JPH0940761A - Polylactic acid block copolymer, production thereof and molded article made therefrom - Google Patents
Polylactic acid block copolymer, production thereof and molded article made therefromInfo
- Publication number
- JPH0940761A JPH0940761A JP19390095A JP19390095A JPH0940761A JP H0940761 A JPH0940761 A JP H0940761A JP 19390095 A JP19390095 A JP 19390095A JP 19390095 A JP19390095 A JP 19390095A JP H0940761 A JPH0940761 A JP H0940761A
- Authority
- JP
- Japan
- Prior art keywords
- lactic acid
- lactide
- block copolymer
- segment
- poly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、結晶性、耐熱性、
柔軟性および靭性にすぐれた新規ポリ乳酸ブロック共重
合体、その製造方法およびその成型品に関する。TECHNICAL FIELD The present invention relates to crystallinity, heat resistance,
The present invention relates to a novel polylactic acid block copolymer having excellent flexibility and toughness, a method for producing the same, and a molded product thereof.
【0002】[0002]
【従来の技術】生分解性または自然環境下で分解するポ
リマーが、環境保護の見地から注目されている。なかで
もポリ乳酸は、農産物を原料としコストおよび性能に優
れており、最も実用性が高い生分解性ポリマーとして期
待されている。しかしポリ乳酸は、分子構造が剛直であ
る上に結晶性が高いため成型品が堅くもろいという欠点
がある。このため共重合によって結晶性を抑制し、柔軟
性や靭性を改良することが試みられている。その一つの
方法として、L−乳酸とD−乳酸との共重合が考えられ
る。2. Description of the Related Art Polymers that are biodegradable or decompose in a natural environment have been attracting attention from the viewpoint of environmental protection. Among them, polylactic acid is excellent in cost and performance using agricultural products as raw materials, and is expected as the most practical biodegradable polymer. However, since polylactic acid has a rigid molecular structure and high crystallinity, it has the drawback that molded products are hard and brittle. Therefore, it has been attempted to suppress crystallinity by copolymerization and improve flexibility and toughness. As one of the methods, copolymerization of L-lactic acid and D-lactic acid is considered.
【0003】[0003]
【発明が解決しようとする課題】しかし、これまで行わ
れたL/D−乳酸共重合は、ランダム共重合であり、柔
軟性や靭性は改良されるが、結晶性が失われ耐熱性が著
しく劣るものしか得られていない。本発明者らは、ポリ
乳酸の好ましい結晶性や耐熱性を維持しつつ、柔軟性や
靭性を改良するため鋭意研究し、本発明に到達した。However, the L / D-lactic acid copolymerization that has been conducted so far is a random copolymerization, and although the flexibility and toughness are improved, the crystallinity is lost and the heat resistance is remarkably increased. Only the inferior is obtained. The present inventors have earnestly studied to improve flexibility and toughness while maintaining preferable crystallinity and heat resistance of polylactic acid, and arrived at the present invention.
【0004】[0004]
【課題を解決するための手段】上記本発明の目的は、ポ
リL−乳酸またはポリD−乳酸の実質的ホモポリマーか
らなる結晶性セグメント(A)と、L−乳酸およびD−
乳酸を主成分とする非晶性セグメント(B)とが結合さ
れてなる新規ポリ乳酸ブロック共重合体によって達成さ
れる。The above object of the present invention is to provide a crystalline segment (A) comprising a substantially homopolymer of poly-L-lactic acid or poly-D-lactic acid, and L-lactic acid and D-lactic acid.
It is achieved by a novel polylactic acid block copolymer in which an amorphous segment (B) containing lactic acid as a main component is bound.
【0005】ここで、セグメントとはポリマー分子鎖の
一部分をいう。セグメント(A)を形成するポリL−乳
酸またはポリD−乳酸の実質的ホモポリマーは、ポリL
−乳酸ホモポリマー、ポリD−乳酸ホモポリマー、およ
びそれらに融点や結晶性があまり損なわれない程度の少
量の他成分が共重合されたものを包含する。例えば、ポ
リL−乳酸ホモポリマー(融点170〜180℃)に対
し2〜3重量%程度のD−乳酸成分を共重合しても、融
点の低下はわずか(10℃以下)であり、実質的にホモ
ポリマーとみなす。少量の他成分として、他のエステル
結合形成性成分が共重合された場合も同様である。しか
し、ポリL−乳酸に対しD−乳酸成分が例えば5%を越
えて共重合されると融点低下は20℃以上となり、実質
的にホモポリマーとはいえない。このように少量の第二
成分の混入でも、製品の耐熱性を損なう傾向があり、で
きるだけ避けるべきであ。すなわちセグメント(A)
は、高純度のものが好ましい。このため、重合原料の純
度を高めること、重合反応を出来るだけ低温で短時間と
し、反応中のラセミ化を防ぐことなどが好ましい。Here, the segment means a part of a polymer molecular chain. The substantially homopolymer of poly L-lactic acid or poly D-lactic acid forming the segment (A) is poly L-lactic acid.
-Lactic acid homopolymer, poly D-lactic acid homopolymer, and those obtained by copolymerizing them with a small amount of other components such that the melting point and crystallinity are not significantly impaired. For example, even if about 2-3 wt% of D-lactic acid component is copolymerized with poly L-lactic acid homopolymer (melting point 170 to 180 ° C.), the melting point is slightly decreased (10 ° C. or less), and Are considered to be homopolymers. The same applies when another ester bond-forming component is copolymerized as a small amount of another component. However, when the D-lactic acid component is copolymerized with poly L-lactic acid in an amount of, for example, more than 5%, the melting point is lowered by 20 ° C. or more, and it cannot be said to be substantially a homopolymer. Even if such a small amount of the second component is mixed, the heat resistance of the product tends to be impaired, and it should be avoided as much as possible. That is, segment (A)
Is preferably of high purity. Therefore, it is preferable to increase the purity of the polymerization raw material, to keep the polymerization reaction at a temperature as low as possible and to prevent racemization during the reaction.
【0006】セグメント(B)を形成するL−乳酸およ
びD−乳酸を主成分とする非晶性ポリマーは、(1)L
/D−乳酸共重合体、および(2)L/D−乳酸共重合
体にエステル結合形成性の第三成分(単数または複数)
を50重量%以下共重合したもので結晶性でないものを
いう。ポリマーが結晶性かどうかは、それを繊維または
フィルムとし、十分延伸および熱処理したのち、走査型
示差熱量計(以下DSCと記す)で試験して、結晶の融
解の吸熱ピークが存在するかどうか、あるいは延伸配向
した繊維またはフィルムをX線回折試験することによ
り、容易に判定できる。L/D−乳酸のランダム共重合
体の場合、L/D比率が94/6〜6/94、とくに9
0/10〜10/90程度の範囲が非結晶性であること
が多い。The amorphous polymer mainly composed of L-lactic acid and D-lactic acid forming the segment (B) is (1) L
/ D-lactic acid copolymer, and (2) L / D-lactic acid copolymer having an ester bond-forming third component (one or more)
Of 50% by weight or less and is not crystalline. Whether the polymer is crystalline or not is determined as a fiber or a film, sufficiently stretched and heat treated, and then tested by a scanning differential calorimeter (hereinafter referred to as DSC) to determine whether an endothermic peak of melting of the crystal is present. Alternatively, it can be easily determined by conducting an X-ray diffraction test on a stretch-oriented fiber or film. In the case of a random copolymer of L / D-lactic acid, the L / D ratio is 94/6 to 6/94, especially 9
The range of 0/10 to 10/90 is often amorphous.
