JP2006198562A - Electrode device and electrolytic cell - Google Patents

Electrode device and electrolytic cell Download PDF

Info

Publication number
JP2006198562A
JP2006198562A JP2005014911A JP2005014911A JP2006198562A JP 2006198562 A JP2006198562 A JP 2006198562A JP 2005014911 A JP2005014911 A JP 2005014911A JP 2005014911 A JP2005014911 A JP 2005014911A JP 2006198562 A JP2006198562 A JP 2006198562A
Authority
JP
Japan
Prior art keywords
electrode
electrode device
diaphragm
cylindrical
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005014911A
Other languages
Japanese (ja)
Inventor
Makoto Sakata
誠 坂田
Shinya Onoe
晋也 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ERETEKKUSU ENGINEERING KK
Original Assignee
ERETEKKUSU ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ERETEKKUSU ENGINEERING KK filed Critical ERETEKKUSU ENGINEERING KK
Priority to JP2005014911A priority Critical patent/JP2006198562A/en
Publication of JP2006198562A publication Critical patent/JP2006198562A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode device and an electrolytic cell which can be used for a device performing electrodialysis of water or an electrolyte-containing solution to continuously generate high-purity electrolytic water. <P>SOLUTION: The electrode device comprises a cylindrical electrode 9a which is made of a corrosion-resistant metal and carries a conductive catalytic which coats at least one of its outer surface and inner surface, a cylindrical diaphragm 8 which covers the outside of the cylindrical electrode, and an inflow port 12 and a discharge port 13 for continuously feeding liquid to the inside of the diaphragm. The cylindrical electrode 9a may have a number of holes on the surface. The diaphragm 8 may be a diaphragm having a sufficient strength for supporting its shape by itself. The electrode device has an independent structure, which facilitates its attachment to and detachment from the electrolytic cell. The number of the electrode devices for a cathode and an anode, their layout, and the like can be freely designed according to the purpose and capacity of the electrolytic cell. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば水あるいは電解質を含む溶液を電気透析分解して高純度の電解水を連続約に生成する装置に使用可能な電極装置および電解槽に関するものである。   The present invention relates to an electrode device and an electrolytic cell that can be used in a device that continuously produces high-purity electrolyzed water by electrodialysis of, for example, water or a solution containing an electrolyte.

適当な電解質を用いて電解水を生成する電解水生成装置の一例が例えば下記の特許文献1に開示されている。図12は、特許文献1の電解水生成装置の構成を示す断面図である。この電解水生成装置の電解槽は、図示されているように、シート状隔膜1により仕切られた3層構造を有しており、別設置の電解質溶液タンク4から循環用ポンプ7により電解質溶液を循環させ、平板状の陽極板3a、陰極板3bに直流電流を流すことにより電解する。電解槽は密閉されており、循環用ポンプ7によって電解質溶液が加圧されている。   An example of an electrolyzed water generating device that generates electrolyzed water using an appropriate electrolyte is disclosed, for example, in Patent Document 1 below. FIG. 12 is a cross-sectional view showing a configuration of the electrolyzed water generating device of Patent Document 1. As shown in the figure, the electrolytic cell of this electrolyzed water generating apparatus has a three-layer structure partitioned by a sheet-like diaphragm 1, and an electrolyte solution is supplied from a separately installed electrolyte solution tank 4 by a circulation pump 7. It is made to circulate and it electrolyzes by sending a direct current through the flat plate 3a and cathode plate 3b. The electrolytic cell is sealed, and the electrolyte solution is pressurized by the circulation pump 7.

この電解水生成装置は、特に食塩などの電解質を添加して電解する場合において効率的に目的生成溶液を生成することが可能な電解水生成装置である。図12の電解方法では、隔膜から透析されてきた目的イオンがバルク溶液中に拡散される前の高濃度で電極に接触するため、効率のよい電解を行なうことが可能である。
特許第3500173号公報
This electrolyzed water generating device is an electrolyzed water generating device capable of efficiently generating a target product solution particularly when an electrolyte such as sodium chloride is added for electrolysis. In the electrolysis method of FIG. 12, since target ions dialyzed from the diaphragm come into contact with the electrode at a high concentration before being diffused into the bulk solution, efficient electrolysis can be performed.
Japanese Patent No. 3500173

上記した従来の電解槽では消耗品である隔膜や電極の交換時に電解槽全体を分解せねばならず、非常に煩雑な作業を伴うばかりか電解運転の全面的な停止を余儀なくされてしまうという問題点があった。   In the conventional electrolytic cell described above, the entire electrolytic cell must be disassembled when replacing the diaphragm or electrode, which is a consumable item, and this involves a very complicated operation and forced to completely stop the electrolysis operation. There was a point.

また、電極表面上にて競合反応が起こる電気分解系、例えば塩化ナトリウム水溶液電気分解の陽極反応での酸素発生反応と塩素発生反応において、生成水であるアノード溶液の物性、特に水素イオン濃度と有効塩素濃度のバランスを効果的に調整するには、電極表面触媒能を種々工夫する必要があるが、電極表面触媒能によって物性を調節することは困難であるばかりか、電極触媒の寿命が短くなってしまう等の問題が発生してしまうので実用的でないという問題点もあった。   In addition, in the electrolysis system in which a competitive reaction occurs on the electrode surface, for example, the oxygen generation reaction and the chlorine generation reaction in the anodic reaction of sodium chloride aqueous solution electrolysis, the physical properties of the anode solution, particularly the hydrogen ion concentration, are effective. In order to effectively adjust the balance of the chlorine concentration, it is necessary to devise various electrode surface catalytic capabilities, but it is difficult to adjust the physical properties by the electrode surface catalytic capability, and the life of the electrode catalyst is shortened. There is also a problem that it is not practical because problems such as

また、電解電流値の調節により、生成水の物性バランス調節が可能であるが、電解効率の低下や各消耗部品の早期劣化を招いてしまうという問題点もあった。更に、電解槽へ供給する電解質溶液の濃度を調節する方法も考えられるが、この方法においても電解電圧の上昇による電解効率の低下や未電解の電解液の流出による電解質の大幅な無駄が避けられないという問題点もあった。   Moreover, although the physical property balance of the generated water can be adjusted by adjusting the electrolysis current value, there is a problem in that the electrolysis efficiency is lowered and the consumable parts are prematurely deteriorated. Furthermore, a method of adjusting the concentration of the electrolyte solution supplied to the electrolytic cell is also conceivable. However, in this method as well, a decrease in electrolytic efficiency due to an increase in electrolysis voltage and a large waste of electrolyte due to the outflow of unelectrolyzed electrolyte can be avoided. There was also a problem of not.

また、従来の電解槽には、その構造上必ず電極装置枠による端部ができてしまい、隔膜や電極に対してエッジ電流などにより、均一な電解電流密度保持することが難しく、この事は直接隔膜や電極の寿命に悪影響を与えてしまうという問題点もあった。。   Also, the conventional electrolytic cell always has an electrode device frame due to its structure, and it is difficult to maintain a uniform electrolytic current density due to an edge current or the like with respect to the diaphragm or the electrode. There is also a problem that the life of the diaphragm and the electrode is adversely affected. .

また、構造上陽極と陰極の電解表面積は変更不可能であり、あえて各電極表面積比を変化させる方法として電極表面の一部を不導体物質でコーティングしてしまう方法があるが、有効電解表面積を小さくする方向でしか可能でなく、電解効率や消耗品の寿命の低下をもたらしてしまうという問題点もあった。   In addition, the electrolytic surface area of the anode and the cathode cannot be changed due to the structure, and there is a method in which a part of the electrode surface is coated with a non-conductive substance as a method of changing the electrode surface area ratio. This is only possible in the direction of decreasing the size, and there is also a problem that the electrolytic efficiency and the life of consumables are reduced.

更に、従来型の電解槽では隔膜と電極との間隔を均一に保つためにスペーサを用いなければならないが、スペーサは流路障害による供給水の圧力損失や局部的な隔膜の電極への押し付けを起こさせるという問題点もあった。更に、スペーサを種々工夫して均一な隔膜への接触を試みても、両槽間圧力に対して中間槽圧力が最適な陽圧になるように細心の注意を払う必要があり、電解槽からの生成水の取り扱いに制限が生じてしまう、もしくは煩雑な圧力バランス調整機構を設けなければならないという問題点もあった。   Furthermore, in conventional electrolytic cells, spacers must be used in order to keep the distance between the diaphragm and the electrode uniform. However, the spacer does not cause pressure loss of the supply water due to a flow path failure or presses the local diaphragm against the electrode. There was also the problem of making it happen. Furthermore, even if various attempts are made to contact the spacer with various spacers, it is necessary to pay close attention so that the intermediate tank pressure becomes the optimum positive pressure with respect to the pressure between both tanks. However, there is a problem in that there is a limitation in handling of the generated water or a complicated pressure balance adjusting mechanism must be provided.

更に、中間槽圧力を上記の方法にて両側槽に対して陽圧に設定すると、消耗品である隔膜の劣化によって通水率が上昇したことにより、未分解の高濃度電解質溶液が流入してしまい、電解質の余分な損失や所定の生成水物性を得られなくなるばかりか、電解質の種類によっては有害なガスの発生を誘発し、深刻な事故が発生する恐れもあるという問題点もあった。   Furthermore, when the intermediate tank pressure is set to a positive pressure with respect to the both side tanks by the above-described method, the unresolved high-concentration electrolyte solution flows in due to the increased water flow rate due to deterioration of the consumable diaphragm. As a result, there is a problem that not only excessive loss of the electrolyte and predetermined physical properties of the generated water cannot be obtained, but also a serious accident may occur due to generation of harmful gas depending on the type of the electrolyte.

本発明の目的はこのような問題点を解決し、水あるいは電解質を含む溶液を電気透析分解して高純度の電解水を連続約に生成する装置に使用可能な電極装置および電解槽を提供する点にある。   The object of the present invention is to solve such problems and to provide an electrode device and an electrolytic cell that can be used in a device that continuously produces high-purity electrolyzed water by electrodialysis of a solution containing water or an electrolyte. In the point.

本発明の電極装置は、外表面および内表面の少なくとも一方に導電性触媒被膜を担持させた、耐食性金属製の円筒状電極と、前記円筒状電極の外側を覆う円筒状の隔膜と、前記隔膜内部へ液体を連続的に流すための流入口および吐出口とを備えたことを主要な特徴とする。   The electrode device of the present invention includes a cylindrical electrode made of a corrosion-resistant metal having a conductive catalyst film supported on at least one of an outer surface and an inner surface, a cylindrical diaphragm covering the outside of the cylindrical electrode, and the diaphragm The main feature is that an inlet and an outlet for continuously flowing a liquid into the interior are provided.

また、前記した電極装置において、前記円筒状電極は、表面に多数の穴を有していてもよい。また、前記した電極装置において、前記隔膜は、隔膜自体で形状を十分保持できる強度を持った円筒状隔膜であってもよい。また、前記した電極装置において、前記隔膜として、イオン選択透過性能を有する隔膜を用いてもよい。   In the electrode device described above, the cylindrical electrode may have a number of holes on the surface. In the electrode device described above, the diaphragm may be a cylindrical diaphragm having a strength capable of sufficiently retaining the shape of the diaphragm itself. In the electrode device described above, a diaphragm having ion selective permeation performance may be used as the diaphragm.

また、前記した電極装置において、前記の流入口および吐出口は双方とも円筒状の隔膜の一方の端部に設けられており、円筒状の隔膜の他方の端部は封止されていてもよい。また、前記した電極装置において、前記円筒状電極の直径を調節する手段を備えていてもよい。   In the electrode device described above, both the inlet and the outlet may be provided at one end of the cylindrical diaphragm, and the other end of the cylindrical diaphragm may be sealed. . Moreover, the above-described electrode device may include means for adjusting the diameter of the cylindrical electrode.

本発明の電解槽は、前記した電極装置を陽極用電極装置および陰極電極装置として使用し、槽内に電解液を満たして電極装置を浸漬し、陽極用電極装置および陰極電極装置のそれぞれの電極間に直流電流を印加することを主要な特徴とする。また、前記した電解槽において、前記陽極用電極装置および陰極電極装置の本数比を1対1以外の比率としてもよい。また、前記した電解槽において、前記陽極用電極装置および陰極電極装置の間に遮蔽板を設けてもよい。   The electrolytic cell of the present invention uses the above-described electrode device as an anode electrode device and a cathode electrode device, fills the electrolytic solution in the bath and immerses the electrode device, and each electrode of the anode electrode device and the cathode electrode device The main feature is that a direct current is applied between them. In the electrolytic cell described above, the number ratio of the anode electrode device and the cathode electrode device may be a ratio other than 1: 1. In the electrolytic cell described above, a shielding plate may be provided between the anode electrode device and the cathode electrode device.

