JPH0936473A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH0936473A
JPH0936473A JP17840295A JP17840295A JPH0936473A JP H0936473 A JPH0936473 A JP H0936473A JP 17840295 A JP17840295 A JP 17840295A JP 17840295 A JP17840295 A JP 17840295A JP H0936473 A JPH0936473 A JP H0936473A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser device
optical waveguide
insulating film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17840295A
Other languages
Japanese (ja)
Other versions
JP3752705B2 (en
Inventor
Toshiaki Tanaka
俊明 田中
Kenji Uchida
憲治 内田
Akisada Watanabe
明禎 渡辺
Shoichi Akamatsu
正一 赤松
Shigekazu Minagawa
重量 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17840295A priority Critical patent/JP3752705B2/en
Publication of JPH0936473A publication Critical patent/JPH0936473A/en
Application granted granted Critical
Publication of JP3752705B2 publication Critical patent/JP3752705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor laser element performing laser operation in blue violet wavelength region under the room temperature. SOLUTION: A waveguide stripe of Nitride material is formed in the direction parallel with the (11-20) A face of a (0001) C face sapphire substrate 1 by selective growth using an insulation film mask 4. The interval W1 of insulation film SiO2 mask 4 is set in the range of 1-2μm and the mask width W2 is set in the range of 5-30μm. It is then covered with an insulation film 8 and p and n electrodes are deposited by lithography before being scribed by cleavage. Consequently, a low loss optical waveguide layer can be formed while controlling the cross-section rectangularly and a transverse mode controlled BH structure for guiding the basic transverse mode stably can be realized by the actual difference of refractive index. The inventive element oscillates under the room temperature at an oscillation wavelength in the range of 410-430nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光情報端末或は光応用
計測光源に適する半導体レーザ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device suitable for an optical information terminal or an optical measurement light source.

【0002】[0002]

【従来の技術】青色波長領域で発光する光デバイスに関
しては、従来技術では例えばGaInN/AlGaN材料を用いた
例が示されており、青色発光ダイオードを構成する素子
構造について、例えばアプライド・フィジックス・レタ
ー1994年,64巻,1687-1689頁(Appl. Phys. Lett., 64, 1
687-1689(1994).)において述べられている。
2. Description of the Related Art With regard to an optical device that emits light in the blue wavelength region, an example using a GaInN / AlGaN material is shown in the prior art. For the device structure that constitutes the blue light emitting diode, for example, the Applied Physics Letter is used. 1994, 64, 1687-1689 (Appl. Phys. Lett., 64, 1
687-1689 (1994).).

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、Ni
tiride系材料を用いた青色発光ダイオードに関して、発
光活性層や光導波層の構成について述べているが、半導
体レーザに要求される導波路共振構造に関する内容の詳
細については述べられていない。また、半導体レーザの
横モードを厳密に制御する構造に関する内容を説明して
いない。
SUMMARY OF THE INVENTION In the above prior art, the Ni
Regarding the blue light emitting diode using the tiride material, the structure of the light emitting active layer and the optical waveguide layer is described, but the details of the waveguide resonance structure required for the semiconductor laser are not described. Further, the contents regarding the structure for strictly controlling the transverse mode of the semiconductor laser are not described.

【0004】本発明の目的は、特にこれまで導波路や共
振器の形成が困難であったNitride材料において、材料
の特徴に適した導波路共振構造の詳細と結晶成長技術を
活かした構造作製の手法を規定するものであり、室温に
おいて青紫色波長領域のレーザ動作を達成することにあ
る。さらに、基本横モードを制御しながら、低閾値動作
や高出力動作を実現し得る導波路構造を有したレーザ素
子を提供する。
The object of the present invention is to produce a structure utilizing the details of the waveguide resonance structure and crystal growth technology suitable for the characteristics of the Nitride material, which has been difficult to form a waveguide or a resonator until now. It defines the method and is to achieve laser operation in the blue-violet wavelength region at room temperature. Further, the present invention provides a laser device having a waveguide structure capable of realizing low threshold operation and high output operation while controlling the fundamental transverse mode.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の手段を以下に説明する。
Means for achieving the above object will be described below.

【0006】本発明では、従来導波路や共振器を形成す
ることが困難であったNitride材料に対して、選択成長
技術を利用することにより、導波路共振構造を作製す
る。選択成長条件と絶縁膜マスクパターンを規定するこ
とにより、断面が矩形状である導波路構造と基板面に垂
直な端面を有した共振器構造を同時に作製できる。導波
路構造においては、発光活性層を光導波層の中に埋め込
んだ形の実屈折率導波による横モード制御型埋め込み(B
H: Buried Heterostructure)構造を容易に達成できる。
さらに低閾値動作の素子を実現するために、共振器端面
にDBR構造高反射膜を形成する。また高出力特性を有
した素子は、アレイ状の導波路構造を設けることにより
実現する。
In the present invention, a waveguide resonance structure is manufactured by utilizing a selective growth technique for a Nitride material which has been conventionally difficult to form a waveguide or a resonator. By defining the selective growth conditions and the insulating film mask pattern, it is possible to simultaneously manufacture a waveguide structure having a rectangular cross section and a resonator structure having an end face perpendicular to the substrate surface. In the waveguide structure, the transverse mode control type embedding (B
H: Buried Heterostructure) structure can be easily achieved.
In order to realize a device with a lower threshold operation, a DBR structure high reflection film is formed on the cavity end face. An element having high output characteristics is realized by providing an arrayed waveguide structure.

【0007】[0007]

【作用】目的を達成するため、上記手段の作用について
説明する。
The operation of the above means for achieving the object will be described.

【0008】単結晶基板として半導体基板或いはセラミ
ックス基板を用い、基板面方位が(0001)C面を有するWur
tzite構造である基板とする。基板表面に絶縁膜マスク
を形成して、選択成長技術を用いて結晶成長する。この
とき、導波路ストライプを形成する方向は、該基板の(1
1-20)A面に平行であるか、或いは(11-20)A面に垂直とな
る(1-100)M面に平行な方向に設定しておく。このような
条件のもとに選択成長技術を用いて、導波路構造や共振
器構造を作製すると、結晶層が基板面に垂直である導波
路側面や共振器端面を作製できることを見出した。導波
路側面や共振器面を上記のように形状制御するために
は、基板表面の窒化処理や成長温度及びマスク幅や間隔
を最適範囲に設定することが必要であり、これらのパラ
メータを規定することが重要であった。
A semiconductor substrate or a ceramic substrate is used as the single crystal substrate, and the substrate surface orientation is Wur having a (0001) C plane.
The substrate has a tzite structure. An insulating film mask is formed on the surface of the substrate, and crystals are grown using a selective growth technique. At this time, the direction in which the waveguide stripe is formed is (1
It is set parallel to the (1-20) A plane or parallel to the (1-100) M plane which is perpendicular to the (11-20) A plane. It has been found that, when a waveguide structure or a resonator structure is manufactured by using the selective growth technique under such conditions, it is possible to manufacture a waveguide side surface or a resonator end face whose crystal layer is perpendicular to the substrate surface. In order to control the shape of the side surface of the waveguide or the resonator surface as described above, it is necessary to set the nitriding treatment of the substrate surface, the growth temperature, the mask width and the interval to the optimum range, and to define these parameters. Was important.