【0007】セグメント(A)と(B)との結合形式
は、特に限定されない。例えば、1個の(A)と1個の
(B)とが結合したAB型、1個の(A)に2個の
(B)が結合したBAB型、その逆のABA型、複数の
(A)と複数の(B)とが結合した例えばABABA型
など任意である。しかし製造の容易性、物性(結晶性や
耐熱性)に優れる点から、AB型、ABA型、BAB型
が好ましい。The combination form of the segments (A) and (B) is not particularly limited. For example, AB type in which one (A) and one (B) are bound, BAB type in which two (B) are bound to one (A), the opposite ABA type, a plurality of ( It is arbitrary such as ABABA type in which A) and a plurality of (B) are combined. However, AB type, ABA type, and BAB type are preferable from the viewpoint of easy production and excellent physical properties (crystallinity and heat resistance).
【0008】セグメント(A)と(B)との結合は、エ
ステル結合が最も広く用いられるが、その他の「継ぎ
手」で結合されていてもよい。例えば、共に末端に水酸
基を有するセグメント(A)用のポリマーとセグメント
(B)用のポリマーとに、ジカルボン酸無水物やジカル
ボン酸塩化物を反応させて、両者を結合することができ
る。同様に、ジイソシアネート化合物を反応させて、両
者を結合することができる。すなわち、「継ぎ手」とし
てエステル結合、ウレタン結合、ウレア結合、アミド結
合、カーボネート結合その他の周知の化学結合を応用す
ることが出来る。As the bond between the segments (A) and (B), an ester bond is most widely used, but it may be bonded by another "joint". For example, a polymer for the segment (A) and a polymer for the segment (B), both of which have a hydroxyl group at the terminal, can be reacted with a dicarboxylic acid anhydride or a dicarboxylic acid chloride to bond them. Similarly, a diisocyanate compound can be reacted to bond both. That is, a well-known chemical bond such as an ester bond, a urethane bond, a urea bond, an amide bond, a carbonate bond or the like can be applied as the "joint".
【0009】セグメント(A)および(B)の分子量
は、特に限定されない。セグメント(A)と(B)との
重量比率や目的とする物性によってそれぞれの分子量を
選べば良い。しかし一般に余り分子量の小さいものは、
ブロック(セグメント)共重合体の特長が不十分で、好
ましくない。セグメントの分子量は、2000以上、特
に5000以上が好ましく、多くの場合10000〜3
00000、特に30000〜200000が広く用い
られる。The molecular weights of the segments (A) and (B) are not particularly limited. The molecular weight of each of the segments (A) and (B) may be selected depending on the weight ratio and the desired physical properties. However, in general, if the molecular weight is too small,
The block (segment) copolymer has unsatisfactory features, which is not preferable. The molecular weight of the segment is preferably 2000 or more, particularly preferably 5000 or more, and in many cases 10,000 to 3
Widely used is 00000, especially 30,000 to 200,000.
【0010】セグメント(A)と(B)との重量比率
は、それぞれあまりに小さいと効果が乏しく、例えば重
量比A/Bが20/80〜85/15程度の範囲、とく
に30/70〜80/20の範囲が好ましく、40/6
0〜75/25の範囲が最も広く用いられる。セグメン
ト(A)は、いわばハードセグメントであり、それが多
いほど融点や軟化点が高く耐熱性にすぐれ、逆にソフト
セグメントであるセグメント(B)が多いほど柔軟性、
耐衝撃性、弾性回復性などに優れる。従来のランダム共
重合では、共重合の比率の広い範囲で、共重合物は非結
晶性となり耐熱性が著しく劣るが、本発明によって結晶
性で耐熱性の改善されたものが得られる。本発明の共重
合体の分子量は、特に限定されないが、多くの場合、5
0000以上が好ましく、80000以上が特に好まし
く、100000〜300000の範囲が最も広く用い
られる。好ましい分子構造の若干の例をあげると、セグ
メント(A)として分子量150000のポリL−乳酸
(ホモポリマー)、セグメント(B)として分子量50
000のL−乳酸/D−乳酸の90/10ランダム共重
合体を成分とするAB型ブロック共重合体(分子量20
0000)、同じくBAB型(分子量250000)、
同じく分子量10万のAと5万のBとのABA型(分子
量25万)などがある。本発明の共重合体は、すべての
分子の分子構造(ブロック共重合の構造)が同一である
必要はなく、色々な分子構造のものの集合体でもよい。
実際の重合工程では、統計的バラツキにより色々な分子
の集合体(例えばガウス分布したもの)が得られる。し
かし、各ブロック(セグメント)の成分や分子量は平均
値で代表させることが出来、実際上それで十分である。If the weight ratio of the segments (A) and (B) is too small, the effect is poor. For example, the weight ratio A / B is in the range of about 20/80 to 85/15, particularly 30/70 to 80 /. The range of 20 is preferable and 40/6
The range 0-75 / 25 is most widely used. The segment (A) is, so to speak, a hard segment, and the more it is, the higher the melting point and the softening point and the better the heat resistance. Conversely, the more the segment (B) is the soft segment, the more the flexibility,
Excellent impact resistance and elastic recovery. In the conventional random copolymerization, the copolymer is non-crystalline and the heat resistance is remarkably inferior in a wide range of the copolymerization ratio, but according to the present invention, a crystalline product having improved heat resistance can be obtained. The molecular weight of the copolymer of the present invention is not particularly limited, but is often 5
0000 or more is preferable, 80,000 or more is particularly preferable, and the range of 100,000 to 300,000 is most widely used. As a few examples of preferable molecular structures, poly L-lactic acid (homopolymer) having a molecular weight of 150,000 as the segment (A) and a molecular weight of 50 as the segment (B).
000 L-lactic acid / D-lactic acid 90/10 random copolymer as a component AB type block copolymer (molecular weight 20
0000), also BAB type (molecular weight 250,000),
Similarly, there is an ABA type (molecular weight 250,000) of A having a molecular weight of 100,000 and B having a molecular weight of 50,000. The copolymer of the present invention does not have to have the same molecular structure (structure of block copolymer) of all molecules, and may be an aggregate of various molecular structures.