本発明の電極装置は電解槽筐体に対して独立した構造を有しており、円筒状隔膜の端部に流入口および吐出口となるパイプを設け、電解槽に電極装置を浸漬して下部あるいは上部から原水を供給する構造としたので、個々の電極装置の電解槽への脱着が容易になるという効果がある。   The electrode device of the present invention has an independent structure with respect to the electrolytic cell casing, and is provided with pipes that serve as inlets and outlets at the end of the cylindrical diaphragm, and the electrode device is immersed in the electrolytic cell at the bottom. Or since it was set as the structure which supplies raw | natural water from an upper part, there exists an effect that the attachment or detachment to the electrolytic cell of each electrode apparatus becomes easy.

また、電解槽の用途や容量に基づき、陽極用および陰極用の電極装置の本数やレイアウト等が自由に設計でき、電解効率の低下をもたらすことなく、生成水の物性バランスを調節できるという効果もある。特に、電極表面上にて競合反応が起こる電気分解系において陽極電極装置から生成される被電気分解溶液の物性を調節することが可能であるという効果がある。   In addition, the number and layout of the anode and cathode electrode devices can be freely designed based on the use and capacity of the electrolytic cell, and the physical property balance of the generated water can be adjusted without reducing the electrolytic efficiency. is there. In particular, there is an effect that it is possible to adjust the physical properties of the electrolysis solution generated from the anode electrode device in an electrolysis system in which a competitive reaction occurs on the electrode surface.

また、隔膜自体で形状を十分保持できる強度を持った円筒状隔膜を使用することにより、隔膜にかかる圧力に注意を払う必要がなくなり、電極と隔膜の保持のためにネット状もしくは多孔板などのスペーサを使用せずに安定して電解できると共に、従来例のように循環ポンプを使用して電解質溶液室に圧力をかける必要がなく、電解槽を密閉する必要もないという効果もある。   In addition, by using a cylindrical diaphragm that has sufficient strength to hold the shape of the diaphragm itself, it is not necessary to pay attention to the pressure applied to the diaphragm. Electrolysis can be performed stably without using a spacer, and it is not necessary to apply pressure to the electrolyte solution chamber using a circulation pump as in the conventional example, and there is an effect that it is not necessary to seal the electrolytic cell.

また、寸法安定性を持った円筒状隔膜を使用することにより、隔膜や電極に対する電解電流密度の偏りが減少すると共に、隔膜の劣化破損時に起こる可能性のある事故を未然に防ぐことが出来るという効果もある。   In addition, by using a cylindrical diaphragm with dimensional stability, the bias of the electrolysis current density with respect to the diaphragm and the electrode is reduced, and accidents that may occur when the diaphragm is deteriorated can be prevented. There is also an effect.

以下、図面を参照して発明を実施するための最良の形態について説明する。   The best mode for carrying out the invention will be described below with reference to the drawings.

図1は、本発明の実施例1の電極装置の構成を示す平面図である。また、図2は、本発明の実施例1の電極装置の構成を示す横断面図である。更に、図3は、本発明の実施例1の電極装置の上部固定部材10の構成を示す縦断面図である。なお、電解槽を構成するためには、この電極装置を正極用および負極用としてそれぞれ1本以上、合計2本以上を使用する。   FIG. 1 is a plan view showing the configuration of the electrode device of Example 1 of the present invention. FIG. 2 is a cross-sectional view showing the configuration of the electrode device of Example 1 of the present invention. FIG. 3 is a longitudinal sectional view showing the configuration of the upper fixing member 10 of the electrode device according to the first embodiment of the present invention. In order to constitute an electrolytic cell, one or more electrode devices are used for the positive electrode and the negative electrode, respectively, and a total of two or more are used.

実施例1の電極装置は隔膜自身で寸法安定性を十分有する円筒状隔膜8の内部に円筒状電極9aを配置した構造を有している。上下に設けた絶縁性材料からなる上部固定部材10、下部固定部材11は、円筒状隔膜8と円筒状電極9aとの間の距離を一定間隔に保ちながら保持することにより電極装置を形成する。なお、円筒状隔膜8と円筒状電極9aとの間の距離は用途に応じて異なり、殆ど隙間が無く密着している場合もある。   The electrode device of Example 1 has a structure in which a cylindrical electrode 9a is arranged inside a cylindrical diaphragm 8 having sufficient dimensional stability by the diaphragm itself. The upper fixing member 10 and the lower fixing member 11 made of an insulating material provided above and below form an electrode device by holding the distance between the cylindrical diaphragm 8 and the cylindrical electrode 9a while maintaining a constant distance. Note that the distance between the cylindrical diaphragm 8 and the cylindrical electrode 9a varies depending on the application, and may be in close contact with almost no gap.

上部固定部材10および下部固定部材11は、接着剤等を使用して円筒状隔膜8および円筒状のスペーサ31と固着されており、電極9aは隔膜8によって完全に覆われている。   The upper fixing member 10 and the lower fixing member 11 are fixed to the cylindrical diaphragm 8 and the cylindrical spacer 31 using an adhesive or the like, and the electrode 9 a is completely covered with the diaphragm 8.

吐水口13aは、チタンなどの耐食性を有する良電性金属で作られており、上部固定部材10と係合するフランジ(つば)を有している。更に、このフランジは電極9aと溶接等によって固着されている。吐水口13aは電極9aへの給電部(端子)を兼ねている。   The water discharge port 13 a is made of a good-electricity metal having corrosion resistance such as titanium, and has a flange that engages with the upper fixing member 10. Further, this flange is fixed to the electrode 9a by welding or the like. The water discharge port 13a also serves as a power feeding portion (terminal) to the electrode 9a.

吐水口13aのフランジは、ネジ山を切った固着用部材30によって上部固定部材10内のフランジに固着されており、この固着用部材30を外すことにより、円筒状隔膜8と円筒状電極9aとを分離することが可能である。   The flange of the water discharge port 13a is fixed to the flange in the upper fixing member 10 by a fixing member 30 that is threaded. By removing the fixing member 30, the cylindrical diaphragm 8 and the cylindrical electrode 9a Can be separated.

