JPH0936314A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0936314A
JPH0936314A JP18715995A JP18715995A JPH0936314A JP H0936314 A JPH0936314 A JP H0936314A JP 18715995 A JP18715995 A JP 18715995A JP 18715995 A JP18715995 A JP 18715995A JP H0936314 A JPH0936314 A JP H0936314A
Authority
JP
Japan
Prior art keywords
film
capacitor
dielectric
electrode
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18715995A
Other languages
Japanese (ja)
Inventor
Hisami Okuwada
久美 奥和田
Yohachi Yamashita
洋八 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18715995A priority Critical patent/JPH0936314A/en
Publication of JPH0936314A publication Critical patent/JPH0936314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor device provided with a capacitance element of large capacity, by constituting a capacitance element of lamination structure sandwiching a dielectric film between a lower electrode and an upper electrode, and making the dielectric film contain Ta oxide, Nb oxide, and one or more kinds of elements selected out of a group of Ca, Sr, etc. SOLUTION: A conducting layer 11 turning to the lower electrode of a capacitor is formed by sputtering a Pt target. Coating solution for forming a dielectric film 12 is obtained by preparing (CH3 OC2 H4 O)2 Sr and Ta(OC2 H5 )5 in solvent CH3 OC2 H4 OH in the manner in which the ratio Sr:Ta is 1:1 and the total concentration is 4mol/l. The electrode conducting layer 11 constituted of a Pt thin film is spin-coated with the coating solution. By repeating three times a heat treatment process wherein heating is performed at about 750 deg.C for about 30 minutes, a dielectric layer 12 of 200nm in thickness is obtained. On the dielectric film 12, an Ni film is formed by sputtering Ni, and patterned into an electrode pad of 20μm square. Thus a conducting layer 13 of an upper electrode is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、容量素子を備えた
半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a capacitive element.

【0002】[0002]

【従来の技術】近年、発展が著しい集積回路(Inte
grated Circuit=IC)は、トランジス
タや容量素子(キャパシタ)等を同一半導体チップ上に
集積化したものから成る。ICのコストを決定する重要
な要素のひとつに半導体チップの大きさがあり、チップ
サイズが小さいほど低コストになり、そのためには各素
子の半導体チップ上での占める面積を低減することが重
要である。なかでもキャパシタンスの占める面積は全チ
ップ面積に対して割合が大きく、したがって、キャパシ
タンスの占有面積を小さくすることがチップサイズ低減
に大きく寄与する。
2. Description of the Related Art Recently, an integrated circuit (Inte
A gated circuit (IC) is formed by integrating transistors, capacitors (capacitors), and the like on the same semiconductor chip. One of the important factors that determines the cost of an IC is the size of a semiconductor chip, and the smaller the chip size, the lower the cost. Therefore, it is important to reduce the area occupied by each element on the semiconductor chip. is there. Above all, the area occupied by the capacitance is large relative to the entire chip area, and therefore, reducing the area occupied by the capacitance greatly contributes to the chip size reduction.

【0003】さらに、高周波素子においては配線長の短
縮化により損失低減が図れるため、素子内のキャパシタ
ンスの占有面積を小さくすることが特性向上の上からも
強く望まれている。また、従来、特に容量の大きなノイ
ズ吸収用途等のキャパシタは、半導体チップ内には内蔵
せず、回路基板上で半導体チップとともに別に実装さ
れ、ワイヤーボンディングなどの手段で接続されて使用
している。回路基板上の半導体チップ外にワイヤーボン
ディングで外付けされたコンデンサを内蔵することが可
能になれば、その配線長短縮効果および実装工程簡略化
の効果はより大きい。
Further, in a high-frequency element, loss can be reduced by shortening the wiring length, so it is strongly desired to reduce the area occupied by the capacitance in the element from the viewpoint of improving the characteristics. Further, conventionally, a capacitor having a particularly large capacity for noise absorption is not built in a semiconductor chip but is separately mounted together with the semiconductor chip on a circuit board and used by being connected by means such as wire bonding. If it becomes possible to incorporate a capacitor externally attached by wire bonding outside the semiconductor chip on the circuit board, the effect of shortening the wiring length and the effect of simplifying the mounting process will be greater.

【0004】このような要望に対して、従来からICに
用いられてきたSiO2 膜、SiON膜に代わり、誘電
率が200〜1000と高いペロブスカイト系誘電体材
料であるチタン酸ストロンチウム(SrTiO3 )やチ
タン酸バリウムストロンチウム((Ba,Sr)TiO
3 )、PZT(Pb(Zr,Ti)O3 )などの誘電体
薄膜を用いる試みがあり、面積低減効果があるものとし
て期待されている。
In response to such a demand, strontium titanate (SrTiO 3 ) which is a perovskite-based dielectric material having a high dielectric constant of 200 to 1000 is used in place of the SiO 2 film and the SiON film which have been conventionally used for ICs. And barium strontium titanate ((Ba, Sr) TiO 3
3 ), PZT (Pb (Zr, Ti) O 3 ) and other dielectric thin films have been tried, and they are expected to have an area reduction effect.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の物質は誘電率が200〜1000と大きいがゆえに、
膜内あるいは素子間で容量のバラツキが大きくなり、ま
た、誘電率の温度係数も常温から150℃までの温度領
域において±800ppm/℃以上と大きいために、ノ
イズやサージ吸収用のキャパシタとしては有効であるも
のの、発振止めや位相調整用のキャパシタとしては不適
であった。
However, since these substances have a large dielectric constant of 200 to 1000,
Capacitance variation within the film or between elements is large, and the temperature coefficient of permittivity is as large as ± 800 ppm / ° C or more in the temperature range from room temperature to 150 ° C, so it is effective as a capacitor for absorbing noise and surge. However, it was not suitable as a capacitor for stopping oscillation or adjusting the phase.

【0006】さらに実用上の問題となるのは、これらの
薄膜における容量の電圧依存性である。従来からICで
用いられてきたSiO2 膜、SiON膜には電圧依存性
はない。また一方で、バルクのセラミックからなるキャ
パシタ部品では電極間の厚さが薄膜の100倍乃至10
00倍であるため、電界としては非常に小さい値で駆動
するので、高誘電率材料の電圧依存性はほとんど問題に
されなかった。
A further practical problem is the voltage dependence of capacitance in these thin films. The SiO 2 film and SiON film that have been conventionally used in ICs have no voltage dependence. On the other hand, in a capacitor component made of bulk ceramic, the thickness between electrodes is 100 to 10 times that of the thin film.
Since it is 00 times, the electric field is driven at a very small value, so that the voltage dependence of the high dielectric constant material has hardly been a problem.

【0007】ところが、高誘電率材料を薄膜で使用する
場合には、駆動電圧が3Vから5Vであっても極めて大
きな電界下で使用することに相当する。たとえば、膜厚
100nmから1μmまでの薄膜キャパシタを5Vで使
用すると、50〜500kV/cmという大きな電界が
かかる。高誘電率材料は本質的に大きな電界依存性を持
つが、セラミックや単結晶のバルク材料では問題になら
ない電界依存性が薄膜では極めて大きな問題としてクロ
ーズアップされることとなる。例えば薄膜キャパシタに
おける電界依存性はこれまでの高誘電率材料では30%
以上という無視できない大きさになり、実質的に複数用
途のキャパシタを同時に設計しようとするときの妨げに
なっていた。
However, when a high dielectric constant material is used as a thin film, it corresponds to use under an extremely large electric field even when the driving voltage is 3V to 5V. For example, when a thin film capacitor having a film thickness of 100 nm to 1 μm is used at 5 V, a large electric field of 50 to 500 kV / cm is applied. High-dielectric constant materials inherently have large electric field dependence, but electric field dependence, which is not a problem in bulk materials such as ceramics and single crystals, will be highlighted as an extremely large problem in thin films. For example, the electric field dependence of thin-film capacitors is 30% in conventional high dielectric constant materials.
The above-mentioned size cannot be ignored, and it has been a hindrance when attempting to design capacitors for multiple purposes at the same time.

【0008】また、容量素子を含む複数の受動素子及び
能動素子からなるアナログ素子においては、従来、電圧
依存性のないSiO2 膜あるいはSiON膜で全ての用
途のキャパシタを同一基板上に同時に形成しているため
に、一部用途のキャパシタのみしか置き換えることので
きない上述のような物質系の膜をIC上に形成すること
は、2倍以上のプロセスコストがかかり、工業的には採
用するメリットが出ないという問題があった。
Further, in the case of an analog element composed of a plurality of passive elements including a capacitive element and an active element, conventionally, a capacitor for all purposes is simultaneously formed on the same substrate with a SiO 2 film or a SiON film having no voltage dependence. Therefore, forming the above-mentioned material-based film on the IC, which can replace only the capacitor for some applications, requires more than twice the process cost, and is industrially advantageous. There was a problem that it did not come out.

【0009】当然、外付けのチップコンデンサを内蔵し
ようとする際にも、内部キャパシタとは別プロセスが必
要となるため、プロセスコストの点でかえって不利にな
る場合もあり、低面積化の寄与がありながら、多くの素
子では上述のような物質系の誘電体膜を工業的に利用す
ることができなかった。さらに、上述のような物質系
は、Ti元素を含み、膜製造中にTiOx が生成しやす
く、容易に誘電体膜が半導体化してしまう問題もあっ
た。
Of course, when an external chip capacitor is to be built in, a process different from that for the internal capacitor is required, which may be disadvantageous in terms of process cost and contribute to the reduction of area. However, in many devices, it was not possible to industrially utilize the above-described material-based dielectric film. Further, the above-mentioned material system contains a Ti element, and TiOx is easily generated during the film production, which causes a problem that the dielectric film is easily converted into a semiconductor.

【0010】本発明は上記の課題を解決するためになさ
れたものであって、小型で高精度であるにもかかわらず
大容量の容量素子を備えた半導体装置を提供することを
目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor device having a large-capacity capacitive element despite its small size and high accuracy.

【0011】[0011]

【課題を解決するための手段】本発明に係る半導体装置
は、容量素子を含む複数の受動素子及び能動素子からな
る例えばアナログ素子を備えた半導体装置であって、容
量素子が下部電極と上部電極との間に誘電体膜を挟んだ
積層構造からなり、該誘電体膜がTa酸化物及びNb酸
化物のうち少なくとも一方を含み、かつ、Ca,Sr,
Ba,Mg,Znの群から選ばれる少なくとも1種以上
の元素を含むことを特徴とする。
A semiconductor device according to the present invention is a semiconductor device provided with, for example, an analog element composed of a plurality of passive elements including a capacitive element and an active element, wherein the capacitive element is a lower electrode and an upper electrode. And a dielectric film sandwiched between them and the dielectric film contains at least one of Ta oxide and Nb oxide, and Ca, Sr,
It is characterized in that it contains at least one element selected from the group consisting of Ba, Mg, and Zn.

【0012】なお、容量素子を含む複数の受動素子及び
能動素子からなる半導体装置であって、容量素子を80
0MHz以上の高周波信号が通過する回路構成を備えて
いるものであり、容量素子は下部電極と上部電極との間
に誘電体膜を挟んだ積層構造からなり、誘電体膜がMT
ak Nb1-k Ox であらわされる1ミクロン以下の複合
酸化物誘電体膜であることが望ましい。
A semiconductor device including a plurality of passive elements including a capacitive element and an active element, wherein the capacitive element is 80
The capacitive element has a circuit structure through which a high-frequency signal of 0 MHz or more passes, and the capacitive element has a laminated structure in which a dielectric film is sandwiched between a lower electrode and an upper electrode.
A composite oxide dielectric film of 1 micron or less represented by ak Nb1-k Ox is desirable.

【0013】誘電体膜は一般式MTak Nb1-k Ox で
表わすことができ、MがCa,Sr,Ba,Mg,Zn
の群から選ばれる少なくとも1種以上の元素からなる。
また、とくに誘電体膜が常温から150℃までの温度領
域において常誘電体であること、さらに、誘電体膜の誘
電率の温度係数が、常温から150℃までの温度領域に
おいて±500ppm/℃以下であること、がより望ま
しい。なぜなら、誘電体膜MTak Nb1-k Ox におい
ては、MがCa,Sr,Ba,Mg,Znのうち少なく
とも1種類の元素を表す場合に複合酸化物として安定構
造をとり、誘電率20〜100の範囲で膜形成が可能で
ある。ここで、誘電率が100近くの場合にもバラツキ
を高々±3%以内に収めることができる。
The dielectric film can be represented by the general formula MTak Nb1-k Ox, where M is Ca, Sr, Ba, Mg, Zn.
Of at least one element selected from the group
In particular, the dielectric film is a paraelectric material in the temperature range from room temperature to 150 ° C., and the temperature coefficient of the dielectric constant of the dielectric film is ± 500 ppm / ° C. or less in the temperature range from room temperature to 150 ° C. Is more desirable. This is because the dielectric film MTak Nb1-k Ox has a stable structure as a complex oxide and has a dielectric constant of 20 to 100 when M represents at least one element of Ca, Sr, Ba, Mg and Zn. Film formation is possible within the range. Here, even when the dielectric constant is close to 100, the variation can be kept within ± 3% at most.

【0014】また、誘電体膜組成は必ずしも常誘電体構
造をとらず、強誘電体構造でも十分損失は小さいもの
の、とくに高周波では僅かなヒステリシス損失さえもが
問題になるため、常温から150℃までの温度領域にお
いて常誘電体であることが望ましい。これらの組成では
損失を表わすtanδが1%以下となるため低損失化が
図られる。ここで、常誘電体であるということの意味は
ヒステリシス損失が極めて小さいということであるた
め、強誘電体構造の組成範囲であっても実効的に強誘電
体ヒステリシスを持たなければよい。すなわち、電界の
向きに対して平行に分極容易軸をもたなければよく、例
えば分極容易軸が面内に平行である配向膜も有効であ
る。
Further, although the dielectric film composition does not necessarily have a paraelectric structure and the ferroelectric structure has a sufficiently small loss, even a slight hysteresis loss becomes a problem particularly at a high frequency, so that it is from room temperature to 150 ° C. It is desirable that the material is a paraelectric material in the temperature range of. With these compositions, tan δ representing loss is 1% or less, so that low loss can be achieved. Here, the meaning of being a paraelectric material means that hysteresis loss is extremely small. Therefore, it is sufficient that the material does not have an effective ferroelectric hysteresis even in the composition range of the ferroelectric structure. That is, it suffices if the easy polarization axis is not parallel to the direction of the electric field. For example, an alignment film having the easy polarization axis parallel to the plane is also effective.

【0015】さらには、誘電体膜の誘電率の温度係数
は、常温から150℃までの温度領域において±500
ppm/℃以下である組成範囲であればさらに好まし
い。仮りにMTak Nb1-k Ox 組成のMが単一元素で
ある場合に、常温から150℃までの温度領域において
±500ppm/℃を越えることがあっても、反対の温
度係数を誘発する他のM元素の固溶置換によって±50
0ppm/℃以下とすることができる。なお、xは整数
または小数を表し、xが小数の場合は整数(a×x)に
対して、Ma(Tak ,Nb1-k )aOax という整数
比で表わすことができる。ただし、添字kは0≦k≦1
の範囲内で種々の値をとりうるものとする。なお、M/
(Ta+Nb)[原子比]は0.6〜2.4の範囲であ
ることが好ましい。この場合に、M/(Ta+Nb)
[原子比]が0.9〜1.1の範囲では誘電率が比較的
高く、損失も1%以下と小さい誘電体膜が得られる。ま
た、M/(Ta+Nb)[原子比]が1.8〜2.2の
範囲では誘電率の温度特性(変化率小)のものが得られ
る。温度物性上はM中のMg,Znは50原子%未満と
することが好ましいが、高誘電率の関係からSr,Ca
とMg,Znの複合系が好ましい。
Furthermore, the temperature coefficient of the dielectric constant of the dielectric film is ± 500 in the temperature range from room temperature to 150 ° C.
More preferably, the composition range is ppm / ° C. or less. If M of the MTak Nb1-k Ox composition is a single element, another M that induces the opposite temperature coefficient even if it exceeds ± 500 ppm / ° C in the temperature range from room temperature to 150 ° C. ± 50 due to solid solution substitution of elements
It can be 0 ppm / ° C. or less. It should be noted that x represents an integer or a decimal number, and when x is a decimal number, it can be expressed by an integer ratio of Ma (Tak, Nb1-k) aOax with respect to an integer (ax). However, the subscript k is 0 ≦ k ≦ 1
Various values can be taken within the range of. In addition, M /
(Ta + Nb) [atomic ratio] is preferably in the range of 0.6 to 2.4. In this case, M / (Ta + Nb)
When the [atomic ratio] is in the range of 0.9 to 1.1, a dielectric film having a relatively high dielectric constant and a loss of 1% or less can be obtained. Further, when M / (Ta + Nb) [atomic ratio] is in the range of 1.8 to 2.2, temperature characteristics of dielectric constant (small change rate) can be obtained. From the standpoint of physical properties at temperature, it is preferable that Mg and Zn in M be less than 50 atomic%, but due to the high dielectric constant, Sr and Ca.
A composite system of Mg and Zn is preferable.

【0016】誘電体膜の成膜方法には、スパッタ、CV
D、反応性蒸着、MODやゾル・ゲル法のような塗布法
がある。これらの誘電体膜では、結晶方位の制御、すな
わち、配向性促進やエピタキシャル成長促進も有効であ
る。本発明は、主成分に5mol%以下の範囲で他元素
を添加または置換しても高周波特性などに悪影響はな
い。添加しうる元素としては、Sn,Hf,Ho,M
n,Fe,Pbなどがあり、これらで熱処理に対する構
造変化などを微妙に制御することができる。
The method of forming the dielectric film includes sputtering and CV.
There are coating methods such as D, reactive vapor deposition, MOD and sol-gel method. In these dielectric films, control of crystal orientation, that is, promotion of orientation and promotion of epitaxial growth are also effective. In the present invention, the high frequency characteristics are not adversely affected even if other elements are added or replaced in the main component within the range of 5 mol% or less. Elements that can be added include Sn, Hf, Ho, M
There are n, Fe, Pb, etc., and these can delicately control the structural change due to heat treatment.

【0017】本発明の誘電体薄膜を電子部品中の電荷蓄
積層として用いると、その電荷蓄積量が従来のSiO2
膜あるいはSiON膜に比べて同面積で5倍以上にする
ことができ、チップ面積を大幅に減少させることができ
る。
When the dielectric thin film of the present invention is used as a charge storage layer in an electronic component, the charge storage amount is the conventional SiO 2
Compared with the film or the SiON film, the same area can be made five times or more, and the chip area can be greatly reduced.

【0018】また、その電圧依存性は実用電圧の5Vで
も高々5%未満に抑えることができ、複数用途のキャパ
シタを同時に形成することができる。さらに、本発明の
薄膜誘電体成分には膜の半導体化の原因となるTi成分
も含まれておらず、素子製造プロセスで何回か繰り返さ
れる熱処理過程でも、また化学的にも極めて安定であ
る。また、本発明はシリコン基板の他にGaAsのよう
な化合物半導体基板を用いる半導体装置で実施すること
ができる。
Further, the voltage dependence can be suppressed to less than 5% at the practical voltage of 5 V at most, and capacitors for a plurality of uses can be simultaneously formed. Further, the thin film dielectric component of the present invention does not include a Ti component that causes the film to become a semiconductor, and is extremely stable chemically even in the heat treatment process repeated several times in the device manufacturing process. . Further, the present invention can be implemented in a semiconductor device using a compound semiconductor substrate such as GaAs in addition to the silicon substrate.

【0019】[0019]

【発明の実施の形態】以下、本発明の種々の実施の形態
につき説明する。 (実施例1)本実施例1では図1に示すキャパシタ10
及びMOSトランジスタ20を持つ回路を製造する場合
を例にあげて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Various embodiments of the present invention will be described below. (Example 1) In Example 1, the capacitor 10 shown in FIG.
A case where a circuit having the MOS transistor 20 and the MOS transistor 20 is manufactured will be described as an example.

【0020】先ず、シリコン基板1上にシリコン酸化膜
からなる絶縁膜2を成膜し、このシリコン酸化膜の一部
をエッチング除去してMOSトランジスタ20となる埋
め込みチャネル用のホールを形成した。次いで、このホ
ールに隣接する箇所に導電層11を形成し、この上に誘
電体膜12を積層し、さらに電極用の導電層13を積層
して積層キャパシタ構造とした。
First, an insulating film 2 made of a silicon oxide film was formed on a silicon substrate 1 and a part of the silicon oxide film was removed by etching to form a hole for a buried channel which became a MOS transistor 20. Next, a conductive layer 11 is formed at a position adjacent to this hole, a dielectric film 12 is laminated on this, and a conductive layer 13 for electrodes is further laminated to form a laminated capacitor structure.

【0021】一方、埋め込みチャネル用のホールのほぼ
中央にゲート酸化膜21を形成し、この上に導電層22
を積層して積層ゲート構造とした。さらに、このホール
内に露出した基板1に不純物元素を打ち込み、pドープ
層23及びnドープ層24をそれぞれ形成した。
On the other hand, a gate oxide film 21 is formed almost in the center of the buried channel hole, and a conductive layer 22 is formed on the gate oxide film 21.
Were laminated to form a laminated gate structure. Further, an impurity element was implanted into the substrate 1 exposed in the holes to form a p-doped layer 23 and an n-doped layer 24, respectively.

【0022】次に、CVD成膜処理によりシリコン酸化
膜からなる絶縁層25を形成し、これをマスキングして
エッチングにより積層ゲート構造の周囲領域と積層キャ
パシタ構造の上部領域とからそれぞれ絶縁層25を除去
する。さらに、積層ゲート構造の周囲領域に導電層26
を形成し、さらにこの上に導電層27を積層する。最後
にAl配線30を形成してキャパシタ10の電極導電層
13とMOSトランジスタ20の電極導電層26,27
とを接続すると、キャパシタ/MOSトランジスタ回路
が完成する。
Next, an insulating layer 25 made of a silicon oxide film is formed by a CVD film forming process, and the insulating layer 25 is masked and etched to remove the insulating layer 25 from the peripheral region of the laminated gate structure and the upper region of the laminated capacitor structure. Remove. Further, the conductive layer 26 is formed in the peripheral region of the stacked gate structure.
Is formed, and the conductive layer 27 is further laminated thereon. Finally, the Al wiring 30 is formed to form the electrode conductive layer 13 of the capacitor 10 and the electrode conductive layers 26 and 27 of the MOS transistor 20.
By connecting and, the capacitor / MOS transistor circuit is completed.

【0023】さらにキャパシタ10の製造方法及び性能
につき詳しく説明する。キャパシタ10の下部電極とな
る導電層11はPtターゲットをスパッタリングして形
成した。
Further, the manufacturing method and performance of the capacitor 10 will be described in detail. The conductive layer 11 to be the lower electrode of the capacitor 10 was formed by sputtering a Pt target.

【0024】誘電体膜12形成用の塗布液として(CH
3 OC24 O)2 SrおよびTa(OC255
CH3 OC24 OH溶媒中で、Sr:Taの比が1:
1になり、全体が0.4mol/lの濃度になるように
調製した。この塗布液をPt薄膜からなる電極導電層1
1上にスピンコートし、約750℃でおよそ30分間加
熱する熱処理工程を3回繰り返し、膜厚200nmの誘
電体薄膜を得た。この薄膜層12をX線回折で同定した
ところ、Sr2 Ta27 (=SrTaO3.5)が生成
していることが確認された。
As a coating liquid for forming the dielectric film 12, (CH
In 3 OC 2 H 4 O) 2 Sr and Ta (OC 2 H 5) 5 and CH 3 OC 2 H 4 OH solvent, Sr: the ratio of Ta is 1:
It was adjusted to 1 and the total concentration was adjusted to 0.4 mol / l. This coating liquid is used as an electrode conductive layer 1 made of a Pt thin film.
1 was spin-coated and the heat treatment step of heating at about 750 ° C. for about 30 minutes was repeated three times to obtain a dielectric thin film with a film thickness of 200 nm. When the thin film layer 12 was identified by X-ray diffraction, it was confirmed that Sr 2 Ta 2 O 7 (= SrTaO 3.5 ) was generated.

【0025】この誘電体膜12上にNiをスパッタして
Ni膜を形成し、これをリソグラフィにて20μm角の
電極パッドにパターン化して上部電極となる導電層13
を形成した。
Ni is sputtered on the dielectric film 12 to form a Ni film, and the Ni film is patterned into a 20 μm square electrode pad by lithography to form a conductive layer 13 serving as an upper electrode.
Was formed.

【0026】Pt電極とNi電極間のキャパシタ成分を
測定したところ、10MHz帯域までの範囲で8pFで
ほぼ一定値であった。3インチ径ウェハ内での容量のバ
ラツキは±2%の範囲内であった。さらに、ネットワー
クアナライザを用いたGHz帯域までの高周波インピー
ダンス測定から、10GHz以上までキャパシタンス成
分として有効に働いていることを確認した。 (実施例2)(CH3 OC24 O)2 SrおよびNb
(OC255 をCH3 OC24 OH溶媒中で、S
r:Nbの比が1:1になる濃度0.4mol/lの溶
液を用意し、実施例1と同じ溶液と混合することにより
Ta:Nbの組成比の異なる次の2種の塗布液を調製し
た。
When the capacitor component between the Pt electrode and the Ni electrode was measured, it was almost constant at 8 pF in the range up to the 10 MHz band. The variation in capacity within the 3-inch diameter wafer was within ± 2%. Furthermore, it was confirmed from the high-frequency impedance measurement up to GHz band using a network analyzer that it works effectively as a capacitance component up to 10 GHz or more. (Example 2) (CH 3 OC 2 H 4 O) 2 Sr and Nb
(OC 2 H 5 ) 5 in CH 3 OC 2 H 4 OH solvent in S
A solution having a concentration of r: Nb of 1: 1 and a concentration of 0.4 mol / l was prepared and mixed with the same solution as in Example 1 to prepare the following two types of coating solutions having different Ta: Nb composition ratios. Prepared.

【0027】第1の塗布液は混合比を1:9とし、第2
の塗布液は混合比を2:8とした。これら2種の塗布液
をそれぞれ実施例1と同じように薄膜化し、それぞれ2
5pFのキャパシタと30pFのキャパシタとを得た。
また、キャパシタ成分が10GHz以上まで有効に働い
ていることを確認した。常温から150℃までの温度領
域において、容量変化率は−200ppm/℃(−0.
02%/℃)および−50ppm/℃(−0.005%
/℃)であった。また、これらの誘電体膜のX線回折を
行なったところ、これらがb軸配向していることがわか
り、自発分極−電界曲線にもヒステリシスは見られず、
電界の向きに対して常誘電体であることが判明した。 (比較例1,2)(CH3 OC24 O)2 Srおよび
Ti(OC254 をCH3 OC24 OH溶媒中で
混合した溶液からSrTiO3 膜を、(CH3 OC2
4 O)2Sr、(CH3 OC24 O)2 BaおよびT
i(OC254 をCH3 OC24 OH溶媒中で混
合した溶液から(Ba,Sr)TiO3 膜を実施例1,
2と同様に形成し、それぞれ比較例1,2とした。これ
らのうち膜厚200nmのキャパシタにつき容量の電圧
依存性を比較した。
The first coating liquid has a mixing ratio of 1: 9, and the second coating liquid is
The mixing ratio of the coating liquid of (2) was set to 2: 8. Each of these two types of coating solutions was formed into a thin film in the same manner as in Example 1 and
A 5 pF capacitor and a 30 pF capacitor were obtained.
It was also confirmed that the capacitor component worked effectively up to 10 GHz or higher. In the temperature range from room temperature to 150 ° C, the capacity change rate is -200 ppm / ° C (-0.
02% / ° C) and -50 ppm / ° C (-0.005%)
/ ° C). Further, when X-ray diffraction of these dielectric films was performed, it was found that they were oriented in the b-axis, and no hysteresis was observed in the spontaneous polarization-electric field curve.
It was found to be paraelectric with respect to the direction of the electric field. (Comparative Example 1,2) (CH 3 OC 2 H 4 O) 2 Sr and Ti (OC 2 H 5) 4 and CH 3 OC 2 H 4 OH SrTiO 3 film from a mixed solution in a solvent, (CH 3 OC 2 H
4 O) 2 Sr, (CH 3 OC 2 H 4 O) 2 Ba and T
A (Ba, Sr) TiO 3 film was prepared from a solution of i (OC 2 H 5 ) 4 mixed in a CH 3 OC 2 H 4 OH solvent in Example 1,
Comparative Example 1 and Comparative Example 2 were formed in the same manner as in Example 2. Among these, the voltage dependence of capacitance was compared for capacitors having a film thickness of 200 nm.

【0028】図2は、横軸に電圧をとり、縦軸に電圧0
Vのときの容量値を100%としたときの容量変化率
(%)をとって、膜厚200nmのキャパシタで容量の
電圧依存性につき実施例と比較例とを比較した特性線図
である。図中にて曲線Aは実施例1の結果を、曲線Bは
比較例1の結果を、曲線Cは比較例2の結果をそれぞれ
示した。図から明らかなように、実施例1のキャパシタ
は比較例1,2のものに比べて容量の電圧依存性が低
く、高精度かつ安定な素子としてIC回路に組み込むの
に適していることが判明した。すなわち、実施例1のキ
ャパシタでは容量低下率が5V駆動であっても容量低下
率はわずか2%以下であるのに対し、比較例1,2では
低下率が5V駆動で15%以上であった。
In FIG. 2, the horizontal axis represents voltage and the vertical axis represents voltage 0.
FIG. 7 is a characteristic diagram comparing the example and the comparative example with respect to the voltage dependence of the capacitance in a capacitor having a film thickness of 200 nm by taking the capacitance change rate (%) when the capacitance value at V is 100%. In the figure, a curve A shows the result of Example 1, a curve B shows the result of Comparative Example 1, and a curve C shows the result of Comparative Example 2. As is clear from the figure, the capacitor of Example 1 has a lower voltage dependence of capacitance than those of Comparative Examples 1 and 2, and is suitable for being incorporated in an IC circuit as a highly accurate and stable element. did. That is, in the capacitor of Example 1, the capacity reduction rate was only 2% or less even when the capacity reduction rate was 5 V driving, whereas in Comparative Examples 1 and 2, the reduction rate was 15% or more when 5 V driving. .

【0029】上記実施例によれば、電圧変動に対してキ
ャパシタの容量変化率が極めて小さくなるので、キャパ
シタとしての性能を高精度に保ちつつ大容量化すること
ができる。このため、同じ定格容量のキャパシタであれ
ば従来よりも小面積化することができ、IC回路の設計
において有利にはたらく。
According to the above-described embodiment, the capacitance change rate of the capacitor becomes extremely small with respect to the voltage fluctuation, so that it is possible to increase the capacity while maintaining the performance of the capacitor with high accuracy. Therefore, if the capacitors have the same rated capacity, the area can be made smaller than in the conventional case, which is advantageous in the design of the IC circuit.

【0030】また、従来は半導体チップの外部素子とし
てワイヤボンディング等で接続されていたキャパシタを
チップ回路内に組み込むことができ、パッケージを小型
化することができるという利点もある。 (実施例3)(CH3 OC24 O)2 Ca、(CH3
OC24 O)2 SrおよびTa(OC255 をC
3 OC24 OH溶媒中で、Ca:Srの比が0.
1:0.9、(Ca+Sr):Taの比が1:1、全体
が0.3mol/lの濃度になるよう調製した。この塗
布液をそれぞれ実施例1と同じように薄膜化し、キャパ
シタ成分を確認した。このキャパシタ構造に対して、オ
ージェ電子スペクトルにて深さ方向のプロファイルを調
べたところ、電極膜中へのCa成分、Sr成分およびT
a成分の拡散はほとんど見られなかった。 (実施例4)図1に示すMOSトランジスタ20を形成
し、層間膜リフロー後のSiウェハに、さらにRFスパ
ッタにて次の各成膜を行なった。
Further, there is an advantage that a capacitor, which has been conventionally connected as an external element of a semiconductor chip by wire bonding or the like, can be incorporated in a chip circuit, and a package can be downsized. (Example 3) (CH 3 OC 2 H 4 O) 2 Ca, (CH 3
OC 2 H 4 O) 2 Sr and Ta (OC 2 H 5 ) 5 as C
In H 3 OC 2 H 4 OH solvent, Ca: ratio of Sr is zero.
The ratio was 1: 0.9, the ratio of (Ca + Sr): Ta was 1: 1, and the total concentration was 0.3 mol / l. Each of the coating solutions was thinned in the same manner as in Example 1 to confirm the capacitor component. When the profile in the depth direction was examined by Auger electron spectrum for this capacitor structure, Ca component, Sr component and T
Almost no diffusion of the component a was observed. (Embodiment 4) The MOS transistor 20 shown in FIG. 1 was formed, and the following respective films were formed on the Si wafer after the interlayer film reflow by RF sputtering.

【0031】先ず、Ptターゲットを用いて、0.5P
aのArガス中にて500Wの高周波電力でRFスパッ
タを行なった。次いで、Sr2 Ta27 の酸化物焼結
ターゲットを用いて、0.5〜1.0PaのAr/O2
ガス中にて200Wの高周波電力でスパッタし、さら
に、0.5PaのN2 ガス中にて500Wの高周波電力
でWのスパッタを行なった。上部WNx 膜、Sr2 Ta
27 膜、下部Pt膜までをイオンミリングでパターニ
ングした。得られたキャパシタ構造上に層間膜としてS
iO2 膜をCVDで形成し、MOSトランジスタとキャ
パシタのコンタクトホールを形成し、さらにAl配線を
施した。最後に保護膜としてプラズマSi34 を形成
した。この工程で形成したバイパスコンデンサ内蔵のア
ナログ−デジタル混在LSIでは、バイパスコンデンサ
外付けのチップに比べて、不要輻射の高調波成分が15
dBに減少した。 (実施例5)実施例4と同様の工程をGaAs基板を用
いたモノリシックマイクロ波IC製造に導入し、移動体
通信用パワーアンプを製造した。SiON膜でキャパシ
タを構成していた従来のアンプと比較して、GHz帯域
の損失を5dB減少させることができた。
First, 0.5P using a Pt target
RF sputtering was performed at a high frequency power of 500 W in Ar gas of a. Then, using an oxide sintering target of Sr 2 Ta 2 O 7 , Ar / O 2 of 0.5 to 1.0 Pa was used.
Sputtering was performed in a gas with a high frequency power of 200 W, and further, sputtering was performed with a high frequency power of 500 W in a N 2 gas of 0.5 Pa with a high frequency power of 500 W. Upper WNx film, Sr 2 Ta
The 2 O 7 film and the lower Pt film were patterned by ion milling. S is formed as an interlayer film on the obtained capacitor structure.
An iO 2 film was formed by CVD, contact holes were formed between the MOS transistor and the capacitor, and Al wiring was further formed. Finally, plasma Si 3 N 4 was formed as a protective film. The analog-digital mixed LSI with a built-in bypass capacitor formed in this process has a higher harmonic component of unnecessary radiation than that of a chip with an external bypass capacitor.
It decreased to dB. (Embodiment 5) The same steps as in Embodiment 4 were introduced into the manufacture of a monolithic microwave IC using a GaAs substrate to manufacture a power amplifier for mobile communication. It was possible to reduce the loss in the GHz band by 5 dB as compared with the conventional amplifier in which the capacitor was composed of the SiON film.

【0032】本実施例のキャパシタを採用することによ
り高周波領域において低インダクタンスの回路を得るこ
とができる。 (実施例6)(Ba,Mg,Ta)を3:1:2の割合
で含有する酸化物焼結体、又は(Ba,Zn,Ta)を
3:1:2の割合で含有する酸化物焼結体をそれぞれタ
ーゲットとし、レーザアブレーションにて膜厚250n
mの薄膜をRuO2 電極およびReO3 電極上に形成し
た。上部電極も同一酸化物電極とし、キャパシタ特性を
測定したところ、前者の誘電率は25となり、後者の誘
電率は30となった。このように両者とも誘電率の温度
変化率は室温から150℃までの範囲で6ppm/℃と
極めて小さい結果が得られた。
By using the capacitor of this embodiment, a circuit having a low inductance can be obtained in a high frequency region. (Example 6) An oxide sintered body containing (Ba, Mg, Ta) in a ratio of 3: 1: 2, or an oxide containing (Ba, Zn, Ta) in a ratio of 3: 1: 2. Targeting each sintered body, laser ablation gives a film thickness of 250n
A thin film of m was formed on the RuO 2 electrode and the ReO 3 electrode. When the upper electrode was the same oxide electrode and the capacitor characteristics were measured, the dielectric constant of the former was 25, and the dielectric constant of the latter was 30. Thus, in both cases, the temperature change rate of the dielectric constant was 6 ppm / ° C, which was extremely small in the range from room temperature to 150 ° C.

【0033】このような容量部をバイポーラIC内の発
振止め用キャパシタ、サージ吸収キャパシタ、またはノ
イズ吸収キャパシタ等として搭載し、半導体装置を得る
ことができた。
A semiconductor device could be obtained by mounting such a capacitance portion as an oscillation stopping capacitor, a surge absorbing capacitor, a noise absorbing capacitor, or the like in a bipolar IC.

【0034】[0034]

【発明の効果】本発明の半導体装置は、種々の目的のキ
ャパシタ成分の要求を同時に満たすことができるため、
キャパシタ面積の低減効果により低コスト化できるばか
りでなく、複数プロセスを採用しなくても製造できるこ
とから、低面積化に伴うプロセスコストを増加させなく
てよい。このため、工業的にきわめて有効である。ま
た、製造過程においては素子の他の部分への影響が及び
にくく、さらに温度係数も小さいので、IC設計上にお
いて極めて有利である。
The semiconductor device of the present invention can simultaneously satisfy the requirements of the capacitor component for various purposes.
Not only the cost can be reduced due to the effect of reducing the capacitor area, but also the manufacturing can be performed without adopting a plurality of processes, so that it is not necessary to increase the process cost due to the reduction in area. Therefore, it is extremely effective industrially. Further, in the manufacturing process, it is difficult to affect other parts of the device and the temperature coefficient is small, which is extremely advantageous in the IC design.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る半導体装置を示す断面
図。
FIG. 1 is a sectional view showing a semiconductor device according to an embodiment of the present invention.

【図2】キャパシタ容量の電圧依存性を示す特性線図で
ある。
FIG. 2 is a characteristic diagram showing voltage dependence of capacitor capacitance.

【符号の説明】[Explanation of symbols]

10…キャパシタ 11,13…電極層 12…誘電体層 20…MOSトランジスタ 10 ... Capacitor 11, 13 ... Electrode layer 12 ... Dielectric layer 20 ... MOS transistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 容量素子を含む複数の受動素子及び能動
素子を備えた半導体装置であって、容量素子が下部電極
と上部電極との間に誘電体膜を挟んだ積層構造からな
り、該誘電体膜がTa酸化物及びNb酸化物のうち少な
くとも一方を含み、かつ、Ca,Sr,Ba,Mg,Z
nの群から選ばれる少なくとも1種以上の元素を含むこ
とを特徴とする半導体装置。
1. A semiconductor device comprising a plurality of passive elements including a capacitive element and an active element, wherein the capacitive element has a laminated structure in which a dielectric film is sandwiched between a lower electrode and an upper electrode. The body film contains at least one of Ta oxide and Nb oxide, and Ca, Sr, Ba, Mg, Z
A semiconductor device comprising at least one element selected from the group n.
JP18715995A 1995-07-24 1995-07-24 Semiconductor device Pending JPH0936314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18715995A JPH0936314A (en) 1995-07-24 1995-07-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18715995A JPH0936314A (en) 1995-07-24 1995-07-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0936314A true JPH0936314A (en) 1997-02-07

Family

ID=16201165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18715995A Pending JPH0936314A (en) 1995-07-24 1995-07-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0936314A (en)

Similar Documents

Publication Publication Date Title
US6777809B2 (en) BEOL decoupling capacitor
US6255122B1 (en) Amorphous dielectric capacitors on silicon
US9424993B2 (en) Systems and methods for a thin film capacitor having a composite high-K thin film stack
EP0562101B1 (en) Voltage variable capacitor having amorphous dielectric film
JP3995619B2 (en) Thin film capacitor element, manufacturing method thereof, and electronic device
US20030052357A1 (en) Interlayer oxide containing thin films for high dielectric constant application
US5440174A (en) Plurality of passive elements in a semiconductor integrated circuit and semiconductor integrated circuit in which passive elements are arranged
Ulrich et al. Comparison of paraeletric and ferroelectric materials for applications as dielectrics in thin film integrated capacitors
CN1755848A (en) Dielectric thin film, thin film capacitor element, and method for manufacturing thin film capacitor element
US20060125048A1 (en) Integrated semiconductor device and method of manufacturing the same
US5948216A (en) Method for making thin film tantalum oxide layers with enhanced dielectric properties and capacitors employing such layers
Chung et al. (Pb, Sr) TiO3 thin films for a ULSI DRAM capacitor prepared by liquid source misted chemical deposition
JPH09129827A (en) Ferroelectric capacitor
Stauf et al. Thick electrodes for high frequency high Q tunable ferroelectric thin film varactors
JPH0936314A (en) Semiconductor device
JP3123448B2 (en) Thin film capacitors
JPH0624222B2 (en) Method of manufacturing thin film capacitor
JP2001189422A (en) Method of manufacturing thin-film capacitor
US20040245602A1 (en) Method of fabricating metal-insulator-metal capacitor (MIM) using lanthanide-doped HfO2
JPH05299584A (en) Thin film capacitor element and semiconductor memory device
JP3167099B2 (en) Dielectric thin film element and method of manufacturing the same
JPH04360507A (en) Thin film capacitor
TW319915B (en)
JP2001102242A (en) High dielectric thin film capacitor and its manufaturing method
Stauf et al. MOCVD of Alkaline Earth Titanates for Integrated RF Capacitors