In the actual polymerization process, various molecular aggregates (for example, Gaussian distribution) are obtained due to statistical variations. However, the component and molecular weight of each block (segment) can be represented by an average value, and that is practically sufficient.
【0011】図1は、ポリL−乳酸とポリD−乳酸の共
重合比率と融点の関係を示す説明図である。図におい
て、曲線1は本発明によるブロック共重合体の例を示
し、曲線2はランダム共重合体の例を示す。ランダム共
重合においては、ホモポリマーに5〜6%の光学異性体
が共重合することにより結晶性が失われ、融点は不明確
となる。曲線2の実線はDSC法で結晶の融点が観測さ
れる領域を示し、点線はDSC法では融点が観測され
ず、ポリマーが軟化流動開始する温度を示す。勿論この
流動開始点は、ポリマーの分子量によっても変わるの
で、一義的に示すことは不可能で、図は一例を示すにす
ぎない。同じく、ブロック共重合体の融点も、セグメン
トの分子構造や分子量、セグメントとセグメントとの結
合方式、分子全体の分子量などによって変わるので、曲
線1は一例を示すに過ぎない。しかし、本発明によるブ
ロック共重合体においては、L/D比率のすべての領域
にわたり結晶性や融点を保つことが可能であり、その結
果ランダム共重合体よりも高い融点や耐熱性が得られる
点で、ランダム共重合とは本質的且つ明瞭に異なること
が理解されよう。FIG. 1 is an explanatory view showing the relationship between the copolymerization ratio of poly L-lactic acid and poly D-lactic acid and the melting point. In the figure, curve 1 shows an example of a block copolymer according to the present invention, and curve 2 shows an example of a random copolymer. In random copolymerization, the homopolymer is copolymerized with 5 to 6% of optical isomers, whereby the crystallinity is lost and the melting point becomes unclear. The solid line of the curve 2 indicates the region where the melting point of the crystal is observed by the DSC method, and the dotted line indicates the temperature at which the melting point of the polymer starts without the melting point being observed by the DSC method. Of course, this flow starting point also varies depending on the molecular weight of the polymer, so it cannot be uniquely shown, and the figure shows only an example. Similarly, the melting point of the block copolymer also changes depending on the molecular structure and molecular weight of the segment, the method of connecting the segments and the molecular weight of the entire molecule, and thus the curve 1 is only an example. However, in the block copolymer according to the present invention, the crystallinity and the melting point can be maintained over the entire region of the L / D ratio, and as a result, the melting point and the heat resistance higher than those of the random copolymer can be obtained. It will be appreciated that, in essence, this is distinct from random copolymerization.
【0012】前述のように、本発明ブロック共重合体を
構成する非晶性セグメント(B)は、その50重量%以
下の範囲内で、乳酸以外のポリエステル用その他の重合
原料(構成成分)を共重合することが出来る。共重合の
目的は、親水性、撥水性、染色性、酸化防止性、柔軟
性、弾性回復性、耐衝撃性、耐熱性、ガスバリア性、ガ
ラス転移温度、分解性、平滑性、離型性、成型性などの
改良、コストダウンなどである。共重合可能な成分また
は原料の例としては、(1)グリコール酸、ヒドロキシ
ブチルカルボン酸、ヒドロキシ安息香酸などのヒドロキ
シ酸、(2)グリコリド、ブチロラクトン、カプロラク
トンなどの脂肪族ラクトン、(3)エチレングリコー
ル、プロピレングリコール、ブタンジオール、ヘキサン
ジオールなど炭素数2〜20のジオール、(3)コハク
酸、アジピン酸、セバシン酸、デカンジカルボン酸、フ
タル酸、イソフタル酸、スルホイソフタル酸(アルカリ
金属塩)、テレフタル酸、ナフタレンジカルボン酸など
脂肪族および芳香族ジカルボン酸、更に分子末端に水酸
基をもつポリマー又はオリゴマーとして、(4)ポリエ
チレングリコール、ポリプロピレングリコール、ポリブ
チレンエーテルなどのポリアルキレンエーテルおよびそ
れらの共重合体やオリゴマー、(5)ポリヘキサンカー
ボネート、オクタンカーボネートなどのポリアルキレン
カーボネート、(6)ジメチルシロキサン、ジエチルシ
ロキサン、ジフェニルシロキサンなどのポリオルガノシ
ロキサンなどが挙げられる。As described above, the amorphous segment (B) constituting the block copolymer of the present invention contains other polymerization raw materials (constituents) for polyester other than lactic acid within the range of 50% by weight or less. It can be copolymerized. The purpose of copolymerization is hydrophilicity, water repellency, dyeability, antioxidant property, flexibility, elastic recovery property, impact resistance, heat resistance, gas barrier property, glass transition temperature, decomposability, smoothness, releasability, Improving moldability and cost reduction. Examples of copolymerizable components or raw materials include (1) hydroxy acids such as glycolic acid, hydroxybutylcarboxylic acid and hydroxybenzoic acid, (2) aliphatic lactones such as glycolide, butyrolactone and caprolactone, and (3) ethylene glycol. C2-20 diols such as propylene glycol, butanediol and hexanediol, (3) succinic acid, adipic acid, sebacic acid, decanedicarboxylic acid, phthalic acid, isophthalic acid, sulfoisophthalic acid (alkali metal salt), terephthalate Acids, naphthalene dicarboxylic acid and other aliphatic and aromatic dicarboxylic acids, and further as polymers or oligomers having a hydroxyl group at the molecular end, (4) polyalkylene ethers such as polyethylene glycol, polypropylene glycol and polybutylene ether, and These copolymers or oligomers, (5) poly hexane carbonates, polyalkylene carbonates, such as octane carbonate, (6) dimethylsiloxane, diethyl siloxane, such as polyorganosiloxanes, such as diphenyl siloxane.
【0013】例えば、親水性や分解性改良にはスルホン
基やエーテル結合を持つもの、撥水性改良にはシリコン
化合物、柔軟性や靭性などの改良にはガラス転移点が常
温以下の化合物(ポリアルキレンラクタム、ポリアルキ
レンアルキレート、ポリアルキレンエーテル、ポリアル
キレンカーボネートなど)、耐熱性の改良にはガラス転
移点が高いもの(芳香族化合物など)の共重合が効果的
である。For example, a compound having a sulfone group or an ether bond for improving hydrophilicity and degradability, a silicon compound for improving water repellency, and a compound having a glass transition temperature of room temperature or lower for improving flexibility and toughness (polyalkylene). Copolymerization of lactam, polyalkylene alkylate, polyalkylene ether, polyalkylene carbonate, etc.) and those having a high glass transition point (aromatic compounds etc.) are effective for improving heat resistance.
【0014】本発明のブロック共重合体は、結晶性であ
り非晶性のものよりも耐熱性に優れることが特徴であ
る。結晶性の程度は、前述のようにDSC分析によって
評価出来る。DSC分析で結晶の融解(溶融)吸熱量が
大きいほど、結晶性が高い。本発明の目的に沿うために
は、ブロック共重合物の結晶の溶融吸熱量は、5ジュー
ル(J)/g以上が好ましく、10J/g以上が特に好
ましく、15J/g以上が最も好ましい。なおポリL−
乳酸ホモポリマーの結晶の溶融吸熱量は40〜50J/
g程度、融点(ピーク値)は170〜180℃程度であ
る。本発明ブロック共重合体の融点は、130℃以上が
好ましく、140℃以上が特に好ましく、150℃以上
が最も広く用いられる。The block copolymer of the present invention is characterized in that it is crystalline and has better heat resistance than an amorphous one. The degree of crystallinity can be evaluated by DSC analysis as described above. The larger the melting (melting) endothermic amount of the crystal by DSC analysis, the higher the crystallinity. For the purpose of the present invention, the melt endothermic amount of the crystal of the block copolymer is preferably 5 Joule (J) / g or more, particularly preferably 10 J / g or more, most preferably 15 J / g or more. Poly L-
The melting endotherm of lactic acid homopolymer crystals is 40-50 J /
g, melting point (peak value) is about 170 to 180 ° C. The melting point of the block copolymer of the present invention is preferably 130 ° C or higher, particularly preferably 140 ° C or higher, and 150 ° C or higher is most widely used.
【0015】一般にポリ乳酸は、乳酸の直接重合(脱水
縮合)、乳酸エステル(メチルエステル、エチルエステ
ルなど)の縮合(脱アルコール)、および乳酸の環状2
量体であるラクチドの開環重合によって重合される。本
発明の共重合体は、ラクチドの開環重合によって容易に
得られる。乳酸の直接重合(脱水縮合)や乳酸エステル
の縮合法では、ランダム共重合が起こりやすく、ブロッ
ク共重合は極めて困難であることが多い。ラクチドには
L−乳酸の2量体であるLL−ラクチド(L−ラクチド
と記す)、D乳酸の2量体であるDD−ラクチド(D−
ラクチドと記す)、L−乳酸とD−乳酸とを成分とする
L/D−ラクチド(メソラクチドともいう)の3種類が
ある。結晶性セグメント(A)の重合には、L−ラクチ
ドまたはD−ラクチドを用いることが好ましく、非晶性
セグメント(B)の重合には上記3種のラクチドを混合
して目的のL/D比率のものを重合することができる。In general, polylactic acid includes direct polymerization of lactic acid (dehydration condensation), condensation of lactic acid ester (methyl ester, ethyl ester, etc.) (dealcoholization), and cyclic lactic acid 2
It is polymerized by ring-opening polymerization of lactide which is a monomer. The copolymer of the present invention can be easily obtained by ring-opening polymerization of lactide. In the direct polymerization (dehydration condensation) of lactic acid or the condensation method of lactic acid ester, random copolymerization is likely to occur and block copolymerization is often extremely difficult. Lactide is an L-lactic acid dimer, LL-lactide (referred to as L-lactide), and D-lactic acid dimer, DD-lactide (D-lactide).
Lactide) and L / D-lactide (also called mesolactide) containing L-lactic acid and D-lactic acid as components. For the polymerization of the crystalline segment (A), it is preferable to use L-lactide or D-lactide, and for the polymerization of the amorphous segment (B), the above-mentioned three lactides are mixed to obtain a desired L / D ratio. Can be polymerized.
【0016】本発明のブロック共重合体は、はじめに
(1)結晶性のポリL−乳酸の実質的ホモポリマーまた
はポリD−乳酸の実質的ホモポリマーすなわちセグメン
ト(A)を形成するポリマーを製造し、それに対して
(2)L−ラクチド、D−ラクチドL/Dラクチドおよ
び必要に応じてその他のエステル結合形成性原料を混
合、反応させて非晶性セグメント(B)を形成させる2
工程法で得ることが出来る。このためには、第一工程で
製造するセグメント(A)形成ポリマーの一方または両
方の分子末端は水酸基であることが必要である。そのよ
うなポリ乳酸ホモポリマーは、重合開始剤としてモノア
ルコールまたは多価アルコール(例えばジオールやトリ
オール)を用いて得ることが出来る。The block copolymer of the present invention comprises first producing (1) a crystalline substantially homopolymer of poly (L-lactic acid) or a substantially homopolymer of poly (D-lactic acid), that is, a polymer forming the segment (A). , (2) L-lactide, D-lactide L / D lactide, and optionally other ester bond-forming raw materials are mixed and reacted to form the amorphous segment (B) 2
It can be obtained by the process method. For this purpose, one or both of the molecular ends of the segment (A) -forming polymer produced in the first step must be hydroxyl groups. Such polylactic acid homopolymer can be obtained by using a monoalcohol or a polyhydric alcohol (for example, diol or triol) as a polymerization initiator.
【0017】同様に本発明のブロック共重合体は、はじ
めに(1)L−ラクチド(またはL−乳酸)、D−ラク
チド(またはD−乳酸)、L/Dラクチドおよび必要に
応じてその他のエステル結合形成性原料を混合し反応
(重合)させてセグメント(B)を形成する非晶性ポリ
マーを製造し、それに対して(2)L−ラクチドまたは
D−ラクチドを反応(重合)させて結晶性セグメント
(A)を形成することにより、製造することも出来る。
この場合も、第一工程で製造するポリマーの分子末端
(一方または両方)に水酸基を導入するため、モノアル
コールまたは多価アルコールを用いることが出来る。こ
の二つの方法では、かなり正確にAB型、ABA型また
はBAB型のブロック共重合体を製造することが出来
る。上記二つの工程は、それぞれ連続的または/および
バッチ的に行うことが出来る。Similarly, the block copolymer of the present invention comprises (1) L-lactide (or L-lactic acid), D-lactide (or D-lactic acid), L / D lactide and, if necessary, other ester. A bond-forming raw material is mixed and reacted (polymerized) to produce an amorphous polymer that forms the segment (B), and (2) L-lactide or D-lactide is reacted (polymerized) with the crystalline to form a crystalline polymer. It can also be manufactured by forming the segment (A).
Also in this case, a monoalcohol or a polyhydric alcohol can be used because a hydroxyl group is introduced into the molecular terminal (one or both) of the polymer produced in the first step. By these two methods, AB, ABA or BAB type block copolymers can be produced fairly accurately. The above two steps can be performed continuously or / and batchwise.