下部固定部材11は、ねじ山を切ったパイプ12を備えており、対応したねじ加工を施した電解槽のねじ孔にこのパイプ12を嵌合させることにより、電極装置を電解槽に設置する。この構造により、個々の電極装置の電解槽への脱着が容易となる。下部固定部材11内において、電極9aの下部は位置は固定されているが開放されており、原水供給管5と接続されたパイプ12から流入した供給原水は電極9aの内側および外側に流出可能である。   The lower fixing member 11 is provided with a threaded pipe 12, and the electrode device is installed in the electrolytic cell by fitting the pipe 12 into the screw hole of the electrolytic cell subjected to the corresponding threading. With this structure, the individual electrode devices can be easily detached from the electrolytic cell. In the lower fixing member 11, the lower part of the electrode 9 a is fixed, but is open, and the supplied raw water flowing in from the pipe 12 connected to the raw water supply pipe 5 can flow out to the inside and the outside of the electrode 9 a. is there.

隔膜8としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂や塩化ビニル樹脂およびテレフタレート樹脂、ABS樹脂、エポキシ樹脂、フッ素樹脂等を骨材とし、ポリフッ化ビニリデン酸化チタンやスルフォン酸基、カルボン酸基および各種アミン基などを有する有機溶液にてコーティングした隔膜を使用可能である。   As the diaphragm 8, for example, polyethylene resin, polypropylene resin, vinyl chloride resin and terephthalate resin, ABS resin, epoxy resin, fluororesin, etc. are used as an aggregate, and polyvinylidene fluoride titanium oxide, sulfonic acid group, carboxylic acid group and various amines are used. A diaphragm coated with an organic solution having a group or the like can be used.

隔膜8として、イオン交換性能を有するものを採用してもよい。イオン交換性能を有し、隔膜自身で寸法安定性を十分有する円筒状隔膜8としては、例えば株式会社トクヤマ製の製品名「イーディーコア」(登録商標)を採用可能である。   As the diaphragm 8, you may employ | adopt what has ion exchange performance. As the cylindrical diaphragm 8 having ion exchange performance and sufficient dimensional stability by the diaphragm itself, for example, a product name “Edycore” (registered trademark) manufactured by Tokuyama Corporation can be adopted.

円筒状電極9aとしては、例えば基材としてチタン、ジルコニウム、ニオブ、ルテニウム等のいわゆるバルブ金属類もしくはこれらの合金の表面に白金、酸化イリジウム、酸化チタン、タンタル等を担持させたものを使用可能である。   As the cylindrical electrode 9a, for example, a so-called valve metal such as titanium, zirconium, niobium, ruthenium or the like having platinum, iridium oxide, titanium oxide, tantalum or the like supported on the surface of these alloys can be used as the base electrode. is there.

円筒状電極9aに直流電流を流すことにより、電気的に隔膜8から透析されてきたイオンが電極表面上にて電子の授受を行った後に、下部固定部材11から流入した水道水や井戸水などの供給原水と反応し、円筒状電極9aの中央部を通って目的生成水として、上部固定部材10に付けられた吐水口13aより吐出される。   By passing a direct current through the cylindrical electrode 9a, ions that have been dialyzed electrically from the diaphragm 8 give and receive electrons on the surface of the electrode. It reacts with the feed raw water and passes through the central part of the cylindrical electrode 9a and is discharged from the spout 13a attached to the upper fixing member 10 as the target product water.

電解の際、特に塩化ナトリウム溶液を使用したときの陽極上での塩素ガス等の酸化性物質が生成する系に使用するときには筒状電極9aの外側つまり隔膜側に不働態化皮膜などの絶縁物質を形成させて、筒状電極9aの内側にて反応させることにより、隔膜8へのダメージを和らげる効果がある。   In the case of electrolysis, particularly when used in a system in which an oxidizing substance such as chlorine gas is generated on the anode when a sodium chloride solution is used, an insulating substance such as a passivation film on the outside of the cylindrical electrode 9a, that is, on the diaphragm side And reacting inside the cylindrical electrode 9a has an effect of reducing damage to the diaphragm 8.

従って、陽極用の電極装置の円筒状電極9aの外側に絶縁物質を形成すると共に、例えば数ミリメートル間隔で多数の孔を設けることにより、上記効果を得ることができる。また、気泡の発生する電気分解系では、孔によって円筒状隔膜8と筒状電極9aとの間に気泡が入りにくくなり、電解電圧の上昇防止にも効果がある。   Therefore, the above-mentioned effect can be obtained by forming an insulating material outside the cylindrical electrode 9a of the electrode device for the anode and providing a large number of holes at intervals of several millimeters, for example. Further, in the electrolysis system in which bubbles are generated, the holes make it difficult for the bubbles to enter between the cylindrical diaphragm 8 and the cylindrical electrode 9a, which is effective in preventing an increase in electrolytic voltage.

上記のような用途の場合には円筒状隔膜8と円筒状電極9aとの間の距離は殆ど隙間が無く密着させる必要がある。そこで、円筒状電極9aは、保守作業で電極9aを研磨した場合などに、電極9aと隔膜8との距離を当初の設計値に合わせるために電極の直径の調節手段を備えている。   In the case of the above applications, the distance between the cylindrical diaphragm 8 and the cylindrical electrode 9a needs to be in close contact with almost no gap. Therefore, the cylindrical electrode 9a is provided with an electrode diameter adjusting means for adjusting the distance between the electrode 9a and the diaphragm 8 to the original design value when the electrode 9a is polished for maintenance work.

円筒状電極9aは、図2に示すように、円筒の軸方向に沿ってフランジ1、2を備えた隙間が設けられており、電極の軸方向に複数個配置されたフランジ上の孔に係合したボルト3よびナット4によって、電極の直径を調節可能に構成されている。なお、図示されていないが、外部からボルト3を回すための孔が電極9aに設けられている。   As shown in FIG. 2, the cylindrical electrode 9a is provided with a gap provided with flanges 1 and 2 along the axial direction of the cylinder, and is engaged with a plurality of holes on the flange arranged in the axial direction of the electrode. The diameter of the electrode can be adjusted by the combined bolt 3 and nut 4. Although not shown, a hole for turning the bolt 3 from the outside is provided in the electrode 9a.

これによって、隔膜より透析されてきた目的生成水に必要なイオンの電極への接触濃度を供給水での希釈割合により調節することができる。換言すれば、競合反応系にて反応割合を調節することができる。なお、電極の上部は吐水口13aのフランジと固着されているが、直径の調節範囲は僅かであるので問題ない。   This makes it possible to adjust the contact concentration of ions necessary for the target product water dialyzed from the diaphragm to the electrode by the dilution ratio in the supply water. In other words, the reaction rate can be adjusted in a competitive reaction system. Although the upper part of the electrode is fixed to the flange of the water discharge port 13a, there is no problem because the adjustment range of the diameter is slight.

図4は、実施例1の電極装置を使用した電解槽の構成例を示す断面図である。電解槽17には、電極装置の隔膜が全て浸漬する程度まで電解質溶液17が満たされており、電解槽17と接続された循環ポンプ7によって循環/撹拌されている。また、別設置の電解質溶液タンク19からバルブ18を介して電解質溶液が供給される。電解槽17は密閉されている必要はない。   FIG. 4 is a cross-sectional view illustrating a configuration example of an electrolytic cell using the electrode device according to the first embodiment. The electrolytic bath 17 is filled with the electrolyte solution 17 to such an extent that the diaphragm of the electrode device is completely immersed, and is circulated / stirred by the circulation pump 7 connected to the electrolytic bath 17. Further, an electrolyte solution is supplied from a separately installed electrolyte solution tank 19 through a valve 18. The electrolytic cell 17 does not need to be sealed.

電解槽16内には実施例1の2本の電極装置A、Bが設置されている。陽極用の電極装置Aおよび負極用の電極装置Bとして前述した電極に多数の孔を設けた電極装置を使用する。電極装置A、Bの設置本数は任意であり、複数本設置する場合には全て並列に接続される。
なお、図4に図示されているように、電極装置A、B間に1枚あるいは複数枚の遮蔽板20を設けてもよい。電極装置対応に遮蔽板を設ける場合には、図示するように、それぞれの電極装置の近傍に遮蔽板20を配置する。この遮蔽板20を設けることにより、隔膜や電極に対して局部的に大きな電解電流が流れるのを防止し、均一な電解電流密度が得られる。遮蔽板20としては電解液に対して十分な耐食性を有するものであれば、任意の金属や樹脂、その他の素材を使用可能である。また、形状としては平板状、平板の組み合わせ、半円筒状などを採用可能である。また、板の表面に多数の孔を設けたパンチング板を使用してもよい。なお、遮蔽板20は電解液の対流を妨げない形状が好ましい。
In the electrolytic cell 16, the two electrode devices A and B of Example 1 are installed. As the electrode device A for the anode and the electrode device B for the negative electrode, the above-described electrode devices having a large number of holes are used. The number of electrode devices A and B installed is arbitrary, and when a plurality of electrode devices A and B are installed, they are all connected in parallel.
In addition, as illustrated in FIG. 4, one or a plurality of shielding plates 20 may be provided between the electrode devices A and B. When providing a shielding plate corresponding to the electrode device, the shielding plate 20 is disposed in the vicinity of each electrode device as shown in the figure. By providing this shielding plate 20, it is possible to prevent a large electrolytic current from flowing locally to the diaphragm and the electrode, and to obtain a uniform electrolytic current density. Any metal, resin, or other material can be used as the shielding plate 20 as long as it has sufficient corrosion resistance to the electrolyte. Further, as the shape, a flat plate shape, a combination of flat plates, a semi-cylindrical shape or the like can be adopted. Moreover, you may use the punching board which provided many holes on the surface of the board. The shielding plate 20 preferably has a shape that does not hinder convection of the electrolytic solution.

原水供給管5およびバルブ15a、15b、を介してそれぞれの電極装置A、Bには下部から原水が供給されている。必要な物性と量の生成水を得られるようにバルブ15a、15bの開度を調整する。電解処理を行うために、直流電気供給端子14a、14b(電極と接続されている吐水口13)から直流電流を流し、2本の電極装置A、Bの吐水口13と接続された絶縁性の管6a、6bから陽極、陰極それぞれの生成水を取り出す。   The raw water is supplied from the lower part to the electrode devices A and B via the raw water supply pipe 5 and the valves 15a and 15b. The opening degree of the valves 15a and 15b is adjusted so that the necessary physical properties and the amount of generated water can be obtained. In order to perform the electrolytic treatment, a direct current is supplied from the DC electric supply terminals 14a and 14b (the water discharge port 13 connected to the electrodes), and the insulation is connected to the water discharge ports 13 of the two electrode devices A and B. The produced water of each of the anode and the cathode is taken out from the tubes 6a and 6b.

なお、この際に、電気透析分解される液17を塩化ナトリウム溶液とし、電極装置Aの隔膜8としてイオン交換性能を有するものの内、アニオン選択透析性能を有した隔膜を採用し、電極装置Bの隔膜8としてイオン交換性能を有するものの内、カチオン選択透析性能を有した隔膜を用いると、6aからナトリウム分を供給原水に含まれている量より多く含まない強酸性水が、また6bより塩素イオンを供給原水に含まれている量より多く含まない強アルカリ水が連続的に得られる。   At this time, the liquid 17 to be electrodialyzed is a sodium chloride solution, and a diaphragm having anion selective dialysis performance is adopted as the diaphragm 8 of the electrode apparatus A. When a diaphragm having cation selective dialysis performance is used as the diaphragm 8, strongly acidic water containing no more sodium than the amount contained in the feed water from 6a is more chloride ion than 6b. Strong alkaline water that does not contain more than the amount contained in the feed water is continuously obtained.

図5は、実施例1の電極装置を使用した電解槽の他の構成例を示す断面図である。この変形例は円筒状の電解槽16の中心に負極用電極装置を1本、その周囲に正極用電極装置を8本配置したものであり、その他の構成は図4のものと同一である。このように電極装置の数を正極用と負極用とで異ならすことにより、一般的に電解質溶液電解において陰極より寿命の短い陽極の電解条件を和らげる事が可能である。   FIG. 5 is a cross-sectional view showing another configuration example of the electrolytic cell using the electrode device of the first embodiment. In this modification, one electrode device for negative electrode is arranged at the center of a cylindrical electrolytic cell 16, and eight electrode devices for positive electrode are arranged around it, and the other configuration is the same as that of FIG. Thus, by making the number of electrode devices different for the positive electrode and the negative electrode, it is generally possible to ease the electrolysis conditions of the anode having a shorter life than the cathode in electrolytic solution electrolysis.

また、陽極電流密度を下げることにより、例えば塩化ナトリウム溶液電解での陽極表面での電解競合反応において、次亜塩素酸溶液を生成するのに必要な下記(2)および(3)の反応を効率的に進める事が可能になる。   Further, by reducing the anode current density, for example, in the electrolytic competitive reaction on the anode surface in sodium chloride solution electrolysis, the following reactions (2) and (3) required for producing a hypochlorous acid solution are made efficient. Can be advanced.

(1) 2H2O → O2+4H++4e-
(2) 2Cl- → Cl2+2e-
(3) Cl2+H2O → HClO+HCl
(1) 2H 2 O → O 2 + 4H + + 4e
(2) 2Cl → Cl 2 + 2e
(3) Cl 2 + H 2 O → HClO + HCl

次に電極装置の第2実施例について説明する。図6は、本発明の実施例2の電極装置の構成を示す平面図である。また、図7は、本発明の実施例2の電極装置の構成を示す断面図である。更に、図8は、本発明の実施例2の電極装置の上部固定部材10の構成を示す縦断面図である。   Next, a second embodiment of the electrode device will be described. FIG. 6 is a plan view showing the configuration of the electrode device of Example 2 of the present invention. Moreover, FIG. 7 is sectional drawing which shows the structure of the electrode apparatus of Example 2 of this invention. Further, FIG. 8 is a longitudinal sectional view showing a configuration of the upper fixing member 10 of the electrode device according to the second embodiment of the present invention.

実施例2の電極装置の材質は実施例1と同じものを使用可能である。但し、電極9bには孔は無く、給電部の役割も兼ねている電極9b上部に付けれている流入口13bから供給原水が流入し、円筒状電極9bの内側を通って下方へ流れ、下部固定部材11と円筒状電極9bとの間に設けられた隙間から電極9bと円筒状隔膜8との隙間に流入し、透析されたイオンおよび電極上にて電子授受を行った物質を溶かし込み、オーバーフローとして上部固定部材10の吐水口13cから吐水される。   The material of the electrode device of the second embodiment can be the same as that of the first embodiment. However, there is no hole in the electrode 9b, the supply raw water flows in from the inlet 13b attached to the upper part of the electrode 9b that also serves as a power feeding part, flows downward through the inside of the cylindrical electrode 9b, and is fixed to the lower part. It flows into the gap between the electrode 9b and the cylindrical diaphragm 8 from the gap provided between the member 11 and the cylindrical electrode 9b, and dissolves the dialyzed ions and the substance that has received and transferred electrons on the electrode. The water is discharged from the water discharge port 13 c of the upper fixing member 10.

図9は、実施例2の電極装置を使用した電解槽の構成例を示す断面図である。図4の電解槽と異なる点は、原水供給管5およびバルブ15a、15b、を介してそれぞれの電極装置C、D上部の流入口13bから原水が供給され、2本の電極装置C、Dの吐水口13と接続された絶縁性の管6a、6bから陽極、陰極それぞれの生成水を取り出す点である。   FIG. 9 is a cross-sectional view illustrating a configuration example of an electrolytic cell using the electrode device of the second embodiment. 4 differs from the electrolytic cell of FIG. 4 in that raw water is supplied from the inlet 13b above the electrode devices C and D via the raw water supply pipe 5 and valves 15a and 15b. The point is that water generated from each of the anode and the cathode is taken out from the insulating tubes 6 a and 6 b connected to the water discharge port 13.

第2実施例の構造を用いると、下部固定部材11の電解槽への固着および流入口の接続の必要がなくなり、電極装置を電解質溶液で満たされた電解槽の中に浸漬するだけでよいので、電解装置の製造、保守、管理がより簡便にできる。   When the structure of the second embodiment is used, it is not necessary to fix the lower fixing member 11 to the electrolytic cell and to connect the inlet, and it is only necessary to immerse the electrode device in the electrolytic cell filled with the electrolyte solution. The manufacture, maintenance, and management of the electrolyzer can be simplified.

図10は、実施例2の電極装置を使用した電解槽の他の構成例を示す断面図である。この電解槽は実施例2の電極装置を正極用と負極用として交互に一列に複数個配置したものである。なお、電解槽内に図10の配置を複数列配置してもよい。この場合には、1列おきに正極用電極装置と負極用電極装置の位置を入れ替えることにより、列間においても正極用と負極用の電極装置が隣接するように配置する。   FIG. 10 is a cross-sectional view illustrating another configuration example of the electrolytic cell using the electrode device according to the second embodiment. In this electrolytic cell, a plurality of electrode devices of Example 2 are alternately arranged in a line for the positive electrode and the negative electrode. Note that a plurality of rows of the arrangement shown in FIG. 10 may be arranged in the electrolytic cell. In this case, the positions of the positive electrode device and the negative electrode device are exchanged every other row so that the positive electrode device and the negative electrode device are arranged adjacent to each other between the rows.

図11は、実施例2の電極装置を使用した電解槽の他の例を示す断面図である。この例は、第2実施例の電解槽において、電解質溶液タンクを取り除いて電解槽16自体を電解質溶液タンクとしても使用する。運転に伴って減少した分の電解質や水は直接電解槽16に投入する。撹拌も循環ポンプではなく、モータ40によって回転する羽根41によって行う。槽内に空気を送り込み、気泡によって撹拌してもよい。
更に、この電解槽において羽根や気泡などの撹拌手段を使用しない例も考えられる。従来例の電解槽では循環手段を用いないと中間の電解質溶液室に滞留した電解質が徐々に消費されて、電気伝導度の低下に伴う電解電圧の上昇により電解不能に陥ってしまう。しかし、図11に示すように、ある程度の容量を有する電解槽の電解質溶液中に電極装置を浸漬する形をとることにより、濃度拡散によって電極への電解質の供給が行われ、電解条件によっては熱による対流により電極への電解質の供給が更に円滑に行われる。
FIG. 11 is a cross-sectional view showing another example of the electrolytic cell using the electrode device of Example 2. In this example, in the electrolytic cell of the second embodiment, the electrolytic solution tank is removed and the electrolytic cell 16 itself is also used as the electrolytic solution tank. The electrolyte and water that are reduced as a result of operation are directly fed into the electrolytic cell 16. Stirring is also performed not by the circulation pump but by the blade 41 rotated by the motor 40. Air may be fed into the tank and stirred by bubbles.
Furthermore, an example in which stirring means such as blades and bubbles are not used in this electrolytic cell is also conceivable. In the electrolytic cell of the conventional example, if the circulation means is not used, the electrolyte staying in the intermediate electrolyte solution chamber is gradually consumed, and electrolysis becomes impossible due to the increase in the electrolysis voltage accompanying the decrease in electrical conductivity. However, as shown in FIG. 11, the electrode device is immersed in an electrolyte solution in an electrolytic cell having a certain capacity, so that the electrolyte is supplied to the electrode by concentration diffusion. The electrolyte is more smoothly supplied to the electrode by convection.

以上、実施例について説明したが、本発明には以下のような変形例も考えられる。実施例1においては、電極装置の下部から原水を供給する構成を開示したが、第1実施例において電極に多数の孔を備えたものであっても、例えば円筒状電極の内部に上部から下部に貫通するパイプを設け、このパイプを介して、上部から原水が下部へ供給され、このパイプと電極の隙間を上昇するように構成することもできる。あるいは、実施例1の構成の電極装置2本を下部で連結してU字状の電極装置としてもよい。このようにすれば、電解槽に孔を開けて電極装置を固定する必要がなくなる。   Although the embodiments have been described above, the following modifications may be considered in the present invention. In the first embodiment, the configuration in which the raw water is supplied from the lower part of the electrode device has been disclosed. It is also possible to provide a pipe penetrating through the pipe, and supply raw water from the upper part to the lower part through this pipe so that the gap between the pipe and the electrode rises. Or it is good also as a U-shaped electrode apparatus by connecting two electrode apparatuses of the structure of Example 1 in the lower part. In this way, it is not necessary to make a hole in the electrolytic cell and fix the electrode device.

また、電解槽の他の構成例としては、断面が、直径が異なる同心円状の2つの円筒状電極を備えた電解槽の構造も可能である。この場合には、例えば内部から順に負極用円筒状電極、第1の円筒状隔膜、第2の円筒状隔膜、陽極用円筒状電極とし、陽極用円筒状電極の更に外側に電解槽となる円筒状容器を備える。陽極用円筒状電極が電解槽容器を兼ねることも可能である。   As another example of the electrolytic cell configuration, an electrolytic cell structure including two concentric cylindrical electrodes having different diameters is also possible. In this case, for example, a negative electrode cylindrical electrode, a first cylindrical diaphragm, a second cylindrical diaphragm, and an anode cylindrical electrode are sequentially formed from the inside, and a cylinder that serves as an electrolytic cell further outside the anode cylindrical electrode. A container. It is also possible that the anode cylindrical electrode also serves as an electrolytic cell container.

本発明の電解槽は、工業的に量産することが可能であり、かつ未分解の過剰な電解質が生成水中にほとんど含まれない事から塩害など弊害が心配される農業分野などの大型プラント装置としても利用可能である。   The electrolytic cell of the present invention can be industrially mass-produced, and as a large-scale plant apparatus in the agricultural field where adverse effects such as salt damage are worried because excess undecomposed electrolyte is hardly contained in the generated water. Is also available.

本発明の実施例1の電極装置の構成を示す平面図である。It is a top view which shows the structure of the electrode apparatus of Example 1 of this invention. 本発明の実施例1の電極装置の構成を示す横断面図である。It is a cross-sectional view which shows the structure of the electrode apparatus of Example 1 of this invention. 実施例1の電極装置の上部固定部材の構成を示す縦断面図である。FIG. 3 is a longitudinal sectional view illustrating a configuration of an upper fixing member of the electrode device according to the first embodiment. 実施例1の電極装置を使用した電解槽の構成例を示す断面図である。FIG. 3 is a cross-sectional view showing a configuration example of an electrolytic cell using the electrode device of Example 1. 実施例1の電極装置を使用した電解槽の他の例を示す断面図である。6 is a cross-sectional view showing another example of an electrolytic cell using the electrode device of Example 1. FIG. 本発明の実施例2の電極装置の構成を示す平面図である。It is a top view which shows the structure of the electrode apparatus of Example 2 of this invention. 本発明の実施例2の電極装置の構成を示す断面図である。It is sectional drawing which shows the structure of the electrode apparatus of Example 2 of this invention. 実施例2の電極装置の上部固定部材の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the upper fixing member of the electrode apparatus of Example 2. 実施例2の電極装置を使用した電解槽の構成例を示す断面図である。It is sectional drawing which shows the structural example of the electrolytic cell which uses the electrode apparatus of Example 2. FIG. 実施例2の電極装置を使用した電解槽の他の例を示す断面図である。6 is a cross-sectional view showing another example of an electrolytic cell using the electrode device of Example 2. FIG. 実施例2の電極装置を使用した電解槽の他の例を示す断面図である。6 is a cross-sectional view showing another example of an electrolytic cell using the electrode device of Example 2. FIG. 特許文献1の電解水生成装置の構成を示す断面図である。It is sectional drawing which shows the structure of the electrolyzed water generating apparatus of patent document 1.

符号の説明Explanation of symbols

8…隔膜
9a、9b…電極
10…上部固定部材
11…下部固定部材
12…パイプ
13a、13c…吐水口
13b…流入口
14…直流電気供給端子
16…電解槽
8 ... Diaphragm 9a, 9b ... Electrode 10 ... Upper fixing member 11 ... Lower fixing member 12 ... Pipes 13a, 13c ... Water outlet 13b ... Inlet 14 ... DC electric supply terminal 16 ... Electrolyzer

Claims (9)

外表面および内表面の少なくとも一方に導電性触媒被膜を担持させた、耐食性金属製の円筒状電極と、
前記円筒状電極の外側を覆う円筒状の隔膜と、
前記隔膜内部へ液体を連続的に流すための流入口および吐出口と
を備えたことを特徴とする電極装置。
A cylindrical electrode made of a corrosion-resistant metal having a conductive catalyst coating supported on at least one of an outer surface and an inner surface;
A cylindrical diaphragm covering the outside of the cylindrical electrode;
An electrode device comprising an inlet and an outlet for continuously flowing a liquid into the diaphragm.
前記円筒状電極は、表面に多数の穴を有することを特徴とする請求項1に記載の電極装置。   The electrode device according to claim 1, wherein the cylindrical electrode has a large number of holes on a surface thereof. 前記隔膜は、隔膜自体で形状を十分保持できる強度を持った円筒状隔膜であることことを特徴とする請求項1に記載の電極装置。   2. The electrode device according to claim 1, wherein the diaphragm is a cylindrical diaphragm having a strength capable of sufficiently retaining the shape of the diaphragm itself. 前記隔膜として、イオン選択透過性能を有する隔膜を用いたことを特徴とする請求項1に記載の電極装置。   The electrode device according to claim 1, wherein a diaphragm having ion selective permeation performance is used as the diaphragm. 前記の流入口および吐出口は双方とも円筒状の隔膜の一方の端部に設けられており、円筒状の隔膜の他方の端部は封止されていることを特徴とする請求項1に記載の電極装置。   2. The inflow port and the discharge port are both provided at one end of a cylindrical diaphragm, and the other end of the cylindrical diaphragm is sealed. Electrode device. 前記円筒状電極の直径を調節する手段を備えたことを特徴とする請求項1に記載の電極装置。   2. The electrode device according to claim 1, further comprising means for adjusting a diameter of the cylindrical electrode. 請求項1乃至請求項6のいずれかに記載の電極装置を陽極用電極装置および陰極電極装置として使用し、槽内に電解液を満たして電極装置を浸漬し、陽極用電極装置および陰極電極装置のそれぞれの電極間に直流電流を印加することを特徴とする電気透析分解用の電解槽。   The electrode device according to any one of claims 1 to 6 is used as an anode electrode device and a cathode electrode device, an electrolytic solution is filled in a tank and the electrode device is immersed, and the anode electrode device and the cathode electrode device An electrolysis cell for electrodialysis decomposition, wherein a direct current is applied between the electrodes. 前記陽極用電極装置および陰極電極装置の本数比を1対1以外の比率としたことを特徴とする請求項7に記載の電気透析分解用の電解槽。   The electrolytic cell for electrodialysis decomposition according to claim 7, wherein the number ratio of the anode electrode device and the cathode electrode device is a ratio other than 1: 1. 前記陽極用電極装置および陰極電極装置の間に遮蔽板を設けたことを特徴とする請求項7に記載の電気透析分解用の電解槽。

The electrolysis cell for electrodialysis decomposition according to claim 7, wherein a shielding plate is provided between the anode electrode device and the cathode electrode device.

JP2005014911A 2005-01-24 2005-01-24 Electrode device and electrolytic cell Pending JP2006198562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014911A JP2006198562A (en) 2005-01-24 2005-01-24 Electrode device and electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005014911A JP2006198562A (en) 2005-01-24 2005-01-24 Electrode device and electrolytic cell

Publications (1)

Publication Number Publication Date
JP2006198562A true JP2006198562A (en) 2006-08-03

Family

ID=36957014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014911A Pending JP2006198562A (en) 2005-01-24 2005-01-24 Electrode device and electrolytic cell

Country Status (1)

Country Link
JP (1) JP2006198562A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087750A (en) * 2012-10-30 2014-05-15 Mitsui Eng & Shipbuild Co Ltd Electrodialyzer and electrodialytic method
KR20160101257A (en) * 2015-02-16 2016-08-25 (주) 테크로스 Electrode and bus bar's connecting structure
JP6593558B1 (en) * 2018-08-29 2019-10-23 中国電力株式会社 Hydrogen-containing water generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087750A (en) * 2012-10-30 2014-05-15 Mitsui Eng & Shipbuild Co Ltd Electrodialyzer and electrodialytic method
KR20160101257A (en) * 2015-02-16 2016-08-25 (주) 테크로스 Electrode and bus bar's connecting structure
KR101686865B1 (en) 2015-02-16 2016-12-16 (주) 테크로스 Electrode and bus bars connecting structure
JP6593558B1 (en) * 2018-08-29 2019-10-23 中国電力株式会社 Hydrogen-containing water generator
US11542182B2 (en) 2018-08-29 2023-01-03 The Chugoku Electric Power Co., Inc. Hydrogen-containing water generator

Similar Documents

Publication Publication Date Title
EP0725845B1 (en) Electrolytic cell for producing a mixed oxidant gas
US5460705A (en) Method and apparatus for electrochemical production of ozone
US6254762B1 (en) Process and electrolytic cell for producing hydrogen peroxide
CN108367946B (en) In-situ delivery system for reaction product removal in electrochemical cells
WO2017141284A1 (en) Electrolyzed water generation device
BR112017022345B1 (en) Electrode array, use of electrode structure, electrolysers, process for electrolysis of an alkali metal halide and method for renewing an electrode array
KR20190026597A (en) Method and apparatus for producing highly concentrated slightly acidic electrolyzed water
KR101768119B1 (en) Electrolytic water treatment system
CN112672981B (en) Electrochlorination system configuration for producing high product strength solutions
JP2006198562A (en) Electrode device and electrolytic cell
US9045837B2 (en) Electrolyser with coiled inlet hose
US5112464A (en) Apparatus to control reverse current flow in membrane electrolytic cells
TW201506204A (en) Electrolytic electrode device and electrolytic water generator having the electrolytic electrode device
JP2021518254A (en) Electrolytic cell with bipolar electrode for wastewater treatment
KR102400469B1 (en) Electrolytic cell and electrode plate for electrolytic cell
JPS59182984A (en) Electrolytic cell
US10550485B2 (en) Pipe-type electrolysis cell
EA039815B1 (en) Internal electrical connections for concentric tubular electrochemical cells
JP6028751B2 (en) Electrolysis device and water treatment method
KR20110008392A (en) Electrolytic cell
JP2019042726A (en) Method and device for producing high concentration slightly acidic electrolyzed water
JPH09202986A (en) Three-compartment electrolytic cell
WO1992015725A1 (en) Electrolytic vessel for producing hypochlorite
JP2018043165A (en) Mixer and electrolytic water generating device
JPH09220573A (en) Electrolytic method using two-chamber type electrolytic cell