JPH0935728A - Phosphoric acid stacked fuel cell - Google Patents

Phosphoric acid stacked fuel cell

Info

Publication number
JPH0935728A
JPH0935728A JP7183719A JP18371995A JPH0935728A JP H0935728 A JPH0935728 A JP H0935728A JP 7183719 A JP7183719 A JP 7183719A JP 18371995 A JP18371995 A JP 18371995A JP H0935728 A JPH0935728 A JP H0935728A
Authority
JP
Japan
Prior art keywords
phosphoric acid
fuel cell
fuel
reservoir
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7183719A
Other languages
Japanese (ja)
Inventor
Akitoshi Seya
彰利 瀬谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7183719A priority Critical patent/JPH0935728A/en
Publication of JPH0935728A publication Critical patent/JPH0935728A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably generate power for a long time by effectively recovering phosphoric acid vapor vaporized according to power generation and reducing the scattering amount of phosphoric acid. SOLUTION: A matrix 5 for supporting phosphoric acid is interposed between a fuel electrode 4 and an air electrode 6, and a fuel electrode side reservoir plate 2B (or 2C or 2D) and an air electrode side reservoir plate 7 are arranged on each side of the electrodes 4, 5 to form a unit cell 1. The unit cell 1 and a separator 9 are alternately stacked, then cooling plates 10 are assembled to constitute a fuel cell stacked body, then a manifold is assembled on the side surface of the fuel cell stacked body to form a phosphoric acid fuel cell. Reservoir plates 2B, 2C, 2D are protruded from the side surface of the fuel cell stacked body in the downstream position of a fuel gas, and the protruding length is gradually lengthened as the reservoir plates are apart at the stacking direction distance from the cooling plate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、リン酸型積層燃料電
池のリン酸の保持構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphoric acid holding structure for a phosphoric acid type laminated fuel cell.

【0002】[0002]

【従来の技術】燃料ガスと空気とを供給し電気化学反応
により発電するリン酸型積層燃料電池においては、発電
にともなって電解質であるリン酸がマトリックスから蒸
発し飛散するため、リン酸が欠乏して燃料ガスと空気の
燃焼反応が起こり、発電不能に至る恐れがある。この危
険性を回避して電池性能を維持するには、燃料電池本体
にリン酸を供給する必要があり、その方策として、補給
用リン酸を保持するリザーバプレートを予め組み込む構
成の燃料電池構造が知られている。
2. Description of the Related Art In a phosphoric acid type laminated fuel cell in which fuel gas and air are supplied to generate electric power by an electrochemical reaction, phosphoric acid, which is an electrolyte, evaporates and scatters from a matrix during power generation, and thus phosphoric acid is deficient. Then, the combustion reaction between the fuel gas and the air may occur, resulting in the failure of power generation. In order to avoid this danger and maintain the cell performance, it is necessary to supply phosphoric acid to the fuel cell main body.As a measure for that, a fuel cell structure in which a reservoir plate holding replenishing phosphoric acid is incorporated in advance is used. Are known.

【0003】図3は、この種のリン酸型積層燃料電池と
して従来より用いられている燃料電池積層体の一例の基
本構成を示す断面図である。本構成においては、電解質
であるリン酸を担持する平板状のマトリックス5を同じ
く平板状の燃料電極4と空気電極6とで挟持し、その両
主面に、燃料ガス通路3を備えたリザーバプレート2
と、空気通路8を備えたリザーバプレート7とを配して
単電池1が構成されている。単電池1は、気密を保持す
るためのセパレータ9と交互に積層され、さらに、複数
層積層する毎に発電にともなう発熱を除去する冷却板1
0を挿入して、燃料電池積層体が形成されている。燃料
電池積層体では、燃料ガス通路3と空気通路8が互いに
直交しており、4つの側面に、図示しないマニホールド
を組み込んで、燃料ガスと空気の供給、排出が行われ
る。本構成に用いられているリザーバプレート2および
リザーバプレート7は、いずれもリン酸に対して親水性
の材料により形成されており、補給用のリン酸を予め保
持している。このように、補給用のリン酸を燃料電池積
層体中に予め保持する構成とすれば、発電にともなって
蒸発、飛散するリン酸を補うことができ、電池性能が維
持されることとなる。
FIG. 3 is a sectional view showing the basic structure of an example of a fuel cell stack conventionally used as this type of phosphoric acid type stacked fuel cell. In this configuration, a flat plate-shaped matrix 5 carrying phosphoric acid as an electrolyte is sandwiched between a flat plate-shaped fuel electrode 4 and an air electrode 6, and a reservoir plate having a fuel gas passage 3 on both main surfaces thereof. Two
And the reservoir plate 7 having the air passage 8 are arranged to form the unit cell 1. The unit cells 1 are alternately laminated with separators 9 for maintaining airtightness, and a cooling plate 1 for removing heat generated by power generation every time a plurality of layers are laminated.
0 is inserted to form a fuel cell stack. In the fuel cell stack, the fuel gas passages 3 and the air passages 8 are orthogonal to each other, and manifolds (not shown) are incorporated in the four side surfaces to supply and discharge fuel gas and air. Each of the reservoir plate 2 and the reservoir plate 7 used in this configuration is made of a material that is hydrophilic to phosphoric acid, and holds in advance phosphoric acid for supply. In this way, if the phosphoric acid for replenishment is held in advance in the fuel cell stack, the phosphoric acid that evaporates and scatters during power generation can be supplemented, and the cell performance can be maintained.

【0004】しかしながら、本方式においては、長期に
わたって電池性能を維持させるためには、多量のリン酸
を保持させる必要があり、そのためには容量の大きなリ
ザーバプレートが必要となる。また、外部からリン酸を
補給する手段を付加させるとしてもそのスペースが必要
となるので、燃料電池積層体の所要寸法が大きくなると
いう難点がある。
However, in this method, in order to maintain the battery performance for a long period of time, it is necessary to retain a large amount of phosphoric acid, and for that purpose a reservoir plate having a large capacity is required. Further, even if a means for replenishing phosphoric acid from the outside is added, the space is required, which causes a problem that the required size of the fuel cell stack becomes large.

【0005】図4は、この種のリン酸型積層燃料電池と
して従来より用いられている燃料電池積層体の他の一例
の基本構成を示す断面図である。本図の構成の図3の構
成との差異は、燃料電極側のリザーバプレート2Aが、
燃料ガスの通流方向の下流側において、方形の燃料電池
積層体の側面より所定長突出し、図示しないマニホール
ド内部へと伸びている点にある。
FIG. 4 is a sectional view showing the basic structure of another example of a fuel cell stack conventionally used as this type of phosphoric acid type stacked fuel cell. The difference between the configuration of this figure and the configuration of FIG. 3 is that the reservoir plate 2A on the fuel electrode side is
On the downstream side in the flow direction of the fuel gas, it projects from the side surface of the rectangular fuel cell stack by a predetermined length and extends to the inside of the manifold (not shown).

【0006】本構成においては、燃料電池積層体内で発
電反応により蒸発したリン酸は、通流されている燃料ガ
スによってリザーバプレート2Aの下流側へと導かれ、
やがて燃料電池積層体の側面より突出する部分に達する
と、この部分では電気化学反応がないため燃料電池積層
体の内部より温度が低いので、リン酸蒸気は凝縮され、
さらに、毛細管浸透によりリザーバプレート2Aを通じ
て燃料電池積層体の内部へと回収される。このように、
本構成においては、燃料電池積層体から排出されたリン
酸蒸気が回収され、再利用されるので、リン酸の保持時
間が長くなり、燃料電池の寿命を長くすることができ
る。
In this structure, the phosphoric acid evaporated by the power generation reaction in the fuel cell stack is guided to the downstream side of the reservoir plate 2A by the flowing fuel gas,
Eventually, when it reaches a portion protruding from the side surface of the fuel cell stack, since there is no electrochemical reaction in this portion, the temperature is lower than the inside of the fuel cell stack, so the phosphoric acid vapor is condensed,
Further, it is collected into the inside of the fuel cell stack through the reservoir plate 2A by the capillary permeation. in this way,
In this configuration, the phosphoric acid vapor discharged from the fuel cell stack is collected and reused, so that the phosphoric acid retention time becomes longer and the life of the fuel cell can be extended.

【0007】[0007]

【発明が解決しようとする課題】上記のように、リザー
バプレートを、反応ガスの下流側において、燃料電池積
層体の側面より所定長突出させて配置されるように形成
すれば、発電にともない蒸発するリン酸蒸気は、回収さ
れるので、燃料電池は長寿命化される。しかしながら、
リン酸の蒸発量は温度に依存し、温度の高いほど蒸発量
が多いのに対して、燃料電池積層体は単電池1を複数積
層する毎に冷却板10を挿入配置して冷却する構成とな
っているので、単電池1に含まれるリザーバプレート2
Aは、その設置一によって温度が異なり、リン酸の蒸発
量も異なることとなる。したがって、上記の例のごと
く、リザーバプレート2Aを、反応ガスの下流側に、燃
料電池積層体の側面より所定長突出させた構成としたリ
ン酸型積層燃料電池においては、リン酸の蒸発量は最も
高温にあるリザーバプレート2Aで最大となり、また突
出部で凝縮、回収されないで飛散するリン酸量も最大と
なるので、リン酸保持時間は、もっとも高温部にあるリ
ザーバプレート2Aで最小となり、運転寿命を決定する
こととなる。したがって、より低温度にあるリザーバプ
レート2Aにおいては、突出部の機能が必ずしも十分に
発揮されないという難点がある。また、上記の構成の燃
料電池積層体にリン酸を外部より供給する装置を付加し
て、リン酸を補給することとしても、各単電池1のリザ
ーバプレート2A毎に所要補給量がことなるので、本方
式は多大な時間がかかり、コストも極めて高くなるので
得策ではない。
As described above, if the reservoir plate is formed so as to project from the side surface of the fuel cell stack by a predetermined length on the downstream side of the reaction gas, it will evaporate during power generation. Since the phosphoric acid vapor generated is recovered, the life of the fuel cell is extended. However,
The evaporation amount of phosphoric acid depends on the temperature, and the higher the temperature is, the larger the evaporation amount is. On the other hand, in the fuel cell stack, a cooling plate 10 is inserted and arranged every time a plurality of unit cells 1 are stacked to cool the stack. Reservoir plate 2 included in unit cell 1
The temperature of A varies depending on its installation, and the evaporation amount of phosphoric acid also varies. Therefore, as in the above example, in the phosphoric acid type laminated fuel cell in which the reservoir plate 2A is made to project to the downstream side of the reaction gas by a predetermined length from the side surface of the fuel cell laminated body, the evaporation amount of phosphoric acid is Since the reservoir plate 2A at the highest temperature has the maximum amount, and the amount of phosphoric acid scattered without being condensed and recovered at the protruding portion also has the maximum, the phosphoric acid retention time becomes the minimum at the reservoir plate 2A at the highest temperature part, and the operation It will determine the lifespan. Therefore, in the reservoir plate 2A at a lower temperature, there is a drawback that the function of the protruding portion is not always sufficiently exerted. Further, even if a device for supplying phosphoric acid from the outside is added to the fuel cell stack having the above-mentioned configuration to supply phosphoric acid, the required supply amount will differ for each reservoir plate 2A of each unit cell 1. However, this method is not a good idea because it takes a lot of time and the cost becomes extremely high.

【0008】本発明は、上記のごとき従来技術の難点を
解消して、リン酸の飛散量を低減して長期に渡り安定し
て発電運転のできるリン酸型積層燃料電池を提供するこ
とを目的とする。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a phosphoric acid type fuel cell stack capable of reducing the amount of phosphoric acid scattered and stably operating for a long period of time. And

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、電解質のリン酸を担持する平
板状のマトリックスを燃料電極と空気電極とで挟持し、
その両主面に、燃料ガスの通路を有し補給用リン酸を保
持するリザーバプレートと、空気の通路を有し補給用リ
ン酸を保持するリザーバプレートとを配してなる単電池
を、気密に保持するためのセパレータを介して積層し、
電気化学反応に伴う発熱を除去する冷却板を挿入して燃
料電池積層体を構成し、燃料電池積層体の側面に、燃料
ガスおよび空気を供給、排出するためのマニホールドを
配して構成されるリン酸型積層燃料電池において、前記
の二組のリザーバプレートのうち少なくとも一方のリザ
ーバプレートの通流する燃料ガスあるいは空気の下流側
に、燃料電池積層体の側面よりマニホールド内へ突出す
る突出部を設け、かつ、一組の該リザーバプレートのう
ち、冷却板からの積層方向距離の遠いリザーバプレート
の突出部をより長くすることとする。
In order to achieve the above object, in the present invention, a flat plate-like matrix carrying phosphoric acid as an electrolyte is sandwiched between a fuel electrode and an air electrode,
An airtight cell is provided on both main surfaces of which a reservoir plate having a passage for fuel gas and holding replenishing phosphoric acid and a reservoir plate having an air passage for holding replenishing phosphoric acid are arranged. Laminated via a separator to hold
A fuel cell stack is formed by inserting a cooling plate that removes heat generated by an electrochemical reaction, and a manifold for supplying and discharging fuel gas and air is arranged on the side surface of the fuel cell stack. In the phosphoric acid type laminated fuel cell, a protrusion protruding from the side surface of the fuel cell laminate into the manifold is provided on the downstream side of the fuel gas or air flowing through at least one of the two reservoir plates. Among the set of the reservoir plates, the protrusion of the reservoir plate farther from the cooling plate in the stacking direction is longer.

【0010】[0010]

【作用】電解質のリン酸を担持する平板状のマトリック
スを燃料電極と空気電極とで挟持し、その両主面に、燃
料ガスの通路を有し補給用リン酸を保持するリザーバプ
レートと、空気の通路を有し補給用リン酸を保持するリ
ザーバプレートとを配してなる単電池においては、発電
にともない温度が上昇するとリン酸の蒸気圧が上昇する
ので、マトリックス中のリン酸が徐々に蒸発し、同時に
リザーバプレートに保持されるリン酸が毛細管浸透によ
りマトリックスへと供給される。
A flat plate-shaped matrix carrying electrolyte phosphoric acid is sandwiched between a fuel electrode and an air electrode, and a reservoir plate having a fuel gas passage on both main surfaces thereof for holding replenishing phosphoric acid and air. In a unit cell including a reservoir plate having a passage for holding replenishing phosphoric acid, the vapor pressure of phosphoric acid increases as the temperature rises during power generation. Phosphoric acid which evaporates and is at the same time retained in the reservoir plate is supplied to the matrix by capillary osmosis.

【0011】また、蒸発したリン酸蒸気は、リザーバプ
レートに設けられた通路を流れる燃料ガスあるいは空気
によって下流側へと運ばれる。燃料電池積層体の側面よ
り突出する突出部を設けたリザーバプレートにおいて
は、突出部は燃料電池積層体の内部に位置する部分より
温度が低くなっているので、燃料ガスあるいは空気によ
って運ばれたリン酸蒸気は、この突出部で冷却され、一
部は凝縮して、リザーバプレート中を通り燃料電池積層
体の内部へと毛細管浸透により運ばれ回収されることと
なる。
Further, the vaporized phosphoric acid vapor is carried to the downstream side by the fuel gas or air flowing through the passage provided in the reservoir plate. In a reservoir plate provided with a protrusion protruding from the side surface of the fuel cell stack, since the temperature of the protrusion is lower than that of a portion located inside the fuel cell stack, phosphorus carried by fuel gas or air is used. The acid vapor is cooled by this protruding portion, and a part thereof is condensed and is carried by the capillary permeation into the inside of the fuel cell stack through the reservoir plate and is collected.

【0012】リザーバプレートの下流側に設けた突出部
の長さが長いほど、突出部端部の温度が下がり、平均温
度も下がる。また、リン酸蒸気の接触面積も長さに比例
して大きくなる。したがって、突出部の長さが長いリザ
ーバプレートほど、多量のリン酸蒸気を凝縮させ、回収
することができる。一方、燃料電池積層体は、単電池を
複数積層する毎に挿入される冷却板により冷却される構
成であるので、単電池の温度、したがってマトリックス
の温度は冷却板からの積層方向距離によって左右され、
冷却板に近いマトリックスほど温度が高く、多量のリン
酸が蒸発し易く、冷却板から遠いマトリックスほど温度
が低く、リン酸の蒸発量は少ない。
The longer the length of the protrusion provided on the downstream side of the reservoir plate, the lower the temperature at the end of the protrusion and the lower the average temperature. Further, the contact area of phosphoric acid vapor also increases in proportion to the length. Therefore, a larger amount of phosphoric acid vapor can be condensed and collected in a reservoir plate having a longer protruding portion. On the other hand, since the fuel cell stack has a structure in which it is cooled by a cooling plate inserted every time a plurality of unit cells are stacked, the temperature of the unit cells, and thus the temperature of the matrix, depends on the distance in the stacking direction from the cooling plates. ,
The matrix closer to the cooling plate has a higher temperature and a large amount of phosphoric acid easily evaporates, and the matrix farther from the cooling plate has a lower temperature and the phosphoric acid evaporation amount is smaller.

【0013】したがって、上記のように、冷却板からの
積層方向距離の遠いリザーバプレートの突出部をより長
くすることとすれば、多量のリン酸が蒸発するマトリッ
クスに近接したリザーバプレートほど、多量のリン酸蒸
気を凝縮させ、回収することができることとなり、突出
長を適切に選定すれば、各単電池のリン酸の飛散量をほ
ぼ同量にすることができ、リン酸保持時間をほぼ等しく
して、運転可能時間を効果的に長くすることができる。
Therefore, as described above, if the protrusion of the reservoir plate farther from the cooling plate in the stacking direction is made longer, the reservoir plate closer to the matrix where a large amount of phosphoric acid evaporates has a larger amount. This means that phosphoric acid vapor can be condensed and recovered, and by appropriately selecting the protrusion length, the amount of phosphoric acid scattered in each cell can be made approximately the same, and the phosphoric acid retention time can be made almost equal. Thus, the operable time can be effectively lengthened.

【0014】また、このように各単電池のリン酸の飛散
量がほぼ同量となれば、リン酸を外部より補給する場合
に各単電池のリン酸補給量を同一とすればよく、外部か
らの補給も極めて容易となる。
If the amount of scattered phosphoric acid in each unit cell is approximately the same, the amount of phosphoric acid supplied to each unit cell may be the same when supplying phosphoric acid from the outside. It is also very easy to supply from.

【0015】[0015]

【実施例】図1は、本発明のリン酸型積層燃料電池の実
施例の燃料電池積層体の基本構成を示す断面図である。
図において、図3に示した従来例と同一の機能を有する
構成部品には同一符号を付して重複する説明は省略す
る。本実施例の図4に示した従来例との差異は、上部、
中央部、下部の三つの単電池1に組み込まれている燃料
電極側のリザーバプレート2B、2C、2Dの燃料ガス
下流側の突出部の長さにあり、三つの単電池1の上下に
配された一組の冷却板10からの積層方向距離を勘案し
て、距離が最も離れ、温度が最も高くなるリザーバプレ
ート2Cの突出部の長さを最長とし、距離が最も近く、
温度が最も低くなるリザーバプレート2Dの突出部の長
さを最短とし、距離、温度がこれらの中間となるリザー
バプレート2Bの突出部の長さをこれらの中間の長さに
選定して構成し、発電運転にともなって各単電池1で蒸
発するリン酸を回収し、飛散量を低減し均一化して、リ
ン酸の保持時間を延ばし、長時間の運転を可能としたも
のである。
EXAMPLE FIG. 1 is a sectional view showing the basic structure of a fuel cell stack of an embodiment of a phosphoric acid type stacked fuel cell of the present invention.
In the figure, components having the same functions as those of the conventional example shown in FIG. The difference between this embodiment and the conventional example shown in FIG.
It is located at the length of the projecting portion on the fuel gas downstream side of the fuel electrode side reservoir plates 2B, 2C, 2D incorporated in the central and lower three unit cells 1, and is arranged above and below the three unit cells 1. Considering the stacking direction distance from one set of cooling plates 10, the length of the protruding portion of the reservoir plate 2C having the longest distance and the highest temperature is set to be the longest, and the distance is the shortest.
The length of the projecting portion of the reservoir plate 2D having the lowest temperature is set to the shortest, and the length of the projecting portion of the reservoir plate 2B having the distance and the temperature intermediate between these is selected to be an intermediate length between them. Phosphoric acid that evaporates in each cell 1 during power generation operation is recovered, the amount of scattering is reduced and made uniform, the retention time of phosphoric acid is extended, and long-time operation is enabled.

【0016】図2は、図1に示した実施例のリン酸型積
層燃料電池の各単電池のリン酸飛散量を、図3に示した
従来例のリン酸型積層燃料電池の各単電池のリン酸飛散
量と比較して示したものである。図に見られるように、
リザーバプレートが突出部を持たない従来例のリン酸型
積層燃料電池においては、中央部の単電池で最も多量の
リン酸が飛散し、下部の単電池が最も飛散量が少なく、
冷却板からの距離が離れるほど、すなわち温度が高いほ
ど飛散量が多くなっている。これに対して、図1の実施
例のリン酸型積層燃料電池においては、従来例に比べて
各単電池のリン酸の飛散量が低下しており、とくに中央
部の単電池の飛散量の低下が顕著で、上部、下部の単電
池の飛散量とほぼ同等になっている。リザーバプレート
の突出部がリン酸の回収率を上げ、飛散量を低減するの
に効果的な機能を果たしていることがわかる。
FIG. 2 shows the amount of scattered phosphoric acid in each unit cell of the phosphoric acid type laminated fuel cell of the embodiment shown in FIG. 1 and the unit amount of phosphoric acid type laminated fuel cell of the conventional example shown in FIG. It is shown in comparison with the amount of scattered phosphoric acid. As you can see in the figure,
In the conventional phosphoric acid type laminated fuel cell in which the reservoir plate does not have a protruding portion, the largest amount of phosphoric acid scatters in the central unit cell, and the lower unit cell has the smallest scattering amount.
The greater the distance from the cooling plate, that is, the higher the temperature, the greater the amount of scattering. On the other hand, in the phosphoric acid layered fuel cell of the embodiment of FIG. 1, the amount of phosphoric acid scattered in each unit cell is lower than that in the conventional example, and in particular, in the center part, the amount of scattered phosphoric acid is small. The decrease is remarkable, and it is almost the same as the scattering amount of the upper and lower cells. It can be seen that the protruding portion of the reservoir plate has an effective function of increasing the recovery rate of phosphoric acid and reducing the scattering amount.

【0017】なお、本実施例では、燃料電極側のリザー
バプレートについて、突出部を設け、冷却板からの距離
を勘案してその長さを選定したリン酸型積層燃料電池を
例示したが、燃料電極側のリザーバプレートに限るもの
ではなく、空気電極側のリザーバプレートについて用い
ても同様な効果が得られ、さらに、燃料電極側と空気電
極側の双方のリザーバプレートについて用いれば、より
効果的である。
In the present embodiment, the phosphoric acid type laminated fuel cell in which the projecting portion is provided for the fuel electrode side reservoir plate and the length thereof is selected in consideration of the distance from the cooling plate has been exemplified. The same effect can be obtained not only by using the reservoir plate on the electrode side but also by using the reservoir plate on the air electrode side. Furthermore, by using it on both the fuel electrode side and the reservoir plate on the air electrode side, it is more effective. is there.

【0018】[0018]

【発明の効果】上述のように、本発明においては、電解
質のリン酸を担持する平板状のマトリックスを燃料電極
と空気電極とで挟持し、その両主面に、燃料ガスの通路
を有し補給用リン酸を保持するリザーバプレートと、空
気の通路を有し補給用リン酸を保持するリザーバプレー
トとを配してなる単電池を、気密に保持するためのセパ
レータを介して積層し、電気化学反応に伴う発熱を除去
する冷却板を挿入して燃料電池積層体を構成し、燃料電
池積層体の側面に、燃料ガスおよび空気を供給、排出す
るためのマニホールドを配して構成されるリン酸型積層
燃料電池において、前記の二組のリザーバプレートのう
ち少なくとも一方のリザーバプレートの通流する燃料ガ
スあるいは空気の下流側に、燃料電池積層体の側面より
マニホールド内へ突出する突出部を設け、かつ、一組の
該リザーバプレートのうち、冷却板からの積層方向距離
の遠いリザーバプレートの突出部をより長くすることと
したので、発電運転にともない蒸発したリン酸蒸気が効
果的に回収され、リン酸の飛散量が低減され、長期に渡
り安定して発電運転のできるリン酸型積層燃料電池が得
られることとなった。
As described above, according to the present invention, the flat plate-like matrix carrying the phosphoric acid of the electrolyte is sandwiched between the fuel electrode and the air electrode, and the fuel gas passages are provided on both main surfaces thereof. A single cell comprising a reservoir plate holding replenishing phosphoric acid and a reservoir plate having an air passage and holding replenishing phosphoric acid is laminated via a separator for keeping airtight A fuel cell stack is formed by inserting a cooling plate for removing heat generated by a chemical reaction, and a phosphorus stack is formed by arranging a manifold for supplying and discharging fuel gas and air on the side surface of the fuel cell stack. In the acid-type laminated fuel cell, at least one of the two sets of reservoir plates described above is arranged on the downstream side of the fuel gas or air flowing therethrough, and from the side surface of the fuel cell laminate into the manifold. Since the projecting portion is provided and the projecting portion of the reservoir plate, which is farther from the cooling plate in the stacking direction, of the set of the reservoir plates is made longer, the phosphoric acid vapor evaporated during the power generation operation. Was effectively recovered, the amount of scattered phosphoric acid was reduced, and a phosphoric acid type laminated fuel cell capable of stable power generation operation for a long period of time was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリン酸型積層燃料電池の実施例におけ
る燃料電池積層体の基本構成を示す断面図
FIG. 1 is a sectional view showing a basic structure of a fuel cell stack in an embodiment of a phosphoric acid type stacked fuel cell of the present invention.

【図2】図1の実施例のリン酸型積層燃料電池と、図3
の従来例のリン酸型積層燃料電池の各単電池のリン酸飛
散量の比較図
2 is a phosphoric acid type laminated fuel cell of the embodiment of FIG. 1, and FIG.
Comparison diagram of phosphoric acid scattering amount of each cell of the conventional phosphoric acid type laminated fuel cell

【図3】リン酸型積層燃料電池の従来例における燃料電
池積層体の基本構成を示す断面図
FIG. 3 is a sectional view showing the basic structure of a fuel cell stack in a conventional phosphoric acid type stacked fuel cell.

【図4】リン酸型積層燃料電池の他の従来例における燃
料電池積層体の基本構成を示す断面図
FIG. 4 is a cross-sectional view showing the basic structure of a fuel cell stack in another conventional phosphoric acid type stacked fuel cell.

【符号の説明】[Explanation of symbols]

1 単電池 2 リザーバプレート(燃料電極側) 2A リザーバプレート(燃料電極側) 2B リザーバプレート(燃料電極側) 2C リザーバプレート(燃料電極側) 2D リザーバプレート(燃料電極側) 3 燃料ガス通路 4 燃料電極 5 マトリックス 6 空気電極 7 リザーバプレート(空気電極側) 8 空気通路 9 セパレータ 10 冷却板 11 冷却管 DESCRIPTION OF SYMBOLS 1 Single cell 2 Reservoir plate (fuel electrode side) 2A Reservoir plate (fuel electrode side) 2B Reservoir plate (fuel electrode side) 2C Reservoir plate (fuel electrode side) 2D Reservoir plate (fuel electrode side) 3 Fuel gas passage 4 Fuel electrode 5 Matrix 6 Air electrode 7 Reservoir plate (air electrode side) 8 Air passage 9 Separator 10 Cooling plate 11 Cooling pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電解質のリン酸を担持する平板状のマトリ
ックスを燃料電極と空気電極とで挟持し、その両主面
に、燃料ガスの通路を有し補給用リン酸を保持するリザ
ーバプレートと、空気の通路を有し補給用リン酸を保持
するリザーバプレートとを配してなる単電池を、気密に
保持するためのセパレータを介して積層し、電気化学反
応に伴う発熱を除去する冷却板を挿入して燃料電池積層
体を構成し、燃料電池積層体の側面に、燃料ガスおよび
空気を供給、排出するためのマニホールドを配して構成
されるリン酸型積層燃料電池において、前記の二組のリ
ザーバプレートのうち少なくとも一方のリザーバプレー
トが、通流する燃料ガスあるいは空気の下流側に、燃料
電池積層体の側面よりマニホールド内へ突出する突出部
を有し、かつ、一組の該リザーバプレートのうち、冷却
板からの積層方向距離の遠いリザーバプレートが長い突
出部を備えてなることを特徴とするリン酸型積層燃料電
池。
1. A reservoir plate for holding a replenishing phosphoric acid having a fuel gas passage on both main surfaces of a flat plate-shaped matrix for supporting phosphoric acid of an electrolyte, which is sandwiched between a fuel electrode and an air electrode. A cooling plate that removes the heat generated by the electrochemical reaction by stacking the unit cells that have a reservoir plate that has an air passage and that holds replenishing phosphoric acid through a separator that holds the airtightness. To form a fuel cell stack, and a manifold for supplying and discharging fuel gas and air is arranged on the side surface of the fuel cell stack to form a phosphoric acid stack fuel cell. At least one of the reservoir plates of the set has a projecting portion projecting from the side surface of the fuel cell stack into the manifold on the downstream side of the flowing fuel gas or air, and Among the reservoir plate, phosphoric acid stacked fuel cell, wherein a distant reservoir plate of the stacking direction distance from the cooling plate is provided with a long projection.
JP7183719A 1995-07-20 1995-07-20 Phosphoric acid stacked fuel cell Pending JPH0935728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7183719A JPH0935728A (en) 1995-07-20 1995-07-20 Phosphoric acid stacked fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7183719A JPH0935728A (en) 1995-07-20 1995-07-20 Phosphoric acid stacked fuel cell

Publications (1)

Publication Number Publication Date
JPH0935728A true JPH0935728A (en) 1997-02-07

Family

ID=16140767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7183719A Pending JPH0935728A (en) 1995-07-20 1995-07-20 Phosphoric acid stacked fuel cell

Country Status (1)

Country Link
JP (1) JPH0935728A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123479A1 (en) * 2009-04-20 2010-10-28 Utc Power Corporation Preventing migration of liquid electrolyte out of a fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123479A1 (en) * 2009-04-20 2010-10-28 Utc Power Corporation Preventing migration of liquid electrolyte out of a fuel cell

Similar Documents

Publication Publication Date Title
US6858338B2 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US7767355B2 (en) Fuel cell stack with dummy cell
US9203123B2 (en) Lithium accumulator
JPH0227783B2 (en)
JP2000012067A (en) Solid polymer electrolytic fuel cell
KR20160034675A (en) Battery module comprising heat transfer device using wick for cooling part
JPH10308229A (en) Solid high polymer electrolyte type fuel cell
US10923737B2 (en) Separator, and fuel cell stack comprising the same
JPH08203553A (en) Solid polymer electrolyte fuel cell
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JPH08306371A (en) Control method for solid polymer electrode film type fuel cell
JP3673252B2 (en) Fuel cell stack
JP2004192996A (en) Fuel cell device
JP4726186B2 (en) Fuel cell stack
JPH0935728A (en) Phosphoric acid stacked fuel cell
JPH01146268A (en) Stacked fuel cell
KR100921568B1 (en) Fuel Cell Seperator Having Differential Channel Length of Cooling Passage and Fuel Cell Stack with the Same
EP1920486A1 (en) Single plate pem fuel cell
JP4678185B2 (en) Fuel cell system
JP3875612B2 (en) Fuel cell stack
US10930941B2 (en) Separator, and fuel cell stack comprising the same
JPH05190193A (en) Solid high polymeric electrolyte type fuel cell
JPH11144746A (en) Phosphoric acid type fuel cell
JP4738979B2 (en) Polymer electrolyte fuel cell stack
JP2659951B2 (en) Fuel cell stack