【0009】上記の選択成長条件を適切な範囲に設定す
ることにより、実屈折率差で基本横モードが安定に導波
されるBHストライプ構造が一回の結晶成長によって実
現できる。また、BHストライプ構造の両側面近傍にお
いて、異常成長したり矩形状に制御できなかったりする
ことを避けるために、ダミーパターンを設ける。ストラ
イプ構造の両端に同様な絶縁膜マスク形状からなるダミ
ーパターンを設けておくことにより、内側の導波路構造
を高品質な結晶層から構成できる。このダミーパターン
上のストライプ構造には電流を注入しないように、絶縁
膜マスクによってカバーしておけば、基本横モードの導
波が不安定になることはない。これにより、低閾値や高
効率動作が期待できる。
By setting the above selective growth condition to an appropriate range, a BH stripe structure in which the fundamental transverse mode is stably guided by the difference in actual refractive index can be realized by a single crystal growth. In addition, dummy patterns are provided in the vicinity of both side surfaces of the BH stripe structure in order to avoid abnormal growth or failure to control in a rectangular shape. By providing dummy patterns having the same insulating film mask shape on both ends of the stripe structure, the inner waveguide structure can be formed of a high quality crystal layer. If the stripe structure on this dummy pattern is covered with an insulating film mask so as not to inject current, the fundamental transverse mode waveguide will not be unstable. As a result, a low threshold value and high efficiency operation can be expected.

【0010】さらに、基板面に垂直な共振器端面に対し
て、少なくとも屈折率が異なる2種類の結晶層からなる
DBR構造高反射膜を形成することにより、格段の低閾
値動作が可能である。Nitride材料では、他のIII-V族半
導体材料に比べて屈折率が小さいために、端面反射率が
20%程度と小さくなるが、DBR構造の周期数を増や
すことにより、端面反射率は90%以上に設定でき、最
高99%の反射率が得られた。これにより、DBR構造
高反射膜を施していない素子に比べて、閾値電流を1/10
から1/20に低減できた。
Further, by forming a DBR structure high reflection film composed of at least two kinds of crystal layers having different refractive indexes on the resonator end face perpendicular to the substrate surface, a significantly low threshold operation is possible. Since the Nitride material has a smaller refractive index than other III-V semiconductor materials, the facet reflectivity is reduced to about 20%, but the facet reflectivity is 90% by increasing the number of cycles of the DBR structure. It was possible to set the above values, and a maximum reflectance of 99% was obtained. As a result, the threshold current can be reduced to 1/10 of that of the device without the DBR structure high reflection film.
From 1/20.

【0011】また、ストライプ構造をアレイ状に設定し
て、高出力動作を図ることができる。ストライプ構造の
本数に依存して、高出力化が可能である。アレイ状のス
トライプ構造のうち、ダミーストライプを除く内側の光
導波路構造に対して、導波される横モードの位相整合条
件に合ったストライプを配列させたフェーズドアレイ構
造により、基本横モードを保たまま、単体のストライプ
構造に比べてストライプの本数倍以上に最高光出力を増
大できた。
Further, the stripe structure can be set in an array to achieve high output operation. Higher output can be achieved depending on the number of stripe structures. The basic transverse mode is maintained by the phased array structure in which stripes that match the phase matching condition of the guided transverse mode are arranged with respect to the optical waveguide structure inside the array-like stripe structure excluding the dummy stripes. As it is, the maximum light output could be increased more than the number of stripes compared with the single stripe structure.

【0012】以上により、Nitride材料に対して、基本
横モードに制御しつつ、低閾値動作や高出力動作を達成
する導波路構造を有した半導体レーザ素子構造が作製で
きる。
As described above, it is possible to manufacture a semiconductor laser device structure having a waveguide structure that achieves a low threshold operation and a high output operation while controlling the basic transverse mode for the Nitride material.

【0013】[0013]

【実施例】【Example】

実施例1 本発明の一実施例を図1(a),(b)により説明する。図1
(a)において、(0001)C面を有するα-Al2O3基板1を用い
てまず温度950〜1150℃の範囲で表面窒化処理を
行った後、成長温度450〜550℃においてGaNバッ
ファ層2,成長温度950〜1050℃においてn型Ga
N光導波層3を有機金属気相成長法により結晶成長す
る。その後、絶縁膜の形成とリソグラフィーにより、図
1(b)においてマスク間隔W1を1〜2μmとし、マスク
幅W2を10〜30μmの範囲に設定した絶縁膜マスク
4を形成する。このとき、図1(b)において絶縁膜マスク
4を形成する方向を該α-Al2O3基板1における(11-20)A
面と平行な方向に規定しておく。その後、温度950〜
1050℃の範囲で選択成長して、n型GaN光導波層
5,AlGaN光分離閉じ込め層とGaN量子障壁層及びGaInN
量子井戸層からなる圧縮歪多重量子井戸活性層6,p型
GaN光導波層7を順次設ける。次に、絶縁膜8を形成し
て、リソグラフィーにより、p電極とn電極のパターン
を蒸着形成する。さらに、導波路とは垂直な方向に基板
を劈開することによって図1に示す素子断面を得、スク
ライブすることにより素子を切り出す。
Embodiment 1 An embodiment of the present invention will be described with reference to FIGS. 1 (a) and 1 (b). FIG.
In (a), the α-Al 2 O 3 substrate 1 having a (0001) C plane is first subjected to a surface nitriding treatment at a temperature range of 950 to 1150 ° C., and then a GaN buffer layer is grown at a growth temperature of 450 to 550 ° C. 2. n-type Ga at a growth temperature of 950 to 1050 ° C.
Crystal growth of the N optical waveguide layer 3 is performed by a metal organic chemical vapor deposition method. After that, by forming an insulating film and lithography,
In 1 (b), the insulating film mask 4 is formed with the mask interval W 1 set to 1 to 2 μm and the mask width W 2 set to the range of 10 to 30 μm. At this time, the direction of forming the insulating film mask 4 in FIG. 1 (b) is changed to (11-20) A on the α-Al 2 O 3 substrate 1.
Prescribe in the direction parallel to the plane. Then, the temperature 950-
The n-type GaN optical waveguide layer 5, the AlGaN optical separation confinement layer, the GaN quantum barrier layer, and GaInN are selectively grown in the temperature range of 1050 ° C.
Compressive strain multiple quantum well active layer composed of quantum well layers 6, p-type
The GaN optical waveguide layer 7 is sequentially provided. Next, the insulating film 8 is formed, and the pattern of the p electrode and the n electrode is formed by vapor deposition by lithography. Further, the substrate is cleaved in a direction perpendicular to the waveguide to obtain the device cross section shown in FIG. 1, and the device is cut out by scribing.

【0014】本実施例によると、屈折率導波構造によっ
て導波光を伝搬でき、実屈折率差によって基本横モード
を安定に導波するBHストライプ構造を作製できた。本
素子では、室温においてサファイア基板上に形成したAl
GaInN材料からレーザ動作を確認できた。室温における
発振波長は、410〜430nmの範囲であり、青紫色
の波長領域であった。
According to the present embodiment, the guided light can be propagated by the refractive index guiding structure, and the BH stripe structure which stably guides the fundamental transverse mode by the actual refractive index difference can be manufactured. In this device, Al formed on sapphire substrate at room temperature
Laser operation was confirmed from the GaInN material. The oscillation wavelength at room temperature was in the range of 410 to 430 nm and was in the blue-violet wavelength range.

【0015】実施例2 本発明の他実施例を図2(a),(b)により説明する。実施
例1と同様に素子を作製するが、実施例1のストライプ
構造を作製するためのマスクパターン外側に図2(b)に
示すようなダミーパターンを形成しておき、これを含む
絶縁膜マスク4を形成する。このとき図2(b)におい
て、導波路構造用にマスク間隔W1を1〜2μmとしマ
スク幅W2を5〜30μmの範囲に設定し、またダミー
パターン用としてマスク間隔W3を1〜10μmとしマ
スク幅W4を5〜30μmの範囲に設定しておく。この
後、実施例1と全く同様にして素子を作製し、図2(a)
に示す素子断面を得る。
Embodiment 2 Another embodiment of the present invention will be described with reference to FIGS. 2 (a) and 2 (b). An element is manufactured in the same manner as in Example 1, but a dummy pattern as shown in FIG. 2B is formed outside the mask pattern for manufacturing the stripe structure of Example 1, and an insulating film mask including this dummy pattern is formed. 4 is formed. At this time, in FIG. 2B, the mask interval W 1 for the waveguide structure is set to 1 to 2 μm, the mask width W 2 is set to the range of 5 to 30 μm, and the mask interval W 3 is set to 1 to 10 μm for the dummy pattern. Then, the mask width W 4 is set in the range of 5 to 30 μm. After this, an element was prepared in exactly the same manner as in Example 1, and the structure shown in FIG.
A device cross section shown in is obtained.

【0016】本実施例によると、ダミーパターンによ
り、導波路ストライプ構造両側壁には異常成長が見られ
ず、導波路層の結晶性を改善させることができた。この
結果、実施例2より閾値電流をさらに2/3から1/2に低減
できた。
According to the present embodiment, due to the dummy pattern, abnormal growth was not observed on both side walls of the waveguide stripe structure, and the crystallinity of the waveguide layer could be improved. As a result, the threshold current could be further reduced from 2/3 to 1/2 as compared with Example 2.

【0017】実施例3 本発明の他実施例を図3(a),(b)及び図4により説明す
る。本素子では、実施例2と同様に素子を作製し絶縁膜
マスクにダミーパターンを設けておくが、図3(b)に示
すように共振方向において絶縁膜マスクを共振器端面部
近傍にまで設ける。このマスクパターンにより、個々の
素子は最初から共振器端面で分離されることになる。こ
のとき、共振器端面近傍に設ける絶縁膜マスクは、共振
方向に隣接する導波路構造との間隔の半分の幅W5とし
て、20〜40μmの範囲に設定した。図3(b)におい
て、導波路の方向は該α-Al2O3基板1における(11-20)A
面と垂直な方向に規定しておく。この結果、選択成長に
より導波路構造の作製と同時に、基板面に垂直な共振器
端面が形成できる。結晶成長した層7に引き続いて選択
成長して、歪補償GaInN/AlGaNDBR構造高反射膜8を
形成する。この後は、実施例2と同様に素子を作製し、
図3(a)に示す素子縦断面と図4に示す素子横断面を得
る。
Embodiment 3 Another embodiment of the present invention will be described with reference to FIGS. 3 (a), 3 (b) and 4. In this device, a device is prepared in the same manner as in Example 2 and a dummy pattern is provided on the insulating film mask. However, as shown in FIG. 3B, the insulating film mask is provided up to near the resonator end face portion in the resonance direction. . Due to this mask pattern, the individual elements are separated at the cavity end face from the beginning. At this time, the insulating film mask provided in the vicinity of the end face of the resonator has a width W 5 which is half the distance between adjacent waveguide structures in the resonance direction and is set in the range of 20 to 40 μm. In FIG. 3B, the direction of the waveguide is (11-20) A on the α-Al 2 O 3 substrate 1.
The direction is perpendicular to the plane. As a result, the resonator end face perpendicular to the substrate surface can be formed at the same time when the waveguide structure is produced by the selective growth. The crystal-grown layer 7 is then selectively grown to form a strain-compensating GaInN / AlGaN DBR structure high reflection film 8. After this, an element was prepared in the same manner as in Example 2,
The element vertical section shown in FIG. 3A and the element horizontal section shown in FIG. 4 are obtained.

【0018】本実施例によると、選択成長により導波路
構造と同時に基板面に垂直な共振器端面が形成できるの
で、基板の劈開により共振器面を形成する必要がない。
共振器端面であるNitride材料の(1-100)M面の結晶面
に、DBR構造高反射膜を施すことにより、実施例2よ
りも格段の低閾値動作を達成できた。本素子では、DB
R構造高反射膜を設けていない場合に比べて、閾値電流
を1/5から1/10にまで低減できた。本実施例では、共振
器端面近傍にダミ−パタ−ンを設けることにより、共振
器端面やDBR構造高反射膜の結晶性や反射率を改善で
きるので、さらに低閾値動作が達成された。
According to this embodiment, since the resonator end face perpendicular to the substrate surface can be formed at the same time as the waveguide structure by selective growth, it is not necessary to form the resonator surface by cleaving the substrate.
By applying the DBR structure high reflection film on the crystal plane of the (1-100) M plane of the Nitride material, which is the end face of the resonator, a much lower threshold operation than in Example 2 could be achieved. In this element, DB
The threshold current could be reduced from 1/5 to 1/10 as compared with the case where the R structure high reflection film was not provided. In the present embodiment, by providing a dummy pattern in the vicinity of the cavity end face, the crystallinity and reflectance of the cavity end face and the DBR structure high reflection film can be improved, so that a lower threshold operation was achieved.

【0019】実施例4 本発明の他実施例を図5(a),(b)により説明する。実施
例2と同様にして素子を作製するが、実施例3の導波路
ストライプ構造を横に並べてアレイ状にする。アレイ状
ストライプの両外側にはダミ−パタ−ンを設けておき、
絶縁膜マスク4を図5(b)のように形成しておく。この
とき図5(b)において、例えば3つの導波路ストライプ
構造用にマスク間隔W1を1〜2μmとしマスク幅W2
1〜10μmの範囲として設定し、またダミ−パタ−ン
用としてマスク間隔W3を1〜10μmとしマスク幅W4
を5〜30μmの範囲に設定しておく。図5(a)に示す
ように、内側の3つのストライプ構造に電流を注入し、
両側ダミ−ストライプ構造に電流を注入しないように絶
縁膜マスクによりカバ−しておく。その後、実施例2と
全く同様にして素子を作製し、図5(a)に示す素子断面
を得る。
Embodiment 4 Another embodiment of the present invention will be described with reference to FIGS. 5 (a) and 5 (b). A device is manufactured in the same manner as in Example 2, but the waveguide stripe structures of Example 3 are arranged side by side to form an array. Dami pattern is provided on both outer sides of the array stripe,
The insulating film mask 4 is formed as shown in FIG. At this time, in FIG. 5B, for example, for three waveguide stripe structures, the mask interval W 1 is set to 1 to 2 μm and the mask width W 2 is set to a range of 1 to 10 μm, and the mask is used for dummy patterns. The interval W 3 is 1 to 10 μm and the mask width W 4
Is set in the range of 5 to 30 μm. As shown in FIG. 5 (a), current is injected into the inner three stripe structures,
An insulating film mask is used to cover the dummy stripe structure on both sides so that no current is injected. After that, an element was manufactured in the same manner as in Example 2 to obtain the element cross section shown in FIG.

【0020】本実施例によると、一定の狭い周期に規定
したストライプ構造を並べることにより、各ストライプ
構造を導波するモ−ドの位相を整合させたフェ−ズドア
レイ構造を形成できた。これにより、多数のストライプ
構造を設けても、全体で基本横モ−ドで動作させること
が可能となり、単体のストライプ構造である実施例2や
3の場合よりも高出力動作が達成できた。本素子の最高
光出力は、実施例2や3に比べて3倍から5倍に向上し
た。さらに、ストライプ構造の本数を増やすことによ
り、より高出力動作が可能であった。
According to the present embodiment, by arranging the stripe structures defined in a constant narrow period, a phased array structure in which the phases of the modes for guiding each stripe structure are matched can be formed. As a result, even if a large number of stripe structures are provided, it is possible to operate in the basic lateral mode as a whole, and higher output operation can be achieved than in the case of Examples 2 and 3 having a single stripe structure. The maximum light output of this device was improved 3 to 5 times as compared with Examples 2 and 3. Furthermore, higher output operation was possible by increasing the number of stripe structures.

【0021】[0021]

【発明の効果】本発明により、導波路や共振器の形成が
困難であったNitride材料に対して、選択成長技術を用
いて半導体レ−ザに必須となる導波路共振構造を作製す
ることができた。導波路構造は、実屈折率差によって基
本横モ−ドを安定に導波するBHストライプ構造を容易
に形成できた。この結果、サファイア基板上に形成した
AlGaInN材料からなるレ−ザの室温における動作を確認
できた。室温における発振波長は、410〜430nm
の範囲であり、青紫色の波長領域であった。ストライプ
構造の両外側にダミ−パタ−ンを導入することにより、
閾値電流を2/3から1/2に低減できた。さらに、基板面に
垂直な共振器端面を形成した後、DBR構造高反射膜を
設けることにより、格段の低閾値動作を達成し閾値電流
を1/5から1/10に低減できた。また、3本の導波路スト
ライプ構造を位相整合させたフェ−ズドアレイ構造にす
ることにより、基本横モ−ドのまま単体のストライプ構
造に比べて最高光出力を3〜5倍にまで増大させること
が可能であった。
According to the present invention, it is possible to fabricate a waveguide resonance structure, which is indispensable for a semiconductor laser, by using a selective growth technique for a Nitride material for which it is difficult to form a waveguide or a resonator. did it. The waveguide structure could easily form a BH stripe structure that stably guides the basic lateral mode due to the difference in actual refractive index. As a result, it was formed on the sapphire substrate.
The operation of the laser made of AlGaInN material at room temperature was confirmed. Oscillation wavelength at room temperature is 410-430 nm
And the wavelength range was blue-violet. By introducing dummy patterns on both outer sides of the stripe structure,
The threshold current could be reduced from 2/3 to 1/2. Furthermore, by forming a resonator end face perpendicular to the substrate surface and then providing a DBR structure high reflection film, a significantly low threshold operation was achieved and the threshold current could be reduced from 1/5 to 1/10. Further, by using a phased-matched phased array structure of three waveguide stripe structures, the maximum optical output can be increased to 3 to 5 times as much as that of a single stripe structure in the basic lateral mode. Was possible.

【0022】本発明の実施例では、六方晶系のWurtzite
構造であり(0001)C面を有したサファイア基板上に作製
したAlGaInN半導体レ−ザについて説明したが、他の六
方晶系の基板であるSiC等の基板や、Zinc Blende構造で
あり(111)面を有した基板であるGaAs,InP,InAs,GaSb,Ga
AsP,GaInAs,SiC,ZnSe,ZnS等の基板上に作製した半導体
レ−ザに対しても本発明の内容を適用できることは言う
までもない。
In an embodiment of the present invention, hexagonal Wurtzite
The structure was described AlGaInN semiconductor laser produced on a sapphire substrate having a (0001) C plane, but it is a substrate such as SiC, which is another hexagonal substrate, or a Zinc Blende structure (111). GaAs, InP, InAs, GaSb, Ga, which are substrates with planes
It goes without saying that the contents of the present invention can be applied to a semiconductor laser formed on a substrate such as AsP, GaInAs, SiC, ZnSe, ZnS.

【0023】[0023]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す素子構造縦断面図(a)
と上面図(b)。
FIG. 1 is a vertical sectional view of an element structure showing one embodiment of the present invention (a)
And top view (b).

【図2】本発明の他実施例を示す素子構造縦断面図(a)
と上面図(b)。
FIG. 2 is a vertical sectional view of an element structure showing another embodiment of the present invention (a)
And top view (b).

【図3】本発明の他実施例を示す素子構造縦断面図(a)
と上面図(b)。
FIG. 3 is a vertical sectional view of an element structure showing another embodiment of the present invention (a)
And top view (b).

【図4】本発明の他実施例における素子構造横断面図。FIG. 4 is a cross-sectional view of a device structure according to another embodiment of the present invention.

【図5】本発明の他実施例を示す素子構造縦断面図(a)
と上面図(b)。
FIG. 5 is a vertical sectional view of an element structure showing another embodiment of the present invention (a)
And top view (b).

【符号の説明】[Explanation of symbols]

1.(0001)C面サファイア単結晶基板、2.GaNバッファ
層、3.n型GaN光導波層、4.絶縁膜マスク、5.n
型GaN光導波層、6.GaInN/GaN/AlGaN多重量子井戸構造
活性層、7.p型GaN光導波層、8.絶縁膜、9.p電
極、10.n電極、11.歪補償GaInN/AlGaNDBR構
造高反射膜。
1. (0001) C-plane sapphire single crystal substrate, 2. GaN buffer layer, 3. 3. n-type GaN optical waveguide layer, Insulating film mask, 5. n
-Type GaN optical waveguide layer, 6. GaInN / GaN / AlGaN multiple quantum well structure active layer, 7. p-type GaN optical waveguide layer, 8. Insulating film, 9. p electrode, 10. n-electrode, 11. Strain-compensated GaInN / AlGaN DBR structure highly reflective film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤松 正一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 皆川 重量 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoichi Akamatsu 1-280 Higashi Koikeku, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Minoru Minagawa 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Central Research Laboratory

Claims (29)

【特許請求の範囲】[Claims] 【請求項1】単結晶基板上に形成した光導波路構造を有
する半導体レーザ素子において、光導波層及び発光活性
層は選択成長技術により設けることとし、選択成長用の
絶縁膜マスクパターンにおいてマスク幅や間隔を規定す
ることにより該光導波路構造は矩形状の断面形状からな
るストライプ構造を有し、該導波路上面は基板面と平行
で平坦な面からなり該導波路側面は基板に対して垂直で
平滑面となっており、光導波路構造内部では発光活性層
が光導波層に埋め込まれていることにより、活性層横方
向に実屈折率差を設けて、基本横モードを安定に導波す
る埋め込み(BH;Buried Heterostruture)型ストライプ構
造を構成していることを特徴とする半導体レーザ素子。
1. In a semiconductor laser device having an optical waveguide structure formed on a single crystal substrate, an optical waveguide layer and an emission active layer are provided by a selective growth technique, and a mask width and an insulating film mask pattern for selective growth are provided. By defining the spacing, the optical waveguide structure has a stripe structure having a rectangular cross-sectional shape, the waveguide upper surface is parallel to the substrate surface and is a flat surface, and the waveguide side surface is perpendicular to the substrate. Since the light emitting active layer is embedded in the optical waveguide layer inside the optical waveguide structure, a real refractive index difference is provided in the lateral direction of the active layer, so that the fundamental transverse mode is stably guided. A semiconductor laser device having a (BH; Buried Heterostruture) type stripe structure.
【請求項2】請求項1記載の半導体レーザ素子におい
て、矩形状の断面形状からなる該光導波路ストライプ構
造を選択成長技術により形成する上に、かつ導波光の共
振方向においても絶縁膜マスクを用いて基板面に垂直な
平滑面を選択成長技術によって形成してあることによ
り、基板面に垂直な平滑面をFabry-Perot共振器端面と
して機能させる共振器構造を有していることを特徴とす
る半導体レーザ素子。
2. The semiconductor laser device according to claim 1, wherein the optical waveguide stripe structure having a rectangular cross section is formed by a selective growth technique, and an insulating film mask is used also in the resonance direction of the guided light. By forming a smooth surface perpendicular to the substrate surface by selective growth technology, it has a resonator structure that causes the smooth surface perpendicular to the substrate surface to function as a Fabry-Perot resonator end surface. Semiconductor laser device.
【請求項3】請求項2記載の半導体レーザ素子におい
て、選択成長技術により導波光の共振方向において形成
した基板面に垂直な共振器端面に対して、ブラッグ分布
帰還型(DBR; Distributed Bragg Reflector)構造からな
る高反射膜を選択成長技術により該光導波路構造の形成
に引き続いて設けることを特徴とする半導体レーザ素
子。
3. The semiconductor laser device according to claim 2, wherein a Bragg distributed feedback (DBR) is provided with respect to a cavity facet which is formed in a resonance direction of guided light by a selective growth technique and is perpendicular to a substrate surface. A semiconductor laser device, wherein a highly reflective film having a structure is provided following the formation of the optical waveguide structure by a selective growth technique.
【請求項4】請求項1記載の半導体レーザ素子におい
て、該発光活性層は格子歪を導入した歪バルク層からな
るダブルヘテロ構造であるか或は格子歪を導入した歪量
子井戸層からなる単一或は多重歪量子井戸構造により構
成してあることを特徴とする半導体レーザ素子。
4. The semiconductor laser device according to claim 1, wherein the light emitting active layer has a double hetero structure composed of a strained bulk layer having lattice strain introduced therein, or a single layer composed of a strained quantum well layer having lattice strain introduced therein. A semiconductor laser device comprising one or multiple strained quantum well structures.
【請求項5】請求項1又は4記載の半導体レーザ素子に
おいて、発光素子の光導波路構造は窒化物材料からな
り、少なくともAlxGayIn1-x-yN(0≦x<1, 0≦y<1)の各元
素のどれかを含む結晶層から構成され、さらにAsやPを
加えた結晶層から構成されていてもよく、発光活性層は
上記結晶層のダブルヘテロ構造或は量子井戸構造からな
ることを特徴とする半導体レーザ素子。
5. The semiconductor laser device according to claim 1, wherein the optical waveguide structure of the light emitting device is made of a nitride material, and at least Al x Ga y In 1-xy N (0 ≦ x <1, 0 ≦ y <1) is composed of a crystal layer containing any of the elements, may further be composed of a crystal layer to which As or P is added, the light emitting active layer is a double hetero structure or a quantum well structure of the crystal layer. A semiconductor laser device comprising:
【請求項6】請求項3記載の半導体レーザ素子におい
て、屈折率の異なる少なくとも2種類の結晶層を周期的
に繰り返し、屈折率がそれぞれn1とn2である結晶層を
用いたとき、結晶層の膜厚はレーザの発振波長をλとし
たときそれぞれλ/4n1とλ/4n2に設定することによ
り、該DBR構造高反射膜を構成してあることを特徴と
する半導体レーザ素子。
6. The semiconductor laser device according to claim 3, wherein at least two types of crystal layers having different refractive indices are periodically repeated, and when crystal layers having refractive indices of n 1 and n 2 are used, respectively, a crystal is formed. A semiconductor laser device characterized in that the DBR structure high reflection film is constituted by setting the film thicknesses of the layers to λ / 4n 1 and λ / 4n 2 respectively, where λ is the oscillation wavelength of the laser.
【請求項7】請求項3又は6記載の半導体レーザ素子に
おいて、屈折率の異なりかつ格子定数が異なる少なくと
も2種類の結晶層を周期的に繰り返したときに、少なく
とも2種類の結晶層では格子歪がそれぞれ反対の符号で
導入されており、かつ歪量が全体の膜厚において補償さ
れた、歪補償DBR構造高反射膜を構成していることを
特徴とする半導体レーザ素子。
7. The semiconductor laser device according to claim 3 or 6, wherein when at least two kinds of crystal layers having different refractive indexes and different lattice constants are periodically repeated, lattice distortion occurs in at least two kinds of crystal layers. Are introduced with opposite signs, and a strain-compensating DBR structure high reflection film in which the strain amount is compensated for in the entire film thickness is constituted.
【請求項8】請求項3、6又は7記載の半導体レーザ素
子において、該DBR構造高反射膜は窒化物材料からな
り、AlxGayIn1-x-yN(0≦x<1, 0≦y<1)からなる少なくと
も2種類の結晶層から構成され、さらにAsやPを加える
ことにより屈折率や格子歪を調節した結晶層から構成さ
れていてもよく、屈折率の異なる少なくとも2種類の結
晶層を繰り返す周期数を多く設定するに従って反射率を
高くできるDBR構造を有していることを特徴とする半
導体レーザ素子。
8. The semiconductor laser device according to claim 3, 6 or 7, wherein said DBR structure high reflection film is made of a nitride material, and Al x Ga y In 1-xy N (0 ≦ x <1, 0 ≦ It may be composed of at least two kinds of crystal layers of y <1), and may be composed of a crystal layer of which refractive index or lattice strain is adjusted by adding As or P. A semiconductor laser device having a DBR structure capable of increasing the reflectance as the number of cycles of repeating a crystal layer is set.
【請求項9】請求項1記載の半導体レーザ素子におい
て、該光導波路構造を構成する結晶層は絶縁膜マスクと
選択成長技術を利用して設け、少なくとも矩形状の断面
形状を有したストライプ構造を構成する全ての結晶層
は、絶縁膜マスク幅やマスク間隔に合わせて成長条件を
調節した選択成長技術により、該光導波路構造の断面や
上面及び側面の形状を第1項に記載したように制御して
設けてあることを特徴とする半導体レーザ素子。
9. The semiconductor laser device according to claim 1, wherein the crystal layer forming the optical waveguide structure is provided by using an insulating film mask and a selective growth technique, and has a stripe structure having at least a rectangular cross-sectional shape. For all the constituent crystal layers, the cross-section and the shape of the top and side surfaces of the optical waveguide structure are controlled as described in item 1 by the selective growth technique in which the growth conditions are adjusted according to the insulating film mask width and mask spacing. A semiconductor laser device characterized by being provided as follows.
【請求項10】請求項1又は9記載の半導体レーザ素子
において、該基板上に有限の幅をもつストライプ状の絶
縁膜マスクパターンを少なくとも2本設け、絶縁膜マス
ク間に有限の幅をもつ窓領域となる中央部のストライプ
を形成してあり、中央部のストライプ領域に選択成長を
行って該光導波路構造を設けることを特徴とする半導体
レーザ素子。
10. The semiconductor laser device according to claim 1, wherein at least two stripe-shaped insulating film mask patterns having a finite width are provided on the substrate, and a window having a finite width is provided between the insulating film masks. A semiconductor laser device characterized in that a central stripe serving as a region is formed, and the optical waveguide structure is provided by performing selective growth in the central stripe region.
【請求項11】請求項10記載の半導体レーザ素子にお
いて、該絶縁膜マスクにより挾まれる中央部の窓領域幅
に相当する、マスク間隔W1は0.1〜50μmの範囲で
あるとし、望ましくは0.3〜10μmの範囲であり、
さらに適切な範囲としては0.5〜2μmであり、これ
らの範囲の窓領域に該光導波路ストライプ構造を設ける
ことを特徴とする半導体レーザ素子。
11. A semiconductor laser device according to claim 10, wherein a mask interval W 1 corresponding to a width of a central window region sandwiched by the insulating film mask is in the range of 0.1 to 50 μm, and preferably. Is in the range of 0.3 to 10 μm,
A more suitable range is 0.5 to 2 μm, and the semiconductor laser device is characterized in that the optical waveguide stripe structure is provided in the window region of these ranges.
【請求項12】請求項10記載の半導体レーザ素子にお
いて、少なくとも2本設けるストライプ状の該絶縁膜マ
スクのうち、一つの絶縁膜マスク幅W2は0.1〜50μ
mの範囲であるとし、望ましくは1〜30μmの範囲で
あり、これらの範囲の絶縁膜マスクパターンに挾まれた
窓領域に該光導波路ストライプ構造を設けることを特徴
とする半導体レーザ素子。
12. The semiconductor laser device according to claim 10, wherein one of the stripe-shaped insulating film masks provided at least two has an insulating film mask width W 2 of 0.1 to 50 μm.
The semiconductor laser device is characterized in that the optical waveguide stripe structure is provided in the window region sandwiched by the insulating film mask pattern in these ranges, preferably in the range of 1 to 30 μm.
【請求項13】請求項2又は3記載の半導体レーザ素子
において、該共振器構造や該DBR構造高反射膜を構成
する結晶層は絶縁膜マスクと選択成長技術を利用して設
け、絶縁膜マスク幅に合わせて成長条件を調節した選択
成長技術により、該共振器端面を第2項に記載したよう
に制御して設けてあることを特徴とする半導体レーザ素
子。
13. The semiconductor laser device according to claim 2, wherein the crystal layer forming the resonator structure or the DBR structure high reflection film is provided by using an insulating film mask and a selective growth technique. A semiconductor laser device characterized in that the cavity facets are controlled and provided as described in item 2 by a selective growth technique in which growth conditions are adjusted according to the width.
【請求項14】請求項13記載の半導体レーザ素子にお
いて、該共振器端面を形成するための絶縁膜マスク幅W
5は0.5〜50μmの範囲であるとし、望ましくは1〜
30μmの範囲であり、これらの範囲にある幅を有した
絶縁膜マスクを共振器に隣接するように形成し、選択成
長により基板面に垂直な共振器構造を設けることを特徴
とする半導体レーザ素子。
14. A semiconductor laser device according to claim 13, wherein an insulating film mask width W for forming the cavity end face is formed.
5 is in the range of 0.5 to 50 μm, preferably 1 to
A semiconductor laser device characterized in that an insulating film mask having a width in the range of 30 μm is formed adjacent to the resonator, and a resonator structure perpendicular to the substrate surface is provided by selective growth. .
【請求項15】請求項9乃至14のいずれかに記載の半
導体レーザ素子において、該光導波路構造を設ける際
に、導波路層を形成するための絶縁膜マスクパターンの
他にさらに該絶縁膜マスクパターンの両外側に相当する
領域にダミーパターンを設けておき、これを含めて該光
導波路構造を選択成長するための絶縁膜マスクとして形
成しておくことにより、該光導波路構造を構成すること
を特徴とする半導体レーザ素子。
15. The semiconductor laser device according to claim 9, further comprising an insulating film mask pattern for forming a waveguide layer when the optical waveguide structure is provided, in addition to the insulating film mask pattern. It is possible to configure the optical waveguide structure by providing dummy patterns in regions corresponding to both outer sides of the pattern and forming the dummy patterns including these as an insulating film mask for selective growth of the optical waveguide structure. Characteristic semiconductor laser device.
【請求項16】請求項15記載の半導体レーザ素子にお
いて、ダミーパターン用の窓領域幅に相当する、該光導
波路構造を設けるための絶縁膜マスクとダミーパターン
を形成するための絶縁膜マスクとの間隔W3は、該光導
波路構造を設けるために必要な中央部の窓領域に相当す
るマスク間隔W1と同じとするか、或いはそれよりも広
く設定してあり、これらのダミーパターンを有した絶縁
膜マスクパターンを利用して該光導波路ストライプ構造
を設けることを特徴とする半導体レーザ素子。
16. The semiconductor laser device according to claim 15, wherein an insulating film mask for forming the optical waveguide structure and an insulating film mask for forming the dummy pattern, which correspond to a window region width for the dummy pattern, are provided. The interval W 3 is set to be equal to or wider than the mask interval W 1 corresponding to the central window region required to provide the optical waveguide structure, and these dummy patterns are provided. A semiconductor laser device, wherein the optical waveguide stripe structure is provided using an insulating film mask pattern.
【請求項17】請求項15記載の半導体レーザ素子にお
いて、ダミーパターンを形成する絶縁膜マスクのうち、
一つの絶縁膜マスク幅W4は、該光導波路構造を設ける
ために必要な絶縁膜マスクの幅W2と同じとするか或い
はそれよりも広く設定してあり、これらのダミーパター
ンを有した絶縁膜マスクパターンを利用して該光導波路
ストライプ構造を設けることを特徴とする半導体レーザ
素子。
17. The semiconductor laser device according to claim 15, wherein an insulating film mask for forming a dummy pattern,
The width W 4 of one insulating film mask is set to be the same as or wider than the width W 2 of the insulating film mask necessary for providing the optical waveguide structure, and the insulating film having these dummy patterns is formed. A semiconductor laser device, wherein the optical waveguide stripe structure is provided using a film mask pattern.
【請求項18】請求項15乃至17のいずれかに記載の
半導体レーザ素子において、ダミーパターンの窓領域に
選択成長した結晶層からなるストライプ構造には、絶縁
膜マスクで被覆することにより電流を注入しないように
設定してあり、内側に形成した正規の光導波路構造にの
み電流を注入できるようにしてあることを特徴とする半
導体レーザ素子。
18. The semiconductor laser device according to claim 15, wherein a current is injected by covering the stripe structure of the crystal layer selectively grown in the window region of the dummy pattern with an insulating film mask. A semiconductor laser device characterized in that it is set so as not to allow current to be injected only into a regular optical waveguide structure formed inside.
【請求項19】請求項9乃至18のいずれかに記載の半
導体レーザ素子において、ストライプ構造を横方向にア
レイ状に並べてあることにより、該光導波路構造が設け
てあることを特徴とする半導体レーザ素子。
19. The semiconductor laser device according to claim 9, wherein the optical waveguide structure is provided by arranging stripe structures in an array in the lateral direction. element.
【請求項20】請求項19記載の半導体レーザ素子にお
いて、アレイ状に並べたストライプ構造のうちダミース
トライプを除く内側の光導波路構造用に形成した各スト
ライプに導波される横モードが位相を整合して伝搬し、
基本横モードを保ってレーザ発振する位相整合条件を有
していることを特徴とする半導体レーザ素子。
20. In the semiconductor laser device according to claim 19, the transverse modes guided in each stripe formed for the inner optical waveguide structure of the stripe structure arranged in an array except for the dummy stripes are phase-matched. And propagate,
A semiconductor laser device having a phase matching condition for laser oscillation while maintaining a fundamental transverse mode.
【請求項21】請求項1乃至20のいずれかに記載の半
導体レーザ素子において、選択成長用の絶縁膜マスクに
用いる材料を酸化物材料又は表面を窒化処理した酸化物
材料或は窒化物材料として、選択成長により該光導波路
構造を設けることを特徴とする半導体レーザ素子。
21. The semiconductor laser device according to claim 1, wherein the material used for the insulating film mask for selective growth is an oxide material or an oxide material or a nitride material whose surface is nitrided. A semiconductor laser device, wherein the optical waveguide structure is provided by selective growth.
【請求項22】請求項21記載の半導体レーザ素子にお
いて、選択成長用の絶縁膜マスクに用いる材料にSiO, S
iO2, SiON, SiN, Si3N4のシリコン酸化物又は窒化物材
料を適用して、選択成長により該光導波路構造を設ける
ことを特徴とする半導体レーザ素子。
22. The semiconductor laser device according to claim 21, wherein the material used for the insulating film mask for selective growth is SiO, S.
A semiconductor laser device, characterized in that a silicon oxide or nitride material of iO 2 , SiON, SiN, Si 3 N 4 is applied and the optical waveguide structure is provided by selective growth.
【請求項23】請求項1乃至22記載の半導体レーザ素
子において、該光導波路構造を形成する選択成長技術は
各元素の原料を気相の状態で供給する結晶成長法によっ
て行い、特に有機金属気相成長(MOVPE; Metalorganic V
apor Phase Epitaxy)法を用いて結晶成長することによ
り、該光導波路構造を設けることを特徴とする半導体レ
ーザ素子。
23. The semiconductor laser device according to claim 1, wherein the selective growth technique for forming the optical waveguide structure is performed by a crystal growth method in which a raw material of each element is supplied in a vapor phase state, and particularly, an organic metal vapor deposition method. Phase growth (MOVPE; Metalorganic V
A semiconductor laser device, wherein the optical waveguide structure is provided by crystal growth using an apor phase epitaxy method.
【請求項24】請求項23記載の半導体レーザ素子にお
いて、結晶成長における成長温度は400〜1300℃
の範囲とし、該光導波路構造を形成する選択成長時にお
ける成長温度は800〜1200℃の範囲であり、望ま
しくは900〜1100℃の範囲であることにより、該
光導波路構造を設けることを特徴とする半導体レーザ素
子。
24. The semiconductor laser device according to claim 23, wherein the growth temperature in crystal growth is 400 to 1300.degree.
And the growth temperature at the time of selective growth for forming the optical waveguide structure is in the range of 800 to 1200 ° C., preferably in the range of 900 to 1100 ° C., thereby providing the optical waveguide structure. Semiconductor laser device.
【請求項25】請求項1乃至24記載の半導体レーザ素
子において、上記温度範囲で表面を窒化処理した該単結
晶基板上に、該光導波路構造を設けることを特徴とする
半導体レーザ素子。
25. The semiconductor laser device according to claim 1, wherein the optical waveguide structure is provided on the single crystal substrate whose surface is nitrided in the temperature range.
【請求項26】請求項1乃至25記載の半導体レーザ素
子において、上記温度範囲で表面を窒化処理した該単結
晶基板上に、結晶成長によってバッファ層を形成した後
に、該光導波路構造を設けることを特徴とする半導体レ
ーザ素子。
26. The semiconductor laser device according to claim 1, wherein a buffer layer is formed by crystal growth on the single crystal substrate whose surface is nitrided in the temperature range, and then the optical waveguide structure is provided. A semiconductor laser device characterized by:
【請求項27】請求項1乃至26記載の半導体レーザ素
子において、該単結晶基板が半導体基板またセラミック
ス基板であり、六方晶系のWurtzite構造であって基板面
方位が(0001)C面を有する基板であり、該単結晶基板上
に該光導波路構造が設けてあることを特徴とする半導体
レーザ素子。
27. The semiconductor laser device according to claim 1, wherein the single crystal substrate is a semiconductor substrate or a ceramic substrate, has a hexagonal Wurtzite structure, and has a substrate plane orientation of (0001) C plane. A semiconductor laser device comprising a substrate and the optical waveguide structure provided on the single crystal substrate.
【請求項28】請求項27記載の半導体レーザ素子にお
いて、(0001)C面を有する六方晶系のWurtzite構造であ
る基板上に該光導波路構造を設ける場合に、導波路スト
ライプを形成する方向を該基板の(11-20)A面に平行であ
るか、或いは垂直となる(1-100)M面に平行な方向に設定
することを特徴とする半導体レ−ザ素子。
28. In the semiconductor laser device according to claim 27, when the optical waveguide structure is provided on a substrate having a hexagonal Wurtzite structure having a (0001) C plane, a direction in which a waveguide stripe is formed is set. A semiconductor laser device characterized by being set in a direction parallel to the (11-20) A plane of the substrate or parallel to the (1-100) M plane which is vertical.
【請求項29】請求項28記載の半導体レーザ素子にお
いて、六方晶系のWurtzite構造である該単結晶基板はサ
ファイア(α-Al2O3)又は炭化珪素(α-SiC)基板であり、
該単結晶基板上に該光導波路構造が設けてあることを特
徴とする半導体レーザ素子。
29. The semiconductor laser device according to claim 28, wherein the single crystal substrate having a hexagonal Wurtzite structure is a sapphire (α-Al 2 O 3 ) or silicon carbide (α-SiC) substrate,
A semiconductor laser device, wherein the optical waveguide structure is provided on the single crystal substrate.
JP17840295A 1995-07-14 1995-07-14 Manufacturing method of semiconductor laser device Expired - Lifetime JP3752705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17840295A JP3752705B2 (en) 1995-07-14 1995-07-14 Manufacturing method of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17840295A JP3752705B2 (en) 1995-07-14 1995-07-14 Manufacturing method of semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH0936473A true JPH0936473A (en) 1997-02-07
JP3752705B2 JP3752705B2 (en) 2006-03-08

Family

ID=16047879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17840295A Expired - Lifetime JP3752705B2 (en) 1995-07-14 1995-07-14 Manufacturing method of semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3752705B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294533A (en) * 1997-02-21 1998-11-04 Toshiba Corp Nitride compound semiconductor laser and its manufacture
US6337870B1 (en) 1997-10-20 2002-01-08 Nec Corporation Semiconductor laser having recombination layer stripes in current blocking structure
US6887726B2 (en) 1997-09-29 2005-05-03 Nec Corporation Semiconductor layer formed by selective deposition and method for depositing semiconductor layer
US6984841B2 (en) 2001-02-15 2006-01-10 Sharp Kabushiki Kaisha Nitride semiconductor light emitting element and production thereof
JP2007150376A (en) * 2007-03-20 2007-06-14 Sharp Corp Nitride semiconductor light-emitting device, epi wafer and its manufacturing method, and epi wafer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294533A (en) * 1997-02-21 1998-11-04 Toshiba Corp Nitride compound semiconductor laser and its manufacture
US6887726B2 (en) 1997-09-29 2005-05-03 Nec Corporation Semiconductor layer formed by selective deposition and method for depositing semiconductor layer
US7314672B2 (en) 1997-09-29 2008-01-01 Nec Corporation Semiconductor layer formed by selective deposition and method for depositing semiconductor layer
US7655485B2 (en) 1997-09-29 2010-02-02 Nec Corporation Semiconductor layer formed by selective deposition and method for depositing semiconductor layer
US6337870B1 (en) 1997-10-20 2002-01-08 Nec Corporation Semiconductor laser having recombination layer stripes in current blocking structure
US6670203B2 (en) 1997-10-20 2003-12-30 Nec Corporation Method for manufacturing semiconductor laser having recombination layer stripes in current blocking structure
US6984841B2 (en) 2001-02-15 2006-01-10 Sharp Kabushiki Kaisha Nitride semiconductor light emitting element and production thereof
JP2007150376A (en) * 2007-03-20 2007-06-14 Sharp Corp Nitride semiconductor light-emitting device, epi wafer and its manufacturing method, and epi wafer

Also Published As

Publication number Publication date
JP3752705B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
US5828684A (en) Dual polarization quantum well laser in the 200 to 600 nanometers range
US5727008A (en) Semiconductor light emitting device, semiconductor laser device, and method of fabricating semiconductor light emitting device
JP3830051B2 (en) Nitride semiconductor substrate manufacturing method, nitride semiconductor substrate, optical semiconductor device manufacturing method, and optical semiconductor device
US7015498B2 (en) Quantum optical semiconductor device
JP4138930B2 (en) Quantum semiconductor device and quantum semiconductor light emitting device
US8198637B2 (en) Nitride semiconductor laser and method for fabricating the same
US20090078944A1 (en) Light emitting device and method of manufacturing the same
US20060060833A1 (en) Radiation-emitting optoelectronic component with a quantum well structure and method for producing it
JPH0818159A (en) Semiconductor laser element and fabrication thereof
JP2000040858A (en) Optical semiconductor device, manufacture thereof and semiconductor wafer
JPH10335750A (en) Semiconductor substrate and semiconductor device
JPH07235732A (en) Semiconductor laser
JP2002009004A (en) Method of manufacturing nitride semiconductor, nitride semiconductor device, method of manufacturing the same semiconductor light emitting device and its manufacturing method
JP4822608B2 (en) Nitride-based semiconductor light-emitting device and manufacturing method thereof
JPH0864906A (en) Manufacture of semiconductor device
JPH09129974A (en) Semiconductor laser device
JP4300004B2 (en) Semiconductor light emitting device
US6891187B2 (en) Optical devices with heavily doped multiple quantum wells
JPH0936473A (en) Semiconductor laser element
JPH09307188A (en) Nitride based iii-v compound semiconductor element and its manufacture
JPH0945987A (en) Semiconductor laser element
JPH10303505A (en) Gallium nitride semiconductor light emitting device and its manufacture
JPH06268327A (en) Semiconductor light emitting element
JP4984514B2 (en) Semiconductor light emitting device and method for manufacturing the semiconductor light emitting device
JPH0951139A (en) Semiconductor laser element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term