JPH0936721A - Capacitive load driver - Google Patents

Capacitive load driver

Info

Publication number
JPH0936721A
JPH0936721A JP18156495A JP18156495A JPH0936721A JP H0936721 A JPH0936721 A JP H0936721A JP 18156495 A JP18156495 A JP 18156495A JP 18156495 A JP18156495 A JP 18156495A JP H0936721 A JPH0936721 A JP H0936721A
Authority
JP
Japan
Prior art keywords
capacitive load
current
switch
drive
power loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18156495A
Other languages
Japanese (ja)
Inventor
Masami Izeki
正己 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18156495A priority Critical patent/JPH0936721A/en
Publication of JPH0936721A publication Critical patent/JPH0936721A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the power loss of a drive current of a capacitive load by utilizing a resonance between the capacitive load and an inductive element. SOLUTION: When a drive signal P1 is at logical H, a switch SW1 closed and a switch SW2 is open and a capacitance Cx of a capacitive load 11 is charged by a DC power supply E via the switch SW1. When the signal P1 goes to logical L, the switch SW1 is open and the SW2 is closed, a current IL flows between the capacitor Cx and a coil 9 and a terminal voltage of the capacitor Cx is oscillated at a natural frequency fo together with the current IL. Then the switch SW1 is closed by a clock leading edge and the capacitance Cx is charged up to the power supply voltage E. In this case, a charging current Is1 is supplied from the power supply E to the capacitor Cx via the switch SW1 at a very small loss of the coil 9, the capacitor Cx and a ground terminal. The current Is1 causes a power loss in the drive current and its can be considerably lowered than the power loss in a push-pull connection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、容量性の負荷を駆
動する駆動装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive device for driving a capacitive load.

【0002】[0002]

【従来の技術】図3はこの種の駆動回路の従来例を示す
図で、プッシュプルの出力段をもつドライバで容量性負
荷(例えばFETのゲートなど)を駆動するものであ
る。容量性負荷の容量Cxは、図4に示すようにクロッ
ク信号CKの立上がりタイミングで、充電電流I1で急
速充電され、クロックCK信号の立ち下がりタイミング
で、放電電流I2により急速放電される。このときのプ
ッシュプルドライバの電力損失を、簡略化して図5に示
す。図5では、簡略化のためプッシュプルドライバのド
ライブ電流はドライブ期間中定電流とし、容量性負荷の
駆動電圧の電圧変化は直線的なものと模して考える。こ
の簡易モデルでは、ドライブ電流Idと駆動電圧Vdの
間には、 Cx・V=Id・T T:立上がり(立ち下
がり)時間 の関係がある。駆動周期当たりの電力損失Ptは[Id
・V(t)]を立上がり(立ち下がり)時間で積分した
ものである。立上がり,立ち下がりにおける電力損失を
計算すると、 Pt=C・(V^2) なお“^”はべき数を
示す となり、この簡易モデルでは、立上がり(立ち下がり)
時間によらずプッシュプルドライバの電力損失は変わら
ない。
2. Description of the Related Art FIG. 3 is a diagram showing a conventional example of a drive circuit of this type, in which a driver having a push-pull output stage drives a capacitive load (for example, the gate of an FET). As shown in FIG. 4, the capacitance Cx of the capacitive load is rapidly charged with the charging current I1 at the rising timing of the clock signal CK and rapidly discharged with the discharging current I2 at the falling timing of the clock CK signal. The power loss of the push-pull driver at this time is simplified and shown in FIG. In FIG. 5, the drive current of the push-pull driver is a constant current during the drive period for simplification, and the voltage change of the drive voltage of the capacitive load is assumed to be linear. In this simple model, the drive current Id and the drive voltage Vd have a relationship of Cx · V = Id · T T: rise (fall) time. The power loss Pt per driving cycle is [Id
-V (t)] is integrated by the rise (fall) time. When the power loss at the rise and fall is calculated, Pt = C · (V ^ 2) Note that “^” indicates a power number, and in this simple model, rise (fall)
The power loss of the push-pull driver does not change regardless of time.

【0003】[0003]

【発明が解決しようとする課題】しかしながら前記従来
例では、ドライバの電力損失が負荷の容量値、及び駆動
振幅によるもので、(簡易モデルでは)立上がり,立ち
下がり時間にはよらないことから、大容量負荷を大振幅
でドライブするには、プッシュプルドライバを複数並列
に使用することなどで対応しなければならないことがあ
る。
However, in the above-mentioned conventional example, the power loss of the driver depends on the capacitance value of the load and the drive amplitude, and does not depend on the rise and fall times (in the simple model). To drive a capacitive load with a large amplitude, it may be necessary to use a plurality of push-pull drivers in parallel.

【0004】例えば、容量性負荷としてラインセンサを
考えてみる。ラインセンサは、エリアセンサに比べ比較
的ディメンジョンが大きくその負荷容量は数百〜数千p
Fになる。ここで、負荷容量1000pF、駆動振幅
7.5V、駆動周波数30MHzとすると前記簡易モデ
ルによるプッシュプルドライバの電力損失Pは約1.7
Wになる。さらに、立上がり(立ち下がり時間)を10
nsecとすると、ドライブ電流のピーク値は0.75
Aになる。この電力損失とピーク電流による、ドライバ
の発熱や最大電流の限界などの関係から、ドライバを数
個並列使用しなければならなくなり、広い実装面積や、
コストアップといった問題が生じる。
For example, consider a line sensor as a capacitive load. The line sensor has a relatively large dimension compared to the area sensor, and its load capacity is several hundred to several thousand p.
It becomes F. Here, assuming that the load capacitance is 1000 pF, the drive amplitude is 7.5 V, and the drive frequency is 30 MHz, the power loss P of the push-pull driver according to the simple model is about 1.7.
W. In addition, the rise (fall time) is 10
If nsec, the peak value of drive current is 0.75
Become A. Due to the heat generation of the driver due to this power loss and the peak current, the limit of the maximum current, etc., several drivers must be used in parallel, and a large mounting area and
Problems such as increased costs arise.

【0005】本発明は、このような問題を解消するもの
である。
The present invention solves such a problem.

【0006】[0006]

【課題を解決するための手段】本発明では、負荷容量の
充電放電電流を、その容量性負荷との間でやりとりする
誘導性素子を設け、充放電電流のほとんどをその容量性
負荷と誘導性素子との電流やりとりでまかない、さら
に、入力信号に同期して任意期間強制的に駆動電圧
“H”レベルを確保する強制充電手段を設けることによ
り、電力損失を軽減する。
According to the present invention, an inductive element for exchanging a charging / discharging current of a load capacitance with the capacitive load is provided, and most of the charging / discharging current is transferred to the capacitive load. Power loss is reduced by providing a compulsory charging means which does not suffice by exchanging a current with the element and forcibly secures the drive voltage "H" level for an arbitrary period in synchronization with the input signal.

【0007】すなわち、本発明では、容量性負荷駆動装
置を次の(1)のとおりに構成する。
That is, according to the present invention, the capacitive load driving device is constructed as shown in (1) below.

【0008】(1)容量性負荷の容量共に直列共振回路
を構成する誘導性素子と、直流電源と、入力信号に同期
して前記直流電源を間欠的に前記容量負荷に接続するス
イッチ手段とを備えた容量性負荷駆動装置。
(1) An inductive element that forms a series resonance circuit together with the capacitance of a capacitive load, a DC power source, and a switch means that intermittently connects the DC power source to the capacitive load in synchronization with an input signal. Capacitive load drive equipped with.

【0009】[0009]

【実施例】以下本発明を実施例により詳しく説明する。The present invention will be described in more detail with reference to the following examples.

【0010】図1は実施例1である“容量性負荷駆動装
置”の回路図である。
FIG. 1 is a circuit diagram of a "capacitive load driving device" which is a first embodiment.

【0011】本実施例は、駆動期間外に駆動端電圧を
“H”に固定しているものである。図2は図1を説明す
るタイミングチャートである。クロック入力端子1に
は、容量性負荷11を駆動するクロック信号CKが入力
されている。CKはディレー回路2の入力端子とAND
ゲート3の入力端子に接続されている。ANDゲート3
のもう一方の入力端子は負入力端子となっており、ディ
レー回路2出力が接続されている。ANDゲート3出力
P2は、CK立上がりエッジからディレー回路2のディ
レー量Td分のパルス幅のパルス信号となり、ORゲー
ト4の入力端子に接続されている。DFF(Dフリップ
フロップ)6は、データ入力端子には駆動信号P1が、
クロック信号入力端子にはディレー回路2出力が入力さ
れている。DFF6はディレー回路2出力の立上がりタ
イミングに同期した新たな駆動信号P4を出力する。駆
動信号P4はORゲート4の入力端子、及び第2の電流
スイッチSW2の制御端子に接続されており、P4の
“L”の期間SW2を“閉”にする。ORゲート4出力
P3は、第1の電流スイッチSW1の制御端子に接続さ
れており、P3“H”で電流スイッチでSW1を“閉”
にする。電流スイッチSW1の一方は直流電源Eに接続
されており、もう一方は誘導性素子であるコイル9と駆
動する容量性負荷11に接続されている。コイル9のも
う一方は電流スイッチSW2を介して接地されている。
容量性負荷11の容量(キャパシタンス)をCx、コイ
ル9のインダクタンスをLxで表わす。
In this embodiment, the driving end voltage is fixed to "H" outside the driving period. FIG. 2 is a timing chart for explaining FIG. A clock signal CK that drives the capacitive load 11 is input to the clock input terminal 1. CK is ANDed with the input terminal of the delay circuit 2
It is connected to the input terminal of the gate 3. AND gate 3
The other input terminal of is a negative input terminal and is connected to the output of the delay circuit 2. The output P2 of the AND gate 3 becomes a pulse signal having a pulse width corresponding to the delay amount Td of the delay circuit 2 from the rising edge of CK, and is connected to the input terminal of the OR gate 4. The DFF (D flip-flop) 6 receives the drive signal P1 at the data input terminal,
The output of the delay circuit 2 is input to the clock signal input terminal. The DFF 6 outputs a new drive signal P4 synchronized with the rising timing of the output of the delay circuit 2. The drive signal P4 is connected to the input terminal of the OR gate 4 and the control terminal of the second current switch SW2, and closes the SW2 period P2 of "L". The output P3 of the OR gate 4 is connected to the control terminal of the first current switch SW1, and when P3 is "H", SW1 is "closed" by the current switch.
To One of the current switches SW1 is connected to the DC power source E, and the other is connected to the coil 9 that is an inductive element and the capacitive load 11 that drives it. The other side of the coil 9 is grounded via the current switch SW2.
The capacitance of the capacitive load 11 is represented by Cx, and the inductance of the coil 9 is represented by Lx.

【0012】図2において、駆動信号P1が“H”のと
き電流スイッチSW1は“閉”、電流スイッチSW2は
“開”であり、容量性負荷11の容量(以下負荷容量と
いう)Cxは電流スイッチSW1を介して直流電源Eに
より充電されており、駆動電圧Eに固定されている。時
刻t1において駆動信号P1が“L”になると、時刻t
2のタイミングで電流スイッチSW1が“開”、電流ス
イッチSW2が“閉”の状態になる。ここで、負荷容量
Cxとコイル9のインダクタンスLxの間で電流IL流
れ、それに応じ負荷容量Cxの端子電圧すなわち駆動電
圧が図2のVoのように変化する。IL,VoはLx,
Cxの値により、固有振動周波数fo fo=1/(2π・√(Lx・Cx)) で振動する。ここで、Lx値をCK周波数fckとディ
レー回路2のディレー量Tdから、 (1/fck)−Td=1/fo となるように選んでおく。時刻t3において、クロック
の立上がりエッジのタイミングでSW1は“閉”とな
り、負荷容量Cxを強制的に電源Eに充電する。このと
き、駆動端電圧Voは時刻t2より、Lx,Cxによる
固有振動の一周期がちょうど終えたタイミングとなって
いる。Lx,Cx,接地端に損失原因がなければ時刻t
3においてVo=Eとなるが、多少の損失のためVo<
Eとなる。そのわずかな電位差dV(=E−Vo)分を
負荷容量Cxに充電するべく電流スイッチSW1を介し
て直流電源Eより、充電電流Is1が供給される。この
ときのIs1とdVが従来例で述べたドライバの電力損
失に相当する。従来例で計算した簡易モデルに準じて電
流スイッチSW1における電力損失Ps1を計算する
と、 Ps1=0.5・Cx・(dV^2) となる。従来例のプッシュプルでの電力損失Pppは、 Ppp=Cx・(E^2) であるので、その比は 1/(2・(E/dV)^2) となり、格段に損失を押さえることができる。
In FIG. 2, when the drive signal P1 is "H", the current switch SW1 is "closed", the current switch SW2 is "open", and the capacitance Cx of the capacitive load 11 (hereinafter referred to as load capacitance) is a current switch. It is charged by the DC power source E via SW1 and is fixed at the drive voltage E. When the drive signal P1 becomes “L” at the time t1, the time t
At the timing of 2, the current switch SW1 is in the "open" state and the current switch SW2 is in the "closed" state. Here, the current IL flows between the load capacitance Cx and the inductance Lx of the coil 9, and accordingly the terminal voltage of the load capacitance Cx, that is, the drive voltage, changes as Vo in FIG. IL and Vo are Lx,
Depending on the value of Cx, it vibrates at the natural vibration frequency fo fo = 1 / (2π · √ (Lx · Cx)). Here, the Lx value is selected from the CK frequency fck and the delay amount Td of the delay circuit 2 so that (1 / fck) −Td = 1 / fo. At time t3, SW1 becomes “closed” at the timing of the rising edge of the clock, and the power supply E is forcibly charged with the load capacitance Cx. At this time, the drive end voltage Vo is the timing at which one cycle of the natural vibration due to Lx and Cx has just ended from time t2. If there is no cause of loss in Lx, Cx, and the grounding end, time t
Vo = E at 3, but due to some loss, Vo <E
E. The charging current Is1 is supplied from the DC power supply E through the current switch SW1 so as to charge the load capacitance Cx with the slight potential difference dV (= E-Vo). Is1 and dV at this time correspond to the power loss of the driver described in the conventional example. When the power loss Ps1 in the current switch SW1 is calculated according to the simple model calculated in the conventional example, it becomes Ps1 = 0.5 · Cx · (dV̂2). The power loss Ppp in the push-pull of the conventional example is Ppp = Cx (E ^ 2), so the ratio is 1 / (2 (E / dV) ^ 2), and the loss can be significantly suppressed. it can.

【0013】負荷容量Cx,コイル9のインダクタンス
Lxのバラツキは“0”ではないので、固有周波数fo
もばらつく。(Lx・Cx)がもしも±20%あったと
すると、設定値fo時の固有振動周期Toに対し、 √(0.8)・To<Tx<√(1.2)・To のばらつきが起こり得る。そのバラツキにより時刻t3
における駆動端電圧Voはばらつく。ここで、時刻t2
から時刻t3の間に固有振動が一周期以上含まれ駆動端
電圧が再び降下すると駆動周波数が変動またはノイズと
みなされてしまう。このため、固有振動周波数を調整し
たくない場合は、バラツキを考慮した最高固有振動周波
数fmaxを (1/fck)−Td=1/fmax となるようにLxを設計するとよい。前述した(Lx・
Cx)の±20%バラツキでは、バラツキによる固有振
動周波数・周期のバラツキは、 fmax/fmin=√(1.2)/√(0.8)=
1.22 Tmax/Tmin=0.82 であり、最高固有振動周波数のときのVoを図2の時刻
t2から時刻t3間のに、最低固有振動周波数のとき
のVoをに示した。このときのVoの差はの時刻t
3におけるVoをEとすると、の時刻t3における駆
動電圧Vominは Vomin=E・cos(0.82・2π)=0.43
E このワーストケースで電流スイッチSW1の電力損失P
wstを計算すると、 Pwst=0.5・Cx・{(1-0.43)E}^2 =Cx・E^2/6.2 となり、従来例のプッシュプルの電力損失の約1/6に
押さえることができる。時刻t3以降、t2〜t3の動
作を駆動信号P1が“H”になるまでくり返し容量性負
荷11を駆動する。ディレー回路2のディレー量は、駆
動電圧の“H”期間に必要な制限があればその値を満足
する時間に設定すればよい。
Since the variations in the load capacitance Cx and the inductance Lx of the coil 9 are not "0", the natural frequency fo
It also varies. If (Lx · Cx) is ± 20%, a variation of √ (0.8) · To <Tx <√ (1.2) · To may occur with respect to the natural vibration period To at the set value fo. . Time t3 due to the variation
The drive end voltage Vo at the point fluctuates. Here, time t2
From time t3 to time t3, if the natural vibration is included for one cycle or more and the drive end voltage drops again, the drive frequency is regarded as fluctuation or noise. Therefore, when it is not desired to adjust the natural vibration frequency, Lx may be designed so that the maximum natural vibration frequency fmax considering the variation is (1 / fck) -Td = 1 / fmax. As mentioned above (Lx
Cx) ± 20% variation, the variation of natural vibration frequency / cycle due to the variation is fmax / fmin = √ (1.2) / √ (0.8) =
1.22 Tmax / Tmin = 0.82, and Vo at the highest natural vibration frequency is shown between time t2 and time t3 in FIG. 2 at Vo at the lowest natural vibration frequency. At this time, the difference of Vo is at time t
When Vo in 3 is E, the drive voltage Vomin at time t3 is Vomin = E · cos (0.82 · 2π) = 0.43.
E In this worst case, the power loss P of the current switch SW1
Calculating wst gives Pwst = 0.5Cx {(1-0.43) E} ^ 2 = CxE2 / 2 / 6.2, which can be suppressed to about 1/6 of the power loss of the conventional push-pull. After the time t3, the operation from t2 to t3 is repeated until the driving signal P1 becomes "H", and the capacitive load 11 is driven. The delay amount of the delay circuit 2 may be set to a time satisfying the required limit of the "H" period of the drive voltage, if necessary.

【0014】このようにして、本実施例によれば、電力
損失を激減することができる。
In this way, according to this embodiment, the power loss can be drastically reduced.

【0015】[0015]

【発明の効果】以上説明したように、本発明では、負荷
容量との間で充放電電流をやりとりする誘電性素子を設
け、容量性負荷の駆動電流のほとんどを容量性負荷と誘
電性素子の共振を利用して行うようにしたため、電力損
失を激減することができる。
As described above, according to the present invention, the dielectric element for exchanging the charge / discharge current with the load capacitance is provided, and most of the drive current of the capacitive load is distributed between the capacitive load and the dielectric element. Since the resonance is used, the power loss can be drastically reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例の回路図FIG. 1 is a circuit diagram of an embodiment.

【図2】 実施例のタイミングチャートFIG. 2 is a timing chart of the embodiment.

【図3】 従来例の回路図FIG. 3 is a circuit diagram of a conventional example.

【図4】 従来例のタイミングチャートFIG. 4 is a timing chart of a conventional example.

【図5】 駆動回路の電力損失の説明図FIG. 5 is an explanatory diagram of power loss of a drive circuit.

【符号の説明】[Explanation of symbols]

8 電流スイッチ 9 コイル 11 容量性負荷 E 直流電源 8 Current switch 9 Coil 11 Capacitive load E DC power supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 容量性負荷の容量共に直列共振回路を構
成する誘導性素子と、直流電源と、入力信号に同期して
前記直流電源を間欠的に前記容量負荷に接続するスイッ
チ手段とを備えたことを特徴とする容量性負荷駆動装
置。
1. An inductive element that forms a series resonance circuit together with a capacitance of a capacitive load, a DC power supply, and a switch means that connects the DC power supply to the capacitive load intermittently in synchronization with an input signal. A capacitive load drive device characterized by the above.
JP18156495A 1995-07-18 1995-07-18 Capacitive load driver Withdrawn JPH0936721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18156495A JPH0936721A (en) 1995-07-18 1995-07-18 Capacitive load driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18156495A JPH0936721A (en) 1995-07-18 1995-07-18 Capacitive load driver

Publications (1)

Publication Number Publication Date
JPH0936721A true JPH0936721A (en) 1997-02-07

Family

ID=16103008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18156495A Withdrawn JPH0936721A (en) 1995-07-18 1995-07-18 Capacitive load driver

Country Status (1)

Country Link
JP (1) JPH0936721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160309A (en) * 2010-02-03 2011-08-18 Murata Mfg Co Ltd Capacitive load driving circuit
JP2014053840A (en) * 2012-09-10 2014-03-20 Renesas Electronics Corp Signal transmission circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160309A (en) * 2010-02-03 2011-08-18 Murata Mfg Co Ltd Capacitive load driving circuit
JP2014053840A (en) * 2012-09-10 2014-03-20 Renesas Electronics Corp Signal transmission circuit

Similar Documents

Publication Publication Date Title
JP3919116B2 (en) Multi-phase synthesis ripple voltage regulator synchronization
EP0343005B1 (en) Driving circuit for driving a piezoelectric vibrator
TWI442687B (en) Comparator mode DC-to-DC converter
US5818289A (en) Clocking scheme and charge transfer switch for increasing the efficiency of a charge pump or other circuit
US5126695A (en) Semiconductor integrated circuit device operated with an applied voltage lower than required by its clock oscillator
US8258771B2 (en) Circuit device, electronic apparatus, and power supply method
CN1835398B (en) Oscillator circuit and oscillation control method
JPH10512132A (en) CMOS driver circuit
US5736882A (en) Complementary clock systems
JPH0936721A (en) Capacitive load driver
JP3581002B2 (en) Pulse generating circuit with duty ratio limiting function and DC / DC converter
JP2912346B1 (en) Switching regulator control circuit
JP3757219B2 (en) Charge pump circuit
JP3697678B2 (en) V / F conversion circuit
JP2003188693A (en) Oscillation circuit
JPH11260053A (en) Step-up circuit of semiconductor memory device
JP2800741B2 (en) Power circuit
JP3447068B2 (en) Internal voltage generator for semiconductor integrated circuits
JP3218638B2 (en) Horizontal deflection circuit
JP2858497B2 (en) Semiconductor integrated circuit
JP2002199720A (en) Resonance-type power supply circuit
JPH1014223A (en) Step-up chopper
TW200307394A (en) Semiconductor integrated circuit
JPH029727B2 (en)
JP3092275B2 (en) DC-DC converter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001