JP3752705B2 - Manufacturing method of semiconductor laser device - Google Patents

Manufacturing method of semiconductor laser device Download PDF

Info

Publication number
JP3752705B2
JP3752705B2 JP17840295A JP17840295A JP3752705B2 JP 3752705 B2 JP3752705 B2 JP 3752705B2 JP 17840295 A JP17840295 A JP 17840295A JP 17840295 A JP17840295 A JP 17840295A JP 3752705 B2 JP3752705 B2 JP 3752705B2
Authority
JP
Japan
Prior art keywords
optical waveguide
layer
insulating film
waveguide
stripe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17840295A
Other languages
Japanese (ja)
Other versions
JPH0936473A (en
Inventor
俊明 田中
憲治 内田
明禎 渡辺
正一 赤松
重量 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17840295A priority Critical patent/JP3752705B2/en
Publication of JPH0936473A publication Critical patent/JPH0936473A/en
Application granted granted Critical
Publication of JP3752705B2 publication Critical patent/JP3752705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、光情報端末或は光応用計測光源に適する半導体レーザ素子に関する。
【0002】
【従来の技術】
青色波長領域で発光する光デバイスに関しては、従来技術では例えばGaInN/AlGaN材料を用いた例が示されており、青色発光ダイオードを構成する素子構造について、例えばアプライド・フィジックス・レター1994年,64巻,1687-1689頁(Appl. Phys. Lett., 64, 1687-1689(1994).)において述べられている。
【0003】
【発明が解決しようとする課題】
上記従来技術では、Nitiride系材料を用いた青色発光ダイオードに関して、発光活性層や光導波層の構成について述べているが、半導体レーザに要求される導波路共振構造に関する内容の詳細については述べられていない。また、半導体レーザの横モードを厳密に制御する構造に関する内容を説明していない。
【0004】
本発明の目的は、特にこれまで導波路や共振器の形成が困難であったNitride材料において、材料の特徴に適した導波路共振構造の詳細と結晶成長技術を活かした構造作製の手法を規定するものであり、室温において青紫色波長領域のレーザ動作を達成することにある。さらに、基本横モードを制御しながら、低閾値動作や高出力動作を実現し得る導波路構造を有したレーザ素子を提供する。
【0005】
【課題を解決するための手段】
上記目的を達成するための手段を以下に説明する。
【0006】
本発明では、従来導波路や共振器を形成することが困難であったNitride材料に対して、選択成長技術を利用することにより、導波路共振構造を作製する。選択成長条件と絶縁膜マスクパターンを規定することにより、断面が矩形状である導波路構造と基板面に垂直な端面を有した共振器構造を同時に作製できる。導波路構造においては、発光活性層を光導波層の中に埋め込んだ形の実屈折率導波による横モード制御型埋め込み(BH: Buried Heterostructure)構造を容易に達成できる。さらに低閾値動作の素子を実現するために、共振器端面にDBR構造高反射膜を形成する。また高出力特性を有した素子は、アレイ状の導波路構造を設けることにより実現する。
【0007】
【作用】
目的を達成するため、上記手段の作用について説明する。
【0008】
単結晶基板として半導体基板或いはセラミックス基板を用い、基板面方位が(0001)C面を有するWurtzite構造である基板とする。基板表面に絶縁膜マスクを形成して、選択成長技術を用いて結晶成長する。このとき、導波路ストライプを形成する方向は、該基板の(11-20)A面に平行であるか、或いは(11-20)A面に垂直となる(1-100)M面に平行な方向に設定しておく。このような条件のもとに選択成長技術を用いて、導波路構造や共振器構造を作製すると、結晶層が基板面に垂直である導波路側面や共振器端面を作製できることを見出した。導波路側面や共振器面を上記のように形状制御するためには、基板表面の窒化処理や成長温度及びマスク幅や間隔を最適範囲に設定することが必要であり、これらのパラメータを規定することが重要であった。
【0009】
上記の選択成長条件を適切な範囲に設定することにより、実屈折率差で基本横モードが安定に導波されるBHストライプ構造が一回の結晶成長によって実現できる。また、BHストライプ構造の両側面近傍において、異常成長したり矩形状に制御できなかったりすることを避けるために、ダミーパターンを設ける。ストライプ構造の両端に同様な絶縁膜マスク形状からなるダミーパターンを設けておくことにより、内側の導波路構造を高品質な結晶層から構成できる。このダミーパターン上のストライプ構造には電流を注入しないように、絶縁膜マスクによってカバーしておけば、基本横モードの導波が不安定になることはない。これにより、低閾値や高効率動作が期待できる。
【0010】
さらに、基板面に垂直な共振器端面に対して、少なくとも屈折率が異なる2種類の結晶層からなるDBR構造高反射膜を形成することにより、格段の低閾値動作が可能である。Nitride材料では、他のIII-V族半導体材料に比べて屈折率が小さいために、端面反射率が20%程度と小さくなるが、DBR構造の周期数を増やすことにより、端面反射率は90%以上に設定でき、最高99%の反射率が得られた。これにより、DBR構造高反射膜を施していない素子に比べて、閾値電流を1/10から1/20に低減できた。
【0011】
また、ストライプ構造をアレイ状に設定して、高出力動作を図ることができる。ストライプ構造の本数に依存して、高出力化が可能である。アレイ状のストライプ構造のうち、ダミーストライプを除く内側の光導波路構造に対して、導波される横モードの位相整合条件に合ったストライプを配列させたフェーズドアレイ構造により、基本横モードを保たまま、単体のストライプ構造に比べてストライプの本数倍以上に最高光出力を増大できた。
【0012】
以上により、Nitride材料に対して、基本横モードに制御しつつ、低閾値動作や高出力動作を達成する導波路構造を有した半導体レーザ素子構造が作製できる。
【0013】
【実施例】
実施例1
本発明の一実施例を図1(a),(b)により説明する。図1(a)において、(0001)C面を有するα-Al2O3基板1を用いてまず温度950〜1150℃の範囲で表面窒化処理を行った後、成長温度450〜550℃においてGaNバッファ層2,成長温度950〜1050℃においてn型GaN光導波層3を有機金属気相成長法により結晶成長する。その後、絶縁膜の形成とリソグラフィーにより、図1(b)においてマスク間隔W1を1〜2μmとし、マスク幅W2を10〜30μmの範囲に設定した絶縁膜マスク4を形成する。このとき、図1(b)において絶縁膜マスク4を形成する方向を該α-Al2O3基板1における(11-20)A面と平行な方向に規定しておく。その後、温度950〜1050℃の範囲で選択成長して、n型GaN光導波層5,AlGaN光分離閉じ込め層とGaN量子障壁層及びGaInN量子井戸層からなる圧縮歪多重量子井戸活性層6,p型GaN光導波層7を順次設ける。次に、絶縁膜8を形成して、リソグラフィーにより、p電極とn電極のパターンを蒸着形成する。さらに、導波路とは垂直な方向に基板を劈開することによって図1に示す素子断面を得、スクライブすることにより素子を切り出す。
【0014】
本実施例によると、屈折率導波構造によって導波光を伝搬でき、実屈折率差によって基本横モードを安定に導波するBHストライプ構造を作製できた。本素子では、室温においてサファイア基板上に形成したAlGaInN材料からレーザ動作を確認できた。室温における発振波長は、410〜430nmの範囲であり、青紫色の波長領域であった。
【0015】
実施例2
本発明の他実施例を図2(a),(b)により説明する。実施例1と同様に素子を作製するが、実施例1のストライプ構造を作製するためのマスクパターン外側に図2(b)に示すようなダミーパターンを形成しておき、これを含む絶縁膜マスク4を形成する。このとき図2(b)において、導波路構造用にマスク間隔W1を1〜2μmとしマスク幅W2を5〜30μmの範囲に設定し、またダミーパターン用としてマスク間隔W3を1〜10μmとしマスク幅W4を5〜30μmの範囲に設定しておく。この後、実施例1と全く同様にして素子を作製し、図2(a)に示す素子断面を得る。
【0016】
本実施例によると、ダミーパターンにより、導波路ストライプ構造両側壁には異常成長が見られず、導波路層の結晶性を改善させることができた。この結果、実施例2より閾値電流をさらに2/3から1/2に低減できた。
【0017】
実施例3
本発明の他実施例を図3(a),(b)及び図4により説明する。本素子では、実施例2と同様に素子を作製し絶縁膜マスクにダミーパターンを設けておくが、図3(b)に示すように共振方向において絶縁膜マスクを共振器端面部近傍にまで設ける。このマスクパターンにより、個々の素子は最初から共振器端面で分離されることになる。このとき、共振器端面近傍に設ける絶縁膜マスクは、共振方向に隣接する導波路構造との間隔の半分の幅W5として、20〜40μmの範囲に設定した。図3(b)において、導波路の方向は該α-Al2O3基板1における(11-20)A面と垂直な方向に規定しておく。この結果、選択成長により導波路構造の作製と同時に、基板面に垂直な共振器端面が形成できる。結晶成長した層7に引き続いて選択成長して、歪補償GaInN/AlGaNDBR構造高反射膜8を形成する。この後は、実施例2と同様に素子を作製し、図3(a)に示す素子縦断面と図4に示す素子横断面を得る。
【0018】
本実施例によると、選択成長により導波路構造と同時に基板面に垂直な共振器端面が形成できるので、基板の劈開により共振器面を形成する必要がない。共振器端面であるNitride材料の(1-100)M面の結晶面に、DBR構造高反射膜を施すことにより、実施例2よりも格段の低閾値動作を達成できた。本素子では、DBR構造高反射膜を設けていない場合に比べて、閾値電流を1/5から1/10にまで低減できた。本実施例では、共振器端面近傍にダミ−パタ−ンを設けることにより、共振器端面やDBR構造高反射膜の結晶性や反射率を改善できるので、さらに低閾値動作が達成された。
【0019】
実施例4
本発明の他実施例を図5(a),(b)により説明する。実施例2と同様にして素子を作製するが、実施例3の導波路ストライプ構造を横に並べてアレイ状にする。アレイ状ストライプの両外側にはダミ−パタ−ンを設けておき、絶縁膜マスク4を図5(b)のように形成しておく。このとき図5(b)において、例えば3つの導波路ストライプ構造用にマスク間隔W1を1〜2μmとしマスク幅W2を1〜10μmの範囲として設定し、またダミ−パタ−ン用としてマスク間隔W3を1〜10μmとしマスク幅W4を5〜30μmの範囲に設定しておく。図5(a)に示すように、内側の3つのストライプ構造に電流を注入し、両側ダミ−ストライプ構造に電流を注入しないように絶縁膜マスクによりカバ−しておく。その後、実施例2と全く同様にして素子を作製し、図5(a)に示す素子断面を得る。
【0020】
本実施例によると、一定の狭い周期に規定したストライプ構造を並べることにより、各ストライプ構造を導波するモ−ドの位相を整合させたフェ−ズドアレイ構造を形成できた。これにより、多数のストライプ構造を設けても、全体で基本横モ−ドで動作させることが可能となり、単体のストライプ構造である実施例2や3の場合よりも高出力動作が達成できた。本素子の最高光出力は、実施例2や3に比べて3倍から5倍に向上した。さらに、ストライプ構造の本数を増やすことにより、より高出力動作が可能であった。
【0021】
【発明の効果】
本発明により、導波路や共振器の形成が困難であったNitride材料に対して、選択成長技術を用いて半導体レ−ザに必須となる導波路共振構造を作製することができた。導波路構造は、実屈折率差によって基本横モ−ドを安定に導波するBHストライプ構造を容易に形成できた。この結果、サファイア基板上に形成したAlGaInN材料からなるレ−ザの室温における動作を確認できた。室温における発振波長は、410〜430nmの範囲であり、青紫色の波長領域であった。ストライプ構造の両外側にダミ−パタ−ンを導入することにより、閾値電流を2/3から1/2に低減できた。さらに、基板面に垂直な共振器端面を形成した後、DBR構造高反射膜を設けることにより、格段の低閾値動作を達成し閾値電流を1/5から1/10に低減できた。また、3本の導波路ストライプ構造を位相整合させたフェ−ズドアレイ構造にすることにより、基本横モ−ドのまま単体のストライプ構造に比べて最高光出力を3〜5倍にまで増大させることが可能であった。
【0022】
本発明の実施例では、六方晶系のWurtzite構造であり(0001)C面を有したサファイア基板上に作製したAlGaInN半導体レ−ザについて説明したが、他の六方晶系の基板であるSiC等の基板や、Zinc Blende構造であり(111)面を有した基板であるGaAs,InP,InAs,GaSb,GaAsP,GaInAs,SiC,ZnSe,ZnS等の基板上に作製した半導体レ−ザに対しても本発明の内容を適用できることは言うまでもない。
【0023】
【図面の簡単な説明】
【図1】本発明の一実施例を示す素子構造縦断面図(a)と上面図(b)。
【図2】本発明の他実施例を示す素子構造縦断面図(a)と上面図(b)。
【図3】本発明の他実施例を示す素子構造縦断面図(a)と上面図(b)。
【図4】本発明の他実施例における素子構造横断面図。
【図5】本発明の他実施例を示す素子構造縦断面図(a)と上面図(b)。
【符号の説明】
1.(0001)C面サファイア単結晶基板、2.GaNバッファ層、
3.n型GaN光導波層、4.絶縁膜マスク、5.n型GaN光導波層、
6.GaInN/GaN/AlGaN多重量子井戸構造活性層、7.p型GaN光導波層、
8.絶縁膜、9.p電極、10.n電極、11.歪補償GaInN/AlGaNDBR構造高反射膜。
[0001]
[Industrial application fields]
The present invention relates to a semiconductor laser element suitable for an optical information terminal or an optical applied measurement light source.
[0002]
[Prior art]
Regarding optical devices that emit light in the blue wavelength region, the prior art has shown examples using, for example, GaInN / AlGaN materials. Regarding the element structure constituting the blue light emitting diode, for example, Applied Physics Letter 1994, Vol. 64 1687-1689 (Appl. Phys. Lett., 64, 1687-1689 (1994)).
[0003]
[Problems to be solved by the invention]
In the above prior art, the configuration of the light emitting active layer and the optical waveguide layer is described with respect to the blue light emitting diode using the Nitiride-based material, but the details regarding the waveguide resonance structure required for the semiconductor laser are described. Absent. Further, the contents regarding the structure for strictly controlling the transverse mode of the semiconductor laser are not described.
[0004]
The purpose of the present invention is to define the details of the waveguide resonance structure suitable for the characteristics of the material and the method of fabricating the structure utilizing the crystal growth technology, especially in the Nitride material, where it has been difficult to form waveguides and resonators. The object is to achieve laser operation in the blue-violet wavelength region at room temperature. Furthermore, the present invention provides a laser device having a waveguide structure capable of realizing a low threshold operation and a high output operation while controlling the fundamental transverse mode.
[0005]
[Means for Solving the Problems]
Means for achieving the above object will be described below.
[0006]
In the present invention, a waveguide resonance structure is fabricated by using a selective growth technique for a Nitride material that has conventionally been difficult to form a waveguide or a resonator. By defining the selective growth conditions and the insulating film mask pattern, a waveguide structure having a rectangular cross section and a resonator structure having an end face perpendicular to the substrate surface can be simultaneously produced. In the waveguide structure, a transverse mode control type buried (BH: Buried Heterostructure) structure by real refractive index guiding in which the light emitting active layer is embedded in the optical waveguide layer can be easily achieved. Further, in order to realize an element having a low threshold value operation, a DBR structure highly reflective film is formed on the end face of the resonator. An element having high output characteristics can be realized by providing an arrayed waveguide structure.
[0007]
[Action]
In order to achieve the object, the operation of the above means will be described.
[0008]
A semiconductor substrate or a ceramic substrate is used as the single crystal substrate, and the substrate surface orientation is a substrate having a Wurtzite structure having a (0001) C plane. An insulating film mask is formed on the substrate surface, and crystals are grown using a selective growth technique. At this time, the direction in which the waveguide stripe is formed is parallel to the (11-20) A plane of the substrate, or parallel to the (1-100) M plane which is perpendicular to the (11-20) A plane. Set the direction. It has been found that when a waveguide structure or a resonator structure is produced using a selective growth technique under such conditions, a waveguide side face or a resonator end face whose crystal layer is perpendicular to the substrate surface can be produced. In order to control the shape of the waveguide side surface and resonator surface as described above, it is necessary to set the nitriding treatment, growth temperature, mask width, and interval of the substrate surface within the optimum range, and these parameters are defined. It was important.
[0009]
By setting the selective growth conditions in an appropriate range, a BH stripe structure in which the fundamental transverse mode is stably guided by the actual refractive index difference can be realized by a single crystal growth. In addition, dummy patterns are provided in the vicinity of both side surfaces of the BH stripe structure in order to avoid abnormal growth or control to a rectangular shape. By providing a dummy pattern having the same insulating film mask shape at both ends of the stripe structure, the inner waveguide structure can be composed of a high-quality crystal layer. If the stripe structure on the dummy pattern is covered with an insulating film mask so as not to inject current, the fundamental transverse mode waveguide does not become unstable. As a result, a low threshold and high efficiency operation can be expected.
[0010]
Further, by forming a DBR structure highly reflective film composed of at least two types of crystal layers having different refractive indexes on the cavity end face perpendicular to the substrate surface, a remarkably low threshold operation is possible. Nitride materials have a lower refractive index than other III-V semiconductor materials, so the end-face reflectance is as low as about 20%. However, by increasing the period of the DBR structure, the end-face reflectance is 90%. The reflectivity of up to 99% was obtained. As a result, the threshold current can be reduced from 1/10 to 1/20 as compared with the element not provided with the DBR structure high reflection film.
[0011]
In addition, the stripe structure can be set in an array to achieve a high output operation. Depending on the number of stripe structures, higher output is possible. Among the arrayed stripe structures, the basic transverse mode is maintained by the phased array structure in which stripes that match the phase matching conditions of the guided transverse mode are arranged with respect to the inner optical waveguide structure excluding the dummy stripe. The maximum light output could be increased more than the number of stripes compared to a single stripe structure.
[0012]
As described above, a semiconductor laser element structure having a waveguide structure that achieves a low threshold operation and a high output operation while controlling in the fundamental transverse mode can be manufactured with respect to the Nitride material.
[0013]
【Example】
Example 1
An embodiment of the present invention will be described with reference to FIGS. 1 (a) and 1 (b). In FIG. 1 (a), surface nitriding treatment is first performed at a temperature of 950 to 1150 ° C. using an α-Al 2 O 3 substrate 1 having a (0001) C plane, and then GaN is grown at a growth temperature of 450 to 550 ° C. The buffer layer 2 and the n-type GaN optical waveguide layer 3 are crystal-grown by metal organic vapor phase epitaxy at a growth temperature of 950 to 1050 ° C. Thereafter, the insulating film mask 4 is formed by forming the insulating film and lithography, setting the mask interval W 1 to 1 to 2 μm and setting the mask width W 2 to the range of 10 to 30 μm in FIG. At this time, the direction in which the insulating film mask 4 is formed in FIG. 1B is defined as a direction parallel to the (11-20) A plane of the α-Al 2 O 3 substrate 1. Thereafter, it is selectively grown at a temperature in the range of 950 to 1050 ° C., and an n-type GaN optical waveguide layer 5, a compression-strained multiple quantum well active layer 6 consisting of an AlGaN optical isolation and confinement layer, a GaN quantum barrier layer and a GaInN quantum well layer 6, p The type GaN optical waveguide layer 7 is sequentially provided. Next, the insulating film 8 is formed, and p-electrode and n-electrode patterns are deposited by lithography. 1 is obtained by cleaving the substrate in a direction perpendicular to the waveguide, and the element is cut out by scribing.
[0014]
According to this example, guided light can be propagated by the refractive index waveguide structure, and a BH stripe structure that stably guides the fundamental transverse mode by the actual refractive index difference can be produced. In this device, the laser operation was confirmed from the AlGaInN material formed on the sapphire substrate at room temperature. The oscillation wavelength at room temperature was in the range of 410 to 430 nm and was a blue-violet wavelength region.
[0015]
Example 2
Another embodiment of the present invention will be described with reference to FIGS. 2 (a) and 2 (b). An element is manufactured in the same manner as in Example 1, but a dummy pattern as shown in FIG. 2B is formed outside the mask pattern for manufacturing the stripe structure of Example 1, and an insulating film mask including the dummy pattern is formed. 4 is formed. In this case FIG. 2 (b), the mask distance W 1 to waveguide structure set the mask width W 2 and 1~2μm the range of 5 to 30 [mu] m, also 1~10μm mask interval W 3 as dummy patterns And the mask width W 4 is set in the range of 5 to 30 μm. Thereafter, an element is manufactured in exactly the same manner as in Example 1, and the element cross section shown in FIG.
[0016]
According to this example, the dummy pattern showed no abnormal growth on both side walls of the waveguide stripe structure, and the crystallinity of the waveguide layer could be improved. As a result, the threshold current could be further reduced from 2/3 to 1/2 compared to Example 2.
[0017]
Example 3
Another embodiment of the present invention will be described with reference to FIGS. 3 (a), 3 (b) and FIG. In this device, the device is manufactured and a dummy pattern is provided on the insulating film mask in the same manner as in Example 2. However, as shown in FIG. 3B, the insulating film mask is provided up to the vicinity of the resonator end face in the resonance direction. . With this mask pattern, the individual elements are separated from each other at the resonator end face from the beginning. At this time, the insulating film mask provided in the vicinity of the resonator end face was set in a range of 20 to 40 μm as a width W 5 that is half of the interval with the waveguide structure adjacent in the resonance direction. In FIG. 3B, the direction of the waveguide is defined in a direction perpendicular to the (11-20) A plane of the α-Al 2 O 3 substrate 1. As a result, the cavity end face perpendicular to the substrate surface can be formed simultaneously with the production of the waveguide structure by selective growth. A strain-compensated GaInN / AlGaN DBR structure high reflection film 8 is formed by subsequent selective growth of the crystal-grown layer 7. Thereafter, an element is fabricated in the same manner as in Example 2, and an element longitudinal section shown in FIG. 3A and an element transverse section shown in FIG. 4 are obtained.
[0018]
According to the present embodiment, since the resonator end face perpendicular to the substrate surface can be formed simultaneously with the waveguide structure by selective growth, it is not necessary to form the resonator surface by cleaving the substrate. By applying a DBR structure highly reflective film to the (1-100) M-plane crystal face of the Nitride material, which is the end face of the resonator, a much lower threshold operation than in Example 2 was achieved. In this device, the threshold current can be reduced from 1/5 to 1/10 as compared with the case where no DBR structure highly reflective film is provided. In this embodiment, by providing a dummy pattern in the vicinity of the resonator end face, the crystallinity and reflectivity of the resonator end face and the DBR structure high reflection film can be improved.
[0019]
Example 4
Another embodiment of the present invention will be described with reference to FIGS. 5 (a) and 5 (b). An element is fabricated in the same manner as in Example 2, but the waveguide stripe structure of Example 3 is arranged side by side to form an array. A dummy pattern is provided on both outer sides of the array stripe, and the insulating film mask 4 is formed as shown in FIG. At this time, in FIG. 5B, for example, the mask interval W 1 is set to 1 to 2 μm and the mask width W 2 is set to 1 to 10 μm for the three waveguide stripe structures, and the mask is used for the dummy pattern. The interval W 3 is set to 1 to 10 μm, and the mask width W 4 is set to a range of 5 to 30 μm. As shown in FIG. 5 (a), current is injected into the three inner stripe structures and covered with an insulating film mask so as not to inject current into the both-side dummy stripe structure. Thereafter, an element is fabricated in exactly the same manner as in Example 2 to obtain the element cross section shown in FIG.
[0020]
According to the present embodiment, a phased array structure in which the phases of the modes guiding each stripe structure are matched can be formed by arranging the stripe structures defined in a constant narrow period. As a result, even if a large number of stripe structures are provided, it is possible to operate in the basic horizontal mode as a whole, and a higher output operation can be achieved than in the case of the second and third embodiments having a single stripe structure. The maximum light output of this element was improved 3 to 5 times compared to Examples 2 and 3. Furthermore, higher output operation was possible by increasing the number of stripe structures.
[0021]
【The invention's effect】
According to the present invention, a waveguide resonance structure that is essential for a semiconductor laser can be manufactured using a selective growth technique for a Nitride material for which it is difficult to form a waveguide or a resonator. The waveguide structure can easily form a BH stripe structure that stably guides the basic transverse mode by the actual refractive index difference. As a result, the operation at room temperature of the laser made of the AlGaInN material formed on the sapphire substrate was confirmed. The oscillation wavelength at room temperature was in the range of 410 to 430 nm and was a blue-violet wavelength region. The threshold current could be reduced from 2/3 to 1/2 by introducing a dummy pattern on both sides of the stripe structure. Furthermore, by forming a resonator end face perpendicular to the substrate surface and then providing a DBR structure high reflection film, a markedly low threshold operation can be achieved and the threshold current can be reduced from 1/5 to 1/10. In addition, by using a phased array structure in which three waveguide stripe structures are phase-matched, the maximum light output can be increased to 3 to 5 times as compared with a single stripe structure in the basic transverse mode. Was possible.
[0022]
In the embodiment of the present invention, an AlGaInN semiconductor laser fabricated on a sapphire substrate having a hexagonal Wurtzite structure and a (0001) C plane has been described. However, other hexagonal substrates such as SiC, etc. And semiconductor lasers fabricated on GaAs, InP, InAs, GaSb, GaAsP, GaInAs, SiC, ZnSe, ZnS, etc., which are Zinc Blende structures and have a (111) surface. Needless to say, the contents of the present invention can be applied.
[0023]
[Brief description of the drawings]
1A and 1B are a longitudinal sectional view (a) and a top view (b) of an element structure showing an embodiment of the present invention.
2A and 2B are a longitudinal sectional view (a) and a top view (b) of an element structure showing another embodiment of the present invention.
FIGS. 3A and 3B are a longitudinal sectional view (a) and a top view (b) of an element structure showing another embodiment of the present invention. FIGS.
FIG. 4 is a cross-sectional view of an element structure in another embodiment of the present invention.
FIGS. 5A and 5B are a longitudinal sectional view (a) and a top view (b) of an element structure showing another embodiment of the present invention.
[Explanation of symbols]
1. (0001) C-plane sapphire single crystal substrate, 2. GaN buffer layer,
3. 3. n-type GaN optical waveguide layer; 4. Insulating film mask, n-type GaN optical waveguide layer,
6). 6. GaInN / GaN / AlGaN multiple quantum well structure active layer; p-type GaN optical waveguide layer,
8). 8. insulating film; p electrode, 10. n electrode, 11. Highly reflective film with strain compensation GaInN / AlGaN DBR structure.

Claims (1)

単結晶基板上に光導波路構造が設けられ、
前記光導波路構造は光導波層および発光活性層とを有し、かつ、前記光導波路構造は矩形状の断面形状であるストライプ構造を有し、
前記光導波層上面は前記基板表面と平行で平坦な面からなり、前記光導波層側面は前記基板表面に対して垂直であり、かつ、平滑な面となっており、前記光導波路構造内部では前記発光活性層が前記光導波層に埋め込まれるように構成されることにより、前記発光活性層横方向に実屈折率差を設けて、基本横モードを安定に導波する埋め込み型ストライプ構造を有する半導体レーザ素子の製造方法であって、
前記ストライプ構造の選択成長用の所定のマスク幅とマスク間隔を有する絶縁膜マスクパターン、及び、絶縁膜マスクパターンのさらに外側に相当する2つの領域に位置するダミーパターンを形成し、
前記ダミーパターンと前記絶縁膜マスクパターンとが形成された状態で前記光導波層および前記発光活性層を結晶成長させて前記光導波路構造を形成することを特徴とする半導体レーザ素子の製造方法。
An optical waveguide structure is provided on the single crystal substrate,
The optical waveguide structure has an optical waveguide layer and a light emitting active layer, and the optical waveguide structure has a stripe structure having a rectangular cross-sectional shape,
The upper surface of the optical waveguide layer is a flat surface parallel to the substrate surface, the side surfaces of the optical waveguide layer are perpendicular to the substrate surface, and are smooth surfaces. The light emitting active layer is configured to be embedded in the optical waveguide layer, thereby providing an embedded stripe structure that provides a real refractive index difference in the lateral direction of the light emitting active layer and stably guides the fundamental transverse mode. A method for manufacturing a semiconductor laser device, comprising:
Forming an insulating film mask pattern having a predetermined mask width and mask interval for selective growth of the stripe structure, and a dummy pattern located in two regions corresponding to the further outside of the insulating film mask pattern;
A method of manufacturing a semiconductor laser device, wherein the optical waveguide structure is formed by crystal growth of the optical waveguide layer and the light emitting active layer in a state where the dummy pattern and the insulating film mask pattern are formed.
JP17840295A 1995-07-14 1995-07-14 Manufacturing method of semiconductor laser device Expired - Lifetime JP3752705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17840295A JP3752705B2 (en) 1995-07-14 1995-07-14 Manufacturing method of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17840295A JP3752705B2 (en) 1995-07-14 1995-07-14 Manufacturing method of semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH0936473A JPH0936473A (en) 1997-02-07
JP3752705B2 true JP3752705B2 (en) 2006-03-08

Family

ID=16047879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17840295A Expired - Lifetime JP3752705B2 (en) 1995-07-14 1995-07-14 Manufacturing method of semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3752705B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3946337B2 (en) * 1997-02-21 2007-07-18 株式会社東芝 Gallium nitride compound semiconductor laser
JP3283802B2 (en) 1997-09-29 2002-05-20 日本電気株式会社 Semiconductor layer using selective growth method and method for growing the same, nitride semiconductor layer using selective growth method and method for growing the same, nitride semiconductor light emitting device and method for manufacturing the same
JP3024611B2 (en) 1997-10-20 2000-03-21 日本電気株式会社 Semiconductor laser and method of manufacturing the same
WO2002065556A1 (en) 2001-02-15 2002-08-22 Sharp Kabushiki Kaisha Nitride semiconductor light emitting element and production therefor
JP4146881B2 (en) * 2007-03-20 2008-09-10 シャープ株式会社 Nitride semiconductor light-emitting device, epi-wafer and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0936473A (en) 1997-02-07

Similar Documents

Publication Publication Date Title
US11791606B1 (en) Method and system for providing directional light sources with broad spectrum
US20090078944A1 (en) Light emitting device and method of manufacturing the same
EP1306944B1 (en) Semiconductor laser device, and method of manufacturing the same
JP3822976B2 (en) Semiconductor device and manufacturing method thereof
US11677213B1 (en) Systems for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US20060060833A1 (en) Radiation-emitting optoelectronic component with a quantum well structure and method for producing it
US7338827B2 (en) Nitride semiconductor laser and method for fabricating the same
JPH0818159A (en) Semiconductor laser element and fabrication thereof
WO1997011518A1 (en) Semiconductor material, method of producing the semiconductor material, and semiconductor device
JPH07235732A (en) Semiconductor laser
JPH10335750A (en) Semiconductor substrate and semiconductor device
JP2000312054A (en) Semiconductor element and manufacture thereof
JP2002009004A (en) Method of manufacturing nitride semiconductor, nitride semiconductor device, method of manufacturing the same semiconductor light emitting device and its manufacturing method
KR100539289B1 (en) Semiconductor light-emitting device and the method for producing thereof
JP3863962B2 (en) Nitride III-V compound semiconductor light emitting device and method for manufacturing the same
JPH10270802A (en) Nitride iii-v compound semiconductor device and its manufacture
US9368940B2 (en) Semiconductor device and manufacturing method of semiconductor device
JPH09129974A (en) Semiconductor laser device
JP2011210885A (en) Semiconductor laser array and method for manufacturing semiconductor laser array
JP3752705B2 (en) Manufacturing method of semiconductor laser device
JP4984514B2 (en) Semiconductor light emitting device and method for manufacturing the semiconductor light emitting device
JPH0945987A (en) Semiconductor laser element
JPH0951139A (en) Semiconductor laser element
JP3918259B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH0936472A (en) Semiconductor laser element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term