1998-06-17 2003-07-03 Tanaka Precious Metal Ind sputter target
GB2343684A (en) * 1998-06-17 2000-05-17 Tanaka Precious Metal Ind Target material for spattering
GB2343684B (en) * 1998-06-17 2003-04-23 Tanaka Precious Metal Ind Sputtering target material
WO1999066099A1 (en) * 1998-06-17 1999-12-23 Tanaka Kikinzoku Kogyo K.K. Target material for spattering
US6875324B2 (en) 1998-06-17 2005-04-05 Tanaka Kikinzoku Kogyo K.K. Sputtering target material
US6284013B1 (en) 1998-07-14 2001-09-04 Japan Energy Corporation Method for preparing high-purity ruthenium sputtering target and high-purity ruthenium sputtering target
WO2000004202A1 (en) * 1998-07-14 2000-01-27 Japan Energy Corporation Method for preparing high purity ruthenium sputtering target and high purity ruthenium sputtering target
JP2002105631A (en) * 2000-09-28 2002-04-10 Sumitomo Metal Mining Co Ltd High-purity ruthenium sputtering target and manufacturing method
JP2002322559A (en) * 2001-04-23 2002-11-08 Sumitomo Metal Mining Co Ltd High purity iridium sputtering target and production method therefor
WO2007043215A1 (en) * 2005-10-14 2007-04-19 Nippon Mining & Metals Co., Ltd. HIGH-PURITY Ru ALLOY TARGET, PROCESS FOR PRODUCING THE SAME AND SPUTTERED FILM
JP4800317B2 (en) * 2005-10-14 2011-10-26 Jx日鉱日石金属株式会社 High purity Ru alloy target, method for producing the same, and sputtered film
KR100856758B1 (en) * 2006-11-30 2008-09-05 희성금속 주식회사 Manufacturing method of the iridium and ruthenium sputtering target having a fine grain size

Similar Documents

Publication Publication Date Title
EP2803754B1 (en) Silver-alloy sputtering target for conductive-film formation, and method for producing same
KR101854009B1 (en) Silver-alloy sputtering target for conductive-film formation, and method for producing same
CN111958333A (en) Polishing process of neodymium-aluminum target sputtering surface
JPH0941131A (en) Production of high purity iridium or ruthenium sputtering target
JP3974945B2 (en) Titanium sputtering target
JPH03150356A (en) Tungsten or molybdenum target and production thereof
TWI752035B (en) Gold Sputtering Target
JP5793069B2 (en) Manufacturing method of copper target material for sputtering
TWI809013B (en) Manufacturing method of gold sputtering target material and manufacturing method of gold film
TWI798304B (en) Gold sputtering target material and manufacturing method thereof
US3895671A (en) Method of manufacturing a thin sheet of beryllium or an alloy thereof
JP2001295035A (en) Sputtering target and its manufacturing method
JPH11158612A (en) Molten ruthenium sputtering target
JP4023282B2 (en) Iridium sputtering target manufacturing method and target obtained by the method
JPH0864554A (en) Sputtering target material for forming thin film of thin film transistor
WO2020194789A1 (en) Joint body of target material and backing plate, and method for manufacturing joint body of target material and backing plate
WO2024048664A1 (en) Molybdenum sputtering target, method for producing same, and method for producing sputtering film using molybdenum sputtering target
JP3134340B2 (en) Sputtering target
JPH0593267A (en) Tungstren target for semiconductor and its manufacture
KR20160073216A (en) Manufacturing method of nickel alloy targetfor semiconductor and nickel alloy target for semiconductor manufactured thereby
JPH1161392A (en) Production of sputtering target for forming ru thin film
WO2023058698A1 (en) Sputtering target, method for producing same, and method for producing sputtering film using sputtering target
JP2003247063A (en) W sputtering target hardly causing particle, and its manufacturing method
US6827759B2 (en) Method for reducing the oxygen and oxide content in cobalt to produce cobalt sputtering targets
WO2000031316A1 (en) Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021008