JPH093515A - Desulfurization process for low silicon concentration hot metal - Google Patents

Desulfurization process for low silicon concentration hot metal

Info

Publication number
JPH093515A
JPH093515A JP14792995A JP14792995A JPH093515A JP H093515 A JPH093515 A JP H093515A JP 14792995 A JP14792995 A JP 14792995A JP 14792995 A JP14792995 A JP 14792995A JP H093515 A JPH093515 A JP H093515A
Authority
JP
Japan
Prior art keywords
hot metal
desulfurization
ash
cao
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14792995A
Other languages
Japanese (ja)
Other versions
JP3704180B2 (en
Inventor
Susumu Mukawa
進 務川
Yoshimasa Mizukami
義正 水上
Takuo Mito
拓男 三戸
Mitsutaka Matsuo
充高 松尾
Okitomo Kunitake
意智 國武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14792995A priority Critical patent/JP3704180B2/en
Publication of JPH093515A publication Critical patent/JPH093515A/en
Application granted granted Critical
Publication of JP3704180B2 publication Critical patent/JP3704180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE: To provide an economical and extremely high efficiency of desulfurization in low silicon concentration hot metal. CONSTITUTION: At the time of the desulfurization caused by a mixed flux consisting of quicklime and Al ash, a mixture wherein mixing ratio of CaO and Al2 O3 in desulfurizing agent is made so as to be the range of 33-37.7wt.% Al2 O3 , or the mixture wherein the quicklime and Al ash is added so as to be said mixing ratio after addition, is desulfurized. Or further, said flux is made consist of powder not larger than 22 mesh and then is added into the hot metal. Thereby, the highest efficiency of desulfurization not found conventionally is get and cost for process is inexpensive.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶銑の高効率な脱硫処
理方法に関するものであって、溶銑予備処理分野に広く
利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly efficient desulfurization method for hot metal and is widely used in the field of hot metal pretreatment.

【0002】[0002]

【従来の技術】鋼材中の硫黄は、硫化物系介在物生成に
より鋼材の特性を劣化させる性質を持つ。例えば、対サ
ワー用鋼管などでは5ppm という低いレベルの硫黄濃度
が要求されている。
2. Description of the Related Art Sulfur in steel has a property of deteriorating the properties of steel by the formation of sulfide inclusions. For example, steel pipes for sour use require a low sulfur concentration of 5 ppm.

【0003】こうした要求に応えるために、鉄鋼精錬に
おいては脱硫処理技術が発展してきた。脱硫処理のうち
溶銑段階での処理は生石灰、あるいはカーバイド、ソー