【0018】本発明のブロック共重合体の別の製造法と
しては、はじめに(1)一方または両方の分子末端に水
酸基(または他の官能基)を持つ結晶性セグメント
(A)用のポリマーと、非晶性セグメント(B)用のポ
リマーの双方を作り、(2)それらにジイソシアネー
ト、ジカルボン酸無水物またはジカルボン酸ハロゲン化
物、ジカルボン酸などの多官能性化合物を反応させて、
セグメント(A)と(B)とを、多官能性化合物を継ぎ
手として、結合する方法がある。この方法ではAB型、
ABA型、BAB型の他、ABAB、ABABA、BA
BABその他様々な型や、様々の型が混合されたものも
製造することが出来る。この方法も、連続的または/お
よびバッチ的に行うことが出来る。As another method for producing the block copolymer of the present invention, first, (1) a polymer for a crystalline segment (A) having a hydroxyl group (or other functional group) at one or both molecular ends, Making both of the polymers for the amorphous segment (B), (2) reacting them with a polyfunctional compound such as diisocyanate, dicarboxylic acid anhydride or dicarboxylic acid halide, dicarboxylic acid,
There is a method of joining the segments (A) and (B) using a polyfunctional compound as a joint. This method is AB type,
In addition to ABA type and BAB type, ABAB, ABABA, BA
BAB and various other types, and a mixture of various types can be manufactured. This method can also be carried out continuously or / and batchwise.
【0019】本発明のブロック共重合体には、使用目的
に応じて副次的添加剤として、安定剤、酸化防止剤、紫
外線吸収剤、顔料、着色剤、各種無機粒子、各種フィラ
ー、撥水剤、親水剤、離型剤、可塑剤、生理活性剤、抗
菌剤、防腐剤などを添加することができる。本発明のブ
ロック共重合体は、繊維、シート、フィルム、板、棒、
筒、容器その他各種の成型品などの用途に好適に応用出
来る。The block copolymer of the present invention contains stabilizers, antioxidants, ultraviolet absorbers, pigments, colorants, various inorganic particles, various fillers, water repellents as secondary additives depending on the purpose of use. Agents, hydrophilic agents, release agents, plasticizers, bioactive agents, antibacterial agents, preservatives and the like can be added. The block copolymer of the present invention includes fibers, sheets, films, plates, rods,
It can be suitably applied to applications such as cylinders, containers and various molded products.
【0020】[0020]
【発明の実施の形態および実施例】以下の実施例におい
て、%、部は特に断らない限り重量比である。脂肪族ポ
リエステルの分子量は、試料の0.1%クロロホルム溶
液のGPC分析において、分子量1000以下の成分を
除く高分子成分の分散の重量平均値である。DSC分析
は、試料10mg、窒素雰囲気中、昇温速度10℃/m
inで行った。また、衝撃強度は、試料ポリマーを射出
成型法により切り欠き付き試験片を作成し、JIS K
7110 アイゾット衝撃試験法により測定した。BEST MODE FOR CARRYING OUT THE INVENTION In the following examples,% and parts are weight ratios unless otherwise specified. The molecular weight of the aliphatic polyester is the weight average value of the dispersion of the polymer component excluding the component having a molecular weight of 1000 or less in GPC analysis of a 0.1% chloroform solution of the sample. The DSC analysis was performed with a sample of 10 mg in a nitrogen atmosphere and a temperature rising rate of 10 ° C./m.
went in. In addition, the impact strength was measured according to JIS K
7110 Measured by the Izod impact test method.
【0021】(実施例1)光学純度99.5%以上のL
−ラクチド100部、それに対して重合触媒としてオク
チル酸錫100ppm、重合開始剤としてオクチルアル
コール0.07部、酸化防止剤としてチバガイギー社イ
ルガノックス1010を0.1部を加えて、攪拌装置付
きの反応容器中で、窒素雰囲気下、185℃で12分間
反応させて、プレポリマーPP1を得た。プレポリマー
PP1は、分子量156000で、片末端の殆どが水酸
基のポリ乳酸ホモポリマー(結晶性)である。(Example 1) L having an optical purity of 99.5% or more
100 parts of lactide, 100 ppm of tin octylate as a polymerization catalyst, 0.07 parts of octyl alcohol as a polymerization initiator, 0.1 part of Ciba Geigy Irganox 1010 as an antioxidant, and a reaction with a stirrer Prepolymer PP1 was obtained by reacting for 12 minutes at 185 ° C. in a container under a nitrogen atmosphere. The prepolymer PP1 is a polylactic acid homopolymer (crystalline) having a molecular weight of 156000 and a hydroxyl group at most one end.
【0022】プレポリマーPP1とほぼ同様にして、但
し重合開始剤としてトリエチレングリコール0.07%
を用いて、プレポリマーPP2を得た。プレポリマーP
P2は、殆どの両末端が水酸基、分子量162000の
ポリ乳酸ホモポリマー(結晶性)である。Almost the same as the prepolymer PP1, except that 0.07% of triethylene glycol was used as a polymerization initiator.
Was used to obtain a prepolymer PP2. Prepolymer P
P2 is a polylactic acid homopolymer (crystalline) having hydroxyl groups at most of both ends and a molecular weight of 162000.
【0023】直径30mmの2軸混練押出機に、溶融し
たプレポリマーPP1と、L−ラクチドとD−ラクチド
の8/2混合物とを、重量比70/30で連続供給し、
同時にラクチドに対して重合触媒オクチル酸錫100p
pmを添加し、190℃で平均7分間重合した。重合
後、ノズルより押し出し水で冷却したのち切断してチッ
プとし、乾燥後140℃の窒素中で6時間処理(固相重
合)してブロック共重合体BP1を得た。BP1は、分
子量223000、分子量156000のポリL−乳酸
(結晶性)セグメント(A)と、分子量67000のポ
リL/D−共重合乳酸(非晶性)セグメント(B)との
AB型ブロック共重合体である。To a twin-screw kneading extruder having a diameter of 30 mm, the molten prepolymer PP1 and an 8/2 mixture of L-lactide and D-lactide were continuously fed at a weight ratio of 70/30,
At the same time, polymerization catalyst tin octylate 100p for lactide
pm was added, and the mixture was polymerized at 190 ° C. for 7 minutes on average. After the polymerization, the product was extruded from a nozzle, cooled with water, cut into chips, dried, and then treated in nitrogen at 140 ° C. for 6 hours (solid phase polymerization) to obtain a block copolymer BP1. BP1 is an AB type block copolymer of a poly L-lactic acid (crystalline) segment (A) having a molecular weight of 223,000 and a molecular weight of 156000 and a poly L / D-copolymerized lactic acid (amorphous) segment (B) having a molecular weight of 67,000. It is united.
【0024】ブロック共重合体BP1とほぼ同様にし
て、但しプレポリマーPP2を用いて、ブロック共重合
体BP2を得た。BP2は、分子量216000、分子
量156000のポリL−(結晶性)乳酸セグメント
(A)と、分子量30000のポリL/D共重合乳酸
(非晶性)セグメント(B)とのBAB型ブロック共重
合体である。Block copolymer BP2 was obtained in substantially the same manner as block copolymer BP1, but using prepolymer PP2. BP2 is a BAB type block copolymer of a poly L- (crystalline) lactic acid segment (A) having a molecular weight of 216000 and a molecular weight of 156000 and a poly L / D copolymerized lactic acid (amorphous) segment (B) having a molecular weight of 30,000. Is.
【0025】比較のため、プレポリマーPP1とほぼ同
様にして但し重合開始剤を用いないで重合した後、チッ
プ状で固相重合して得た分子量235000のポリL−
乳酸ホモポリマーをHP1とする。またそれぞれ光学純
度99.5%以上のL−ラクチドとDラクチドの8/2
の混合物を用い、重合開始剤を用いないで、以下プレポ
リマーPP1と同様に重合した後、チップ状で固相重合
して得た分子量228000のポリL/D−乳酸共重合
体をポリマーAP1とする。For comparison, poly L-having a molecular weight of 235,000 obtained by polymerizing in substantially the same manner as prepolymer PP1 except that a polymerization initiator was not used, and then solid-phase polymerizing in a chip form.
Let lactic acid homopolymer be HP1. In addition, 8/2 of L-lactide and D-lactide having an optical purity of 99.5% or more, respectively.
Polymerization was carried out in the same manner as in the prepolymer PP1 below without using a polymerization initiator, and then solid-state polymerization was carried out in a chip form to obtain a poly L / D-lactic acid copolymer having a molecular weight of 228,000 as a polymer AP1. To do.
【0026】各ポリマーの融点、融解吸熱量、衝撃強度
を表1に示す。なお、ポリマーAP1は、非晶性で融点
はDSC法では不明瞭であるため、軟化温度を示す。表
1に見るように、本発明のポリマーBP1およびBP2
は、融点および融解吸熱量が高く結晶性に優れ、しかも
耐衝撃性に優れている。他方、ポリL−乳酸ホモポリマ
ーHP1は結晶性に優れるが、耐衝撃性に劣り、ポリL
/D−乳酸共重合体AP1は耐衝撃性に優れるが耐熱性
に劣ることが明らかである。Table 1 shows the melting point, melting endotherm and impact strength of each polymer. The polymer AP1 has a softening temperature because it is amorphous and its melting point is unclear by the DSC method. As seen in Table 1, the polymers BP1 and BP2 of the invention
Has a high melting point and melting endotherm, excellent crystallinity, and impact resistance. On the other hand, poly L-lactic acid homopolymer HP1 is excellent in crystallinity but inferior in impact resistance.
It is clear that the / D-lactic acid copolymer AP1 is excellent in impact resistance but inferior in heat resistance.
【0027】[0027]
【表1】 (実施例2)実施例1のプレポリマーPP2とほぼ同様
にして、但し重合開始剤を0.12%添加して得た分子
量107000の結晶性ポリマーをプレポリマーPP3
とする。実施例1のプレポリマーPP2と同様にして、
但し光学純度99.5%以上のL−ラクチド80部、光
学純度99.5%以上のD−ラクチド20部、トリエチ
レングリコール0.17%とを用いて、分子量7200
0の非晶性プレポリマーPP4を得た。プレポリマーP
P3を107部、PP4を72部、テレフタル酸ジクロ
ライド0.36部を混合し、実施例1と同じ2軸混練押
出機を用い190℃で6分間反応させた後ノズルより押
し出し冷却チップ化し、140℃の窒素中で4時間熱処
理下後、水を3%含むアセトンで洗浄後乾燥して、ブロ
ック共重合体BP3を得た。BP3の分子量は2520
00で、AB型、ABA型、BAB型、ABAB型など
の混合物と推測される。[Table 1] Example 2 A crystalline polymer having a molecular weight of 107,000 obtained by adding 0.12% of a polymerization initiator was prepared in substantially the same manner as in the prepolymer PP2 of the prepolymer PP3.
And Similar to Prepolymer PP2 of Example 1,
However, 80 parts of L-lactide having an optical purity of 99.5% or more, 20 parts of D-lactide having an optical purity of 99.5% or more, and 0.17% of triethylene glycol were used to obtain a molecular weight of 7200.
0 amorphous prepolymer PP4 was obtained. Prepolymer P
P3 (107 parts), PP4 (72 parts) and terephthalic acid dichloride (0.36 parts) were mixed, reacted using the same twin-screw kneading extruder as in Example 1 at 190 ° C. for 6 minutes and then extruded from a nozzle to form a cooling chip. After heat treatment for 4 hours in nitrogen at ℃, washed with acetone containing 3% of water and dried to obtain a block copolymer BP3. The molecular weight of BP3 is 2520
At 00, it is assumed to be a mixture of AB type, ABA type, BAB type, ABAB type and the like.
【0028】両末端が水酸基で分子量20000のポリ
ヘキサンアジペートと、同じく両末端が水酸基で分子量
20000のポリブチレンアジペートの1/1混合物3
0部、光学純度99.5%以上のL−ラクチド50部お
よび光学純度99.5%以上のD−ラクチド20部に対
してオクチル酸錫100ppmを混合し、以下実施例1
のプレポリマーPP1と同様に重合してプレポリマーP
P5を得た。プレポリマーPP5は分子量63000で
両末端が水酸基である。1/1 mixture of polyhexane adipate having hydroxyl groups at both ends and a molecular weight of 20000 and polybutylene adipate having hydroxyl groups at both ends and a molecular weight of 20000 3
100 parts of tin octylate was mixed with 0 parts, 50 parts of L-lactide having an optical purity of 99.5% or more and 20 parts of D-lactide having an optical purity of 99.5% or more, and the following Example 1 was used.
Prepolymer P1 is polymerized in the same manner as Prepolymer PP1
P5 was obtained. The prepolymer PP5 has a molecular weight of 63,000 and has hydroxyl groups at both ends.
【0029】溶融したプレポリマーPP5とL−ラクチ
ドとを、重量比1/2で2軸混練押出機に連続供給し、
同時にラクチドに対してオクチル酸錫を100ppm添
加し、以下実施例1のブロック共重体BP1と同様にし
てブロック共重体BP4を得た。BP4は、分子量は1
87000で、ポリブチレン/ヘキサンアジペート成分
を含む非晶性セグメント(B)とポリL−乳酸からなる
結晶性セグメント(A)とのABA型ブロック共重合体
である。BP3およびBP4の物性を表2に示す。表2
に見るように、BP3およびBP4はすぐれた結晶性お
よび耐衝撃性を持っている。とくにBP4は耐衝撃性に
優れるが、これはガラス転移点の低いポリブチレンアジ
ペートとポリヘキサンアジペート成分を含むためであ
る。The molten prepolymer PP5 and L-lactide were continuously fed to a biaxial kneading extruder at a weight ratio of 1/2,
At the same time, 100 ppm of tin octylate was added to lactide, and a block copolymer BP4 was obtained in the same manner as in the block copolymer BP1 of Example 1 below. BP4 has a molecular weight of 1
87,000 is an ABA type block copolymer of an amorphous segment (B) containing a polybutylene / hexane adipate component and a crystalline segment (A) composed of poly L-lactic acid. Table 2 shows the physical properties of BP3 and BP4. Table 2
As can be seen, BP3 and BP4 have excellent crystallinity and impact resistance. Particularly, BP4 is excellent in impact resistance because it contains the components of polybutylene adipate and polyhexane adipate having a low glass transition point.
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【発明の効果】本発明によって、耐熱性や結晶性の低下
を抑制しつつ、硬く脆いというポリ乳酸ホモポリマーの
欠点が効果的に改善され、強靭性と耐熱性を兼ね備える
ため色々な用途に好適な新規自然分解性ポリマーが提供
可能となった。本発明のブロック共重合体は、ランダム
共重合体に比べ結晶性や耐熱性が高く、更にハードセグ
メントとソフトセグメントの2つの相を持つことによ
り、ゴム弾性的な性質が発現し、柔軟性、強靭性、弾性
回復率の優れたものを得ることが出来る。また本発明共
重合体は、ホモポリマーよりも分解速度が早い傾向があ
り、ホモポリマーでは分解速度が遅すぎる用途にも、好
適である。同様に、本発明共重合体は、ホモポリマーよ
りも溶剤に溶解し易く、溶剤法によるフィルムの製造や
布などへのコーティングが容易である。更に、本発明の
共重合ポリマーは、結晶性および非晶性の各セグメント
の分子量や重量比率を変更することにより、非常に広範
囲に性質を変化させることが可能であり、用途範囲が極
めて広いという特色がある。Industrial Applicability According to the present invention, the drawback of polylactic acid homopolymer, which is hard and brittle, is effectively improved while suppressing the deterioration of heat resistance and crystallinity, and it has both toughness and heat resistance, which is suitable for various applications. It has become possible to provide a new, naturally degradable polymer. The block copolymer of the present invention has higher crystallinity and heat resistance than a random copolymer, and by having two phases of a hard segment and a soft segment, rubber elastic properties are expressed and flexibility, It is possible to obtain a material having excellent toughness and elastic recovery rate. Further, the copolymer of the present invention tends to have a faster decomposition rate than a homopolymer, and is suitable for applications where the homopolymer decomposes too slowly. Similarly, the copolymer of the present invention is more easily dissolved in a solvent than a homopolymer, and is easy to produce a film by a solvent method or to coat a cloth or the like. Furthermore, the copolymer of the present invention can change its properties in a very wide range by changing the molecular weight and the weight ratio of each crystalline and amorphous segment, and has an extremely wide range of applications. There is a feature.
【0032】本発明のポリマーは、繊維、編物、織物、
不織布、紙、網、ロープ、紐、シート、フィルム、板、
棒、チューブ、容器、袋、皿、食器、各種部品、その他
各種成型品に用いることが出来る。The polymers of the present invention can be used in fibers, knits, fabrics,
Non-woven fabric, paper, net, rope, string, sheet, film, board,
It can be used for rods, tubes, containers, bags, plates, dishes, various parts, and other various molded products.
【図1】ポリL/D−乳酸共重合物のL/D比率と融点
の関係の一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a relationship between an L / D ratio of a poly L / D-lactic acid copolymer and a melting point.
1:本発明のブロック共重合体のL/D比率と融点の関
係の一例 2:従来のランダム共重合体のL/D比率と融点の関係
の一例1: Example of relationship between L / D ratio and melting point of block copolymer of the present invention 2: Example of relationship between L / D ratio and melting point of conventional random copolymer
Claims (4)
ホモポリマーからなる結晶性セグメント(A)と、L−
乳酸およびD−乳酸を主成分とする非晶性セグメント
(B)とが結合されてなるポリ乳酸ブロック共重合体。1. A crystalline segment (A) comprising a substantially homopolymer of poly L-lactic acid or poly D-lactic acid, and L-
A polylactic acid block copolymer obtained by bonding lactic acid and an amorphous segment (B) containing D-lactic acid as a main component.
で、走査型示差熱量計で測定した結晶の融解吸熱量が、
ポリマー1gあたり5ジュール以上である、請求項1記
載の共重合体。2. The melting endotherm of the crystal measured by a scanning differential calorimeter in a sufficiently crystallized and / or oriented state is
The copolymer according to claim 1, which has 5 joules or more per 1 g of the polymer.
するL−乳酸およびD−乳酸を主成分とする非晶性ポリ
マーに対し、L−ラクチドまたはD−ラクチドを反応さ
せる、もしくは(2)少なくとも1つの末端に水酸基を
有するL−乳酸またはD−乳酸の実質的ホモポリマーに
対して、L−ラクチド、D−ラクチドまたは/およびL
D−ラクチドを反応させることを特徴とする、請求項1
〜2記載の共重合体の製造方法。(1) L-lactide or D-lactide is reacted with an amorphous polymer having L-lactic acid and D-lactic acid as main components having a hydroxyl group at at least one terminal, or (2) For L-lactic acid or a substantially homopolymer of L-lactic acid or D-lactic acid having a hydroxyl group at at least one terminal, L-lactide, D-lactide or / and L
The reaction with D-lactide is characterized in that
2) The method for producing the copolymer according to 2).
その一部に用いた繊維、編物、織物、不織布、紙、フェ
ルト、紐、ロープ、シート、フィルム、棒、筒、板、
皿、食器、容器、各種部品その他の成型品。4. A fiber, a knitted fabric, a woven fabric, a non-woven fabric, a paper, a felt, a cord, a rope, a sheet, a film, a rod, a cylinder, a plate, which comprises the copolymer according to any one of claims 1 to 2 as at least a part thereof.
Plates, tableware, containers, various parts and other molded products.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19390095A JP4020441B2 (en) | 1995-07-28 | 1995-07-28 | Polylactic acid block copolymer, production method thereof and molded product thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19390095A JP4020441B2 (en) | 1995-07-28 | 1995-07-28 | Polylactic acid block copolymer, production method thereof and molded product thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0940761A true JPH0940761A (en) | 1997-02-10 |
JP4020441B2 JP4020441B2 (en) | 2007-12-12 |
Family
ID=16315616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19390095A Expired - Lifetime JP4020441B2 (en) | 1995-07-28 | 1995-07-28 | Polylactic acid block copolymer, production method thereof and molded product thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4020441B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007100104A (en) * | 2001-03-29 | 2007-04-19 | Toray Ind Inc | Polylactic acid block copolymer, its preparation process, molded article and polylactic acid composition |
JP2008516034A (en) * | 2004-10-08 | 2008-05-15 | イソケム | Process for the controlled polymerization of O-carboxyanhydrides derived from α-hydroxy acids |
WO2008081617A1 (en) * | 2006-12-28 | 2008-07-10 | Musashino Chemical Laboratory, Ltd. | Process for producing polylactic acid block copolymer |
WO2010038860A1 (en) * | 2008-10-03 | 2010-04-08 | 国立大学法人京都工芸繊維大学 | Polylactic acid composition and method for producing same |
JP2010111814A (en) * | 2008-11-07 | 2010-05-20 | Toyobo Co Ltd | Polylactic acid-based block copolymer |
JP2010111813A (en) * | 2008-11-07 | 2010-05-20 | Toyobo Co Ltd | Poly(lactic acid)-based stereocomplex |
JP2011068878A (en) * | 2009-08-31 | 2011-04-07 | Toray Ind Inc | Method for producing polylactic acid block copolymer |
US9770534B2 (en) | 2007-04-19 | 2017-09-26 | Smith & Nephew, Inc. | Graft fixation |
US9815240B2 (en) | 2007-04-18 | 2017-11-14 | Smith & Nephew, Inc. | Expansion moulding of shape memory polymers |
US10240005B2 (en) | 2015-07-17 | 2019-03-26 | Nippon Soda Co., Ltd. | ABA block copolymer including lactic acid units |
JP2019512030A (en) * | 2016-03-03 | 2019-05-09 | ピュラック バイオケム ビー. ブイ. | Non-reactive hot melt adhesive containing lactide based copolymer |
CN113956486A (en) * | 2021-11-11 | 2022-01-21 | 中国科学院长春应用化学研究所 | Long-chain branched polylactic acid-based copolymer and preparation method thereof |
CN116731298A (en) * | 2023-06-20 | 2023-09-12 | 扬州惠通生物新材料有限公司 | Modified polylactic acid copolyester and high-transparency biodegradable heat-shrinkable film |
-
1995
- 1995-07-28 JP JP19390095A patent/JP4020441B2/en not_active Expired - Lifetime
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007100104A (en) * | 2001-03-29 | 2007-04-19 | Toray Ind Inc | Polylactic acid block copolymer, its preparation process, molded article and polylactic acid composition |
JP2008516034A (en) * | 2004-10-08 | 2008-05-15 | イソケム | Process for the controlled polymerization of O-carboxyanhydrides derived from α-hydroxy acids |
US8211986B2 (en) * | 2006-12-28 | 2012-07-03 | Musashino Chemical Laboratory, Ltd. | Method for producing polylactic acid block copolymer |
WO2008081617A1 (en) * | 2006-12-28 | 2008-07-10 | Musashino Chemical Laboratory, Ltd. | Process for producing polylactic acid block copolymer |
JP5620061B2 (en) * | 2006-12-28 | 2014-11-05 | 株式会社武蔵野化学研究所 | Process for producing polylactic acid block copolymer |
US9815240B2 (en) | 2007-04-18 | 2017-11-14 | Smith & Nephew, Inc. | Expansion moulding of shape memory polymers |
US9770534B2 (en) | 2007-04-19 | 2017-09-26 | Smith & Nephew, Inc. | Graft fixation |
WO2010038860A1 (en) * | 2008-10-03 | 2010-04-08 | 国立大学法人京都工芸繊維大学 | Polylactic acid composition and method for producing same |
JP2010111813A (en) * | 2008-11-07 | 2010-05-20 | Toyobo Co Ltd | Poly(lactic acid)-based stereocomplex |
JP2010111814A (en) * | 2008-11-07 | 2010-05-20 | Toyobo Co Ltd | Polylactic acid-based block copolymer |
JP2011068878A (en) * | 2009-08-31 | 2011-04-07 | Toray Ind Inc | Method for producing polylactic acid block copolymer |
US10240005B2 (en) | 2015-07-17 | 2019-03-26 | Nippon Soda Co., Ltd. | ABA block copolymer including lactic acid units |
JP2019512030A (en) * | 2016-03-03 | 2019-05-09 | ピュラック バイオケム ビー. ブイ. | Non-reactive hot melt adhesive containing lactide based copolymer |
CN113956486A (en) * | 2021-11-11 | 2022-01-21 | 中国科学院长春应用化学研究所 | Long-chain branched polylactic acid-based copolymer and preparation method thereof |
CN116731298A (en) * | 2023-06-20 | 2023-09-12 | 扬州惠通生物新材料有限公司 | Modified polylactic acid copolyester and high-transparency biodegradable heat-shrinkable film |
Also Published As
Publication number | Publication date |
---|---|
JP4020441B2 (en) | 2007-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3687354B2 (en) | Polylactic acid stereocomplex polymer composition | |
JP3610780B2 (en) | Method for producing polylactic acid stereocomplex polymer molding | |
KR100244057B1 (en) | Polyglycolic acid sheet and production process thereof | |
JP3440915B2 (en) | Polylactic acid resin and molded products | |
EP1090958B1 (en) | Biodegradable polyester resin composition and its use | |
JP4020441B2 (en) | Polylactic acid block copolymer, production method thereof and molded product thereof | |
JP3443603B2 (en) | Polylactic acid block copolymer composition, method for producing the same, and molded article | |
KR101970847B1 (en) | Biodegradable film | |
JP4417834B2 (en) | Polyester blend composition and biodegradable film made therefrom | |
JP2009001637A (en) | Polylactic acid based elastic resin composition having excellent heat-resistance and shaped article prepared therefrom | |
JP3666172B2 (en) | Naturally decomposable resin composition and molded product thereof | |
JP5376749B2 (en) | Polylactic acid film | |
JPH09157408A (en) | Stretched polylactic acid film or sheet | |
JP2001335626A (en) | Aliphatic polyester resin and molding | |
CN115852520A (en) | Preparation method of high-strength biodegradable polyester fiber | |
JP2001323056A (en) | Aliphatic polyester resin and molded article | |
JP2001172488A (en) | Biodegradable polyester resin composition and its use | |
JP5979007B2 (en) | Polylactic acid film | |
JP3518954B2 (en) | Polyethylene oxalate, molded product thereof, and production method thereof | |
JP3348752B2 (en) | Plasticized polylactic acid composition and molded article thereof | |
JPH08283557A (en) | Plasticized polylactic acid composition and its molded item | |
JP3508678B2 (en) | Polylactic acid composition and molded article thereof | |
JP2000136300A (en) | Plasticized lactic acid-based polymer composition and its formed product | |
JP3584579B2 (en) | Plasticized aliphatic polyester composition and molded article thereof | |
JP3702410B2 (en) | Polylactic acid composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040402 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040628 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040706 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040730 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050616 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050616 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070828 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070925 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111005 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111005 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111005 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131005 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |