JPH093679A - Electrolytic ozone generator - Google Patents

Electrolytic ozone generator

Info

Publication number
JPH093679A
JPH093679A JP7149006A JP14900695A JPH093679A JP H093679 A JPH093679 A JP H093679A JP 7149006 A JP7149006 A JP 7149006A JP 14900695 A JP14900695 A JP 14900695A JP H093679 A JPH093679 A JP H093679A
Authority
JP
Japan
Prior art keywords
electrolytic
electrolysis
anode
ozone generator
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7149006A
Other languages
Japanese (ja)
Other versions
JP3297250B2 (en
Inventor
Masanori Nishimura
正則 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14900695A priority Critical patent/JP3297250B2/en
Publication of JPH093679A publication Critical patent/JPH093679A/en
Application granted granted Critical
Publication of JP3297250B2 publication Critical patent/JP3297250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE: To provide an electrolytic ozone generator simple in structure, high in reliability and capable of making the area of an electrolytic cell large. CONSTITUTION: In this ozone generator, the electrolytic cell 1 provided with an ozone generating pole 3 at one side of a main surface of a solid electrolytic film 2 as an anode and a hydrogen generating pole or an air pole at another side of the main surface as a cathode is disposed in horizontally so that the ozone generating pole 3 erects upward, and a water storage tank 14 is formed at the upper part of the electrolytic cell 1 so that the upper surface of the ozone generating pole 3 of the electrolytic cell 1 is always dipped into a pure water or a deionized water being a starting material of electrolysis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解式オゾン発生装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic ozone generator.

【0002】[0002]

【従来の技術】従来、固体高分子電解質膜を使用した電
解式オゾン発生装置において、原料水はポンプ(S.S
tucki 等;J.Electrochem.Soc.,132 ,(2) ,19
85)やエジェクタ(特開平3−158487) によって
強制的に電解セルに供給されていた。また、その循環原
料水を熱交換器によって冷却したり(S.Stucki
等)、電解層全体を水没させることにより電解による発
熱を抑制していた。
2. Description of the Related Art Conventionally, in an electrolytic ozone generator using a solid polymer electrolyte membrane, raw material water is pumped (SS
Tucki et al .; Electrochem. Soc. , 132, (2), 19
85) and an ejector (Japanese Unexamined Patent Publication No. 3-158487). In addition, the circulating raw water is cooled by a heat exchanger (S. Stucki
Etc.), the heat generated by electrolysis was suppressed by submerging the entire electrolytic layer.

【0003】[0003]

【発明が解決しようとする課題】オゾンは強酸化性であ
るので、そのオゾンに対して耐久性を有するポンプ、熱
交換機およびエジェクタ等の周辺機器は、接液部がステ
ンレスかフッ素系樹脂のものに限られる。更に、電解式
オゾン発生装置の長所である高濃度オゾンを長期間得よ
うとすると、電解セルの劣化や、オゾンの自己分解の促
進につながる原料水への不純物混入の危険性が少ないフ
ッ素系樹脂に限定される。これらの接液部がフッ素系樹
脂である機器は高価であり、また熱交換機においては熱
伝導率が低いため大型なものが必要となる。
Since ozone is a strong oxidizer, peripheral equipment such as pumps, heat exchangers and ejectors, which have durability against ozone, have wetted parts of stainless steel or fluorine resin. Limited to Furthermore, when trying to obtain high-concentration ozone, which is an advantage of the electrolytic ozone generator, for a long period of time, there is less risk of deterioration of the electrolytic cell and contamination of raw material water with impurities that promotes self-decomposition of ozone. Limited to A device in which the liquid contact portion is made of a fluorocarbon resin is expensive, and a heat exchanger requires a large one because of low thermal conductivity.

【0004】また、オゾン発生量の増大にともない原料
水循環量が増大するため、ポンプ、熱交換機等の周辺機
器はさらに大型化するという問題点がある。本発明はこ
うした事情を考慮してなされたもので、原料水系および
冷却水系を独立させることにより簡便で信頼性が高く、
電解セルの大面積化に対応できる電解式オゾン発生装置
を提供することを目的とする。
Further, the circulation amount of the raw material water increases with the increase of the ozone generation amount, so that there is a problem that peripheral devices such as a pump and a heat exchanger are further increased in size. The present invention has been made in consideration of such circumstances, and is simple and highly reliable by making the raw water system and the cooling water system independent,
It is an object of the present invention to provide an electrolytic ozone generator capable of accommodating a large area of an electrolytic cell.

【0005】[0005]

【課題を解決するための手段】本発明は、電解セルをオ
ゾン発生極が上面になるよう水平に配置し、その上部に
貯水機構を設けることにより、ポンプやエジェクタによ
る強制的な原料水供給を行う必要がない簡便かつ信頼性
の高い機構を実現するものでする。
According to the present invention, an electrolytic cell is horizontally arranged so that an ozone generating electrode faces upward, and a water storage mechanism is provided above the electrolytic cell to forcefully supply raw material water by a pump or an ejector. This will realize a simple and highly reliable mechanism that does not need to be performed.

【0006】貯水機構の原料水は、液面センサに連動し
た電磁弁の開閉によりイオン交換樹脂を介して水道水圧
によって給水する。また、本発明は、複数の電解セルを
同一平面上に配したものを一つのユニットとすること
で、単セルと同様の機構で、オゾン発生量の増大に対応
するための電解セルの大面積化を実現するものでる。各
々電解セルは電気的に直列に接続することにより電源部
の小型化が可能である。
The raw material water of the water storage mechanism is supplied by tap water pressure through an ion exchange resin by opening and closing an electromagnetic valve linked with a liquid level sensor. Further, the present invention, by arranging a plurality of electrolysis cells on the same plane as one unit, in the same mechanism as a single cell, a large area of the electrolysis cell for responding to the increase in ozone generation amount. Will be realized. By electrically connecting the electrolysis cells in series, the power supply unit can be downsized.

【0007】更に、本発明は、短時間のオゾン処理向け
オゾン発生装置に関して、発熱が蓄積しない時間内で処
理を完了させるように、セルの電流密度を設定した上
で、所定の時間でタイマー回路により自動的に電解電圧
を低下させる機能を備えたことを特徴とするものであ
る。また、連続運転向けの装置に関しては、陽極および
陰極電解槽に原料水とは独立した冷却水を循環させる水
通路を設けることにより、冷却系にオゾンが混入しない
ため、安価な循環ポンプを使用することを可能とし、上
記の問題点を解決した。
Further, the present invention relates to an ozone generator for ozone treatment in a short time, and after setting the current density of the cell so that the treatment is completed within a time in which heat is not accumulated, a timer circuit is set at a predetermined time. It is characterized by having a function of automatically lowering the electrolysis voltage. In addition, for equipment for continuous operation, an inexpensive circulation pump is used because ozone is not mixed into the cooling system by providing a water passage for circulating cooling water independent of the raw material water in the anode and cathode electrolytic cells. It is possible to solve the above problems.

【0008】[0008]

【作用】本発明に係る電解式オゾン発生装置は、次のよ
うな利点を有する。 1)従来のポンプやエジェクタを使用した複雑かつ高価で
あった原料水系機構を貯水機構だけの簡便で信頼性の高
いものとなる。
The electrolytic ozone generator according to the present invention has the following advantages. 1) The complicated and expensive raw material water system mechanism using conventional pumps and ejectors will be simple and reliable with only a water storage mechanism.

【0009】2)原料水の供給がオゾン発生極に均等であ
り、電流密度のばらつきが少ないため局所的な発熱によ
る固体高分子電解質膜の劣化や損傷が少ない。 3)原料水を循環させないため、周辺機器からのイオン成
分の混入が少なく、また、原料水が発生したオゾンによ
り殺菌させるため、電解セルの劣化が少ない。
2) Since the supply of the raw material water is even to the ozone generating electrode and there is little variation in the current density, the solid polymer electrolyte membrane is less likely to be deteriorated or damaged due to local heat generation. 3) Since the raw material water is not circulated, the ionic components from peripheral equipment are less mixed, and the ozone generated in the raw material water is used for sterilization, so that the electrolytic cell is less deteriorated.

【0010】4)基本サイズの電解セルを同一平面上に配
することで、セルや電解槽の剛性不足による接触不良等
の問題がなくセルの大面積化が可能となった。 5)原料水系と冷却水系を独立させることにより、水ポン
プ等の材質的制約がなくなり安価で、入手性がよい機種
の選定が可能となった。また、熱交換器は不要となっ
た。 6)タイマー回路により電解電圧を制御することにより、
装置の仕様によっては冷却機構が不要となった。
4) By arranging electrolysis cells of the basic size on the same plane, it is possible to increase the area of the cell without problems such as poor contact due to insufficient rigidity of the cell or the electrolytic cell. 5) By making the raw water system and the cooling water system independent, it became possible to select a model that is inexpensive and easily available, because there are no material restrictions such as water pumps. Also, the heat exchanger is no longer needed. 6) By controlling the electrolytic voltage with the timer circuit,
Depending on the specifications of the device, the cooling mechanism is not required.

【0011】[0011]

【実施例】以下、この発明の一実施例を図面を参照して
説明する。 (実施例1)図1を参照する。図中の符号1は電解セル
である。この電解セル1は、固体高分子電解質膜2と、
この電解質膜2の上面に密着して配置されたオゾン発生
極3と、前記電解質膜2の下面に密着して配置された空
気極(または水素発生極)4と、前記空気極4に接続さ
れた陰極端子5とを有している。前記電解セル1は、原
料水給水及びオゾン排気穴6aを有した陽極電解槽6と
陰極電解槽7間にガスケット8a,8b及び陰極給電板
9を介して配置されている。ここで、前記陽極電解槽5
は陽極給電板と一体構造となっている。前記陽極電解槽
6の外周側には、外筒10が配置されている。この外筒10
の内側に位置する前記陽極電解槽6の外周部には、陽極
端子11が設けられている。前記外筒10と陰極電解槽7間
にはOリング12が設けられている。前記陽極電解槽6及
び外筒10上には、Oリング13を介して前記オゾン発生極
3の上面が常に純水又は脱イオン水に浸る貯水槽14が設
けられている。なお、図中の符号15は電源接続コネクタ
を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Embodiment 1 Referring to FIG. Reference numeral 1 in the figure is an electrolytic cell. The electrolytic cell 1 includes a solid polymer electrolyte membrane 2 and
It is connected to the ozone generating electrode 3 which is arranged in close contact with the upper surface of the electrolyte membrane 2, the air electrode (or hydrogen generating electrode) 4 which is arranged in close contact with the lower surface of the electrolyte membrane 2, and the air electrode 4. And a cathode terminal 5. The electrolysis cell 1 is arranged between an anode electrolysis tank 6 having a raw water supply and an ozone exhaust hole 6a and a cathode electrolysis tank 7 via gaskets 8a, 8b and a cathode power supply plate 9. Here, the anode electrolyzer 5
Has an integral structure with the anode power supply plate. An outer cylinder 10 is arranged on the outer peripheral side of the anode electrolytic cell 6. This outer cylinder 10
An anode terminal 11 is provided on the outer peripheral portion of the anode electrolysis cell 6 located inside the. An O-ring 12 is provided between the outer cylinder 10 and the cathode electrolytic cell 7. A water storage tank 14 is provided on the anode electrolysis tank 6 and the outer cylinder 10 so that the upper surface of the ozone generating electrode 3 is always immersed in pure water or deionized water via an O-ring 13. Reference numeral 15 in the figure indicates a power supply connector.

【0012】こうした構成の分解式オゾン発生装置を用
いて前記オゾン発生極3及び空気極4間に1.0A/c
2 の直流電流を通電し、0.04g/h・cm2 のオ
ゾン発生を確認した。
By using the decomposition type ozone generator having such a structure, 1.0 A / c is applied between the ozone generating electrode 3 and the air electrode 4.
A direct current of m 2 was applied to confirm the generation of 0.04 g / h · cm 2 of ozone.

【0013】(実施例2)図2、図3及び図4を参照す
る。実施例2に係る分解式オゾン発生装置は、実施例1
と同じサイズの電解セルを基本ユニットとして、図3の
ように同一平面上に7個電気的に並列に並べて組み立て
た構成となっている。なお、図2において、符号21は陽
極給電板、符号22は陰極給電板、符号23は陽極,陰極間
を短絡させないような塩化ビニル製ボルトを示す。ま
た、図3中の符号31は基本電解セル、符号32は7個スタ
ック電解セル陽極給電板、符号33は7個スタック電解セ
ル陰極給電板、符号34は陽極,陰極間を短絡させないよ
うな絶縁ボルトを示す。また、図3では、ワッシャーに
塩化ビニル製ワッシャを使用し、ボルト首下は塩化ビニ
ル管に通して陽極,陰極に接触しない構造になってい
る。
(Embodiment 2) Please refer to FIG. 2, FIG. 3 and FIG. The decomposition type ozone generator according to the second embodiment is the same as the first embodiment.
As shown in FIG. 3, seven electrolytic cells having the same size as the basic unit are electrically arranged in parallel and assembled on the same plane. In FIG. 2, reference numeral 21 is an anode power supply plate, reference numeral 22 is a cathode power supply plate, and reference numeral 23 is a vinyl chloride bolt that does not short-circuit between the anode and the cathode. Reference numeral 31 in FIG. 3 is a basic electrolysis cell, reference numeral 32 is a 7-cell stack electrolysis cell anode power supply plate, reference numeral 33 is a 7-stack electrolysis cell cathode power supply plate, and reference numeral 34 is an insulation for preventing short circuit between the anode and the cathode. Indicates a bolt. Further, in FIG. 3, a washer made of vinyl chloride is used as the washer, and a structure under which the neck of the bolt is passed through a vinyl chloride pipe so as not to contact the anode and the cathode.

【0014】前記電解セル31は、図4に示すような構成
になっている。図中の符号41,42は夫々固体高分子電解
質膜43の上下に配置された7個スタックセル陽極給電
板、7個スタック電解セル陰極給電板を示す。前記陽極
給電板41には陽極端子44が設けられ、前記陰極給電板42
には陰極端子45が設けられている。前記陽極給電板41及
び陰極給電板42の外側にはスペーサ46が配置され、陰極
給電板42の下部には、電解セル押え板47が配置されてい
る。前記陽極給電板41及びスペーサ46上には、ボルト48
により貯水槽49が固定して配置されている。前記陽極給
電板41と貯水槽49間にはOリング50が設けられている。
The electrolysis cell 31 is constructed as shown in FIG. Reference numerals 41 and 42 in the figure respectively denote a 7-cell stack cell anode power supply plate and a 7-cell stack electrolysis cell cathode power supply plate disposed above and below the solid polymer electrolyte membrane 43, respectively. The anode power feeding plate 41 is provided with an anode terminal 44, and the cathode power feeding plate 42.
Is provided with a cathode terminal 45. Spacers 46 are arranged outside the anode power supply plate 41 and the cathode power supply plate 42, and an electrolytic cell holding plate 47 is arranged below the cathode power supply plate 42. A bolt 48 is provided on the anode power supply plate 41 and the spacer 46.
Due to this, the water tank 49 is fixedly arranged. An O-ring 50 is provided between the anode power feeding plate 41 and the water storage tank 49.

【0015】こうした構成の分解式オゾン発生装置を用
いて1.0A/cm2 の直流電流を通電し、電解セル1
個に流した電流の7倍の電流を流した時、の実施例1と
同じ濃度のオゾン発生を確認した。
A direct current of 1.0 A / cm 2 was applied to the electrolytic cell 1 using the decomposition type ozone generator having the above structure.
It was confirmed that ozone was generated at the same concentration as in Example 1 when a current seven times as large as that applied to the individual pieces was passed.

【0016】(実施例3)この実施例3は、図示しない
が、実施例1のオゾン発生器にタイマー回路を使用した
構成となっている。このようにタイマー回路を使用して
30秒間0.6A/cm2 の直流電流を通電し、原料水
の溶存オゾン濃度を測定したところ0.2ppmであっ
た。
(Third Embodiment) Although not shown, the third embodiment has a configuration in which a timer circuit is used in the ozone generator of the first embodiment. When a direct current of 0.6 A / cm 2 was applied for 30 seconds using the timer circuit and the dissolved ozone concentration of the raw material water was measured and found to be 0.2 ppm.

【0017】(実施例4)実施例1と同じ方法で作成し
た電極寸法の電解セルを図5,図6及び図7に示す冷却
水通路を配した電解槽に組み込みんだ。ここで、図5は
前記電解槽の全体図、図6は図5の電解槽の一部を構成
する陽極電解槽の説明図、図7は図5の電解槽の一部を
構成する陰極電解槽の説明図である。
(Embodiment 4) An electrolytic cell having an electrode size prepared by the same method as in Embodiment 1 was incorporated in an electrolytic cell having cooling water passages shown in FIGS. 5, 6 and 7. Here, FIG. 5 is an overall view of the electrolysis cell, FIG. 6 is an explanatory view of an anode electrolysis cell which constitutes a part of the electrolysis cell of FIG. 5, and FIG. 7 is a cathodic electrolysis which constitutes a part of the electrolysis cell of FIG. It is explanatory drawing of a tank.

【0018】図5において、符号51は陽極電解槽、符号
52は陰極電解槽である。前記陽極電解槽51には、複数の
陽極冷却水通路53,これらの通路53に連通する陽極冷却
水マニホールド54が設けられている。また、前記陰極電
解槽52には、複数の陰極冷却水通路55,これらの通路55
に連通する陰極冷却水マニホールド56が設けられてい
る。また、前記陽極電解槽51、陰極電解槽52には電解セ
ル57が設けられている。なお、符号の58は原料水給水及
びオゾン排気穴である。図7において、符号71は水素排
気穴である。上記電解セルをこうした構成の電解槽に組
み込み、1.0A/cm2 で電解したところ、0.04
g/h・cm2 のオゾンが発生した。
In FIG. 5, reference numeral 51 is an anode electrolytic cell, reference numeral
52 is a cathode electrolytic cell. The anode electrolysis tank 51 is provided with a plurality of anode cooling water passages 53, and an anode cooling water manifold 54 communicating with these passages 53. Further, in the cathode electrolysis tank 52, a plurality of cathode cooling water passages 55, these passages 55
There is provided a cathode cooling water manifold 56 communicating with the. An electrolytic cell 57 is provided in each of the anode electrolytic bath 51 and the cathode electrolytic bath 52. Reference numeral 58 is a raw water supply and an ozone exhaust hole. In FIG. 7, reference numeral 71 is a hydrogen exhaust hole. When the above electrolysis cell was installed in an electrolyzer having such a configuration and electrolyzed at 1.0 A / cm 2 ,
Ozone of g / h · cm 2 was generated.

【0019】[0019]

【発明の効果】以上詳述したように本発明によれば、原
料水系および冷却水系を独立させることにより簡便で信
頼性が高く、電解セルの大面積化に対応できる電解式オ
ゾン発生装置を提供できる。
As described above in detail, according to the present invention, an electrolytic ozone generator is provided which is simple and highly reliable by making the raw material water system and the cooling water system independent, and which can cope with a large area of the electrolytic cell. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係る分解式オゾン発生装置
の説明図。
FIG. 1 is an explanatory diagram of a decomposition type ozone generator according to a first embodiment of the present invention.

【図2】本発明の実施例2に係る分解式オゾン発生装置
に係る基本分解セルの説明図。
FIG. 2 is an explanatory diagram of a basic decomposition cell according to a decomposition type ozone generator according to a second embodiment of the present invention.

【図3】本発明の実施例2に係る分解式オゾン発生装置
の説明図。
FIG. 3 is an explanatory diagram of a decomposition type ozone generator according to a second embodiment of the present invention.

【図4】図3の分解式オゾン発生装置を構成する1つの
電解セルの説明図。
4 is an explanatory view of one electrolysis cell that constitutes the decomposition type ozone generator of FIG. 3. FIG.

【図5】本発明の実施例4に係る電解槽の概念図。FIG. 5 is a conceptual diagram of an electrolytic cell according to a fourth embodiment of the present invention.

【図6】図5の電解槽の一構成である陽極電解槽の説明
図で、図6(A)は平面図、図6(B)は図6(A)の
側面図、図6(C)は図6(A)のX−X線に沿う断面
図。
6A and 6B are explanatory views of an anode electrolyzer which is one configuration of the electrolyzer of FIG. 5, FIG. 6A is a plan view, FIG. 6B is a side view of FIG. 6A, and FIG. ) Is a cross-sectional view taken along line XX of FIG.

【図7】図5の電解槽の一構成である陰極電解槽の説明
図で、図7(A)は平面図、図7(B)は図7(A)の
側面図、図7(C)は図7(A)のX−X線に沿う断面
図。
7 (A) is a plan view, FIG. 7 (B) is a side view of FIG. 7 (A), and FIG. 7A is a cross-sectional view taken along line XX of FIG.

【符号の説明】[Explanation of symbols]

1,31…電解セル、 2,43…固体高分子電解質膜、3
…オゾン発生極、4…空気極、 5…陰極端子、 6
…陽極電解槽、7,52…陰極電解槽、8a,8b…ガスケッ
ト、9,22,33,42…陰極給電板、10…外筒、11…陽極
端子、 12,13…Oリング、 14…貯水
槽、21,32,41…陽極給電板、23,34,48…ボルト、
44…陽極端子、45…陰極端子、 51…陽極電解
槽、 53…陽極冷却水通路、54…陽極冷却水
マニホールド、 55…陰極冷却水通
路、56…陰極冷却水マニホールド、
57…電解セル。
1, 31 ... Electrolysis cell, 2, 43 ... Solid polymer electrolyte membrane, 3
... Ozone generating electrode, 4 ... Air electrode, 5 ... Cathode terminal, 6
... Anode electrolyzer, 7,52 ... Cathode electrolyzer, 8a, 8b ... Gasket, 9, 22, 33, 42 ... Cathode power supply plate, 10 ... Outer cylinder, 11 ... Anode terminal, 12, 13 ... O-ring, 14 ... Water tank, 21, 32, 41 ... Anode power supply plate, 23, 34, 48 ... Volts,
44 ... Anode terminal, 45 ... Cathode terminal, 51 ... Anode electrolyzer, 53 ... Anode cooling water passage, 54 ... Anode cooling water manifold, 55 ... Cathode cooling water passage, 56 ... Cathode cooling water manifold,
57 ... Electrolytic cell.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質膜の一方の主面に陽極として
のオゾン発生極を設けると共に、固体電解質膜の他方の
主面に陰極としての水素発生極または空気極を設けた電
解セルを前記オゾン発生極が上面となるように水平に配
置し、かつ前記電解セルのオゾン発生極の上面が常に電
解の原料である純水または脱イオン水に浸るように電解
セルの上部に貯水機構を有することを特徴とする電解式
オゾン発生装置。
1. An electrolytic cell having an ozone generating electrode as an anode on one main surface of a solid electrolyte membrane and a hydrogen generating electrode or an air electrode as a cathode on the other main surface of the solid electrolyte membrane. It is arranged horizontally so that the generation electrode is on the upper surface, and has a water storage mechanism on the upper part of the electrolysis cell so that the upper surface of the ozone generation electrode of the electrolysis cell is always immersed in pure water or deionized water as a raw material for electrolysis. An electrolytic ozone generator characterized by:
【請求項2】 複数の電解セルを同一平面上に配するこ
とを特徴とする請求項1記載の電解式オゾン発生装置。
2. The electrolytic ozone generator according to claim 1, wherein a plurality of electrolytic cells are arranged on the same plane.
【請求項3】 一定時間の電解後、タイマー回路により
自動的に電解電圧を低下させる機能を有することを特徴
とする請求項1あるいは請求項2記載の電解式オゾン発
生装置。
3. The electrolytic ozone generator according to claim 1, wherein the electrolytic ozone generator has a function of automatically lowering an electrolytic voltage by a timer circuit after electrolysis for a certain period of time.
【請求項4】 陽極電解槽及び陰極電解槽と、この陽極
電解槽及び陰極電解槽に原料水とは独立した冷却水を循
環させる通路を設けたことを特徴とする請求項1あるい
は請求項2記載の電解式オゾン発生装置。
4. An anode electrolysis tank and a cathode electrolysis tank, and a passage for circulating cooling water independent of raw material water is provided in the anode electrolysis tank and the cathode electrolysis tank. The electrolytic ozone generator described.
JP14900695A 1995-06-15 1995-06-15 Electrolytic ozone generator Expired - Fee Related JP3297250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14900695A JP3297250B2 (en) 1995-06-15 1995-06-15 Electrolytic ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14900695A JP3297250B2 (en) 1995-06-15 1995-06-15 Electrolytic ozone generator

Publications (2)

Publication Number Publication Date
JPH093679A true JPH093679A (en) 1997-01-07
JP3297250B2 JP3297250B2 (en) 2002-07-02

Family

ID=15465613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14900695A Expired - Fee Related JP3297250B2 (en) 1995-06-15 1995-06-15 Electrolytic ozone generator

Country Status (1)

Country Link
JP (1) JP3297250B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280549A (en) * 2007-05-08 2008-11-20 Mitsubishi Electric Corp Apparatus for producing hydrogen peroxide, and air conditioner, air cleaner and humidifier using the same
JP2013525612A (en) * 2010-05-03 2013-06-20 イルボン キム Portable hydrogen-rich water production equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201746592U (en) * 2010-06-22 2011-02-16 刘迅 Water electrolysis device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280549A (en) * 2007-05-08 2008-11-20 Mitsubishi Electric Corp Apparatus for producing hydrogen peroxide, and air conditioner, air cleaner and humidifier using the same
JP2013525612A (en) * 2010-05-03 2013-06-20 イルボン キム Portable hydrogen-rich water production equipment
US8974646B2 (en) 2010-05-03 2015-03-10 Ilbong Kim Portable hydrogen-rich water generator

Also Published As

Publication number Publication date
JP3297250B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
US5635039A (en) Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
US5770033A (en) Methods and apparatus for using gas and liquid phase cathodic depolarizers
US6984304B2 (en) Generation and delivery device for ozone gas and ozone dissolved in water
CA2289938C (en) An integrated ozone generator system
US20010009223A1 (en) Apparatus for generating a mixture gas of oxygen and hydrogen
TW401373B (en) Electrolytic ozone generating apparatus
WO1998042617A9 (en) An integrated ozone generator system
JPH09143778A (en) Oxygen/hydrogen electrolyzed gas generating device
US20110240486A1 (en) Water electrolysis system and method of operating same
US5296110A (en) Apparatus and method for separating oxygen from air
TW200815627A (en) Ozone producing system
JP5415168B2 (en) Water electrolysis system
JP3991146B2 (en) Solid polymer water electrolyzer
JP4302386B2 (en) Electrolyzer
US20060291822A1 (en) Sheldon electro-matrix core
JP3297250B2 (en) Electrolytic ozone generator
JP3240981B2 (en) Electrolytic ozone generator
JP2000104191A (en) Hydrogen and oxygen generating device
US7608350B2 (en) Preparation and storage of membrane and electrode assemblies
JP2002173789A (en) Electrolyzer
JP3366549B2 (en) Hydrogen / oxygen generator and electrolytic cell used therefor
JP2003268581A (en) Gaseous hydrogen and oxygen mixture generator
KR100424665B1 (en) great volume oxygen and hydrogen mixture gas generation equipment of variable an electrolytic cell
JP2006198562A (en) Electrode device and electrolytic cell
KR200225287Y1 (en) Electrolytic device for producing oxygen and hydrogen gases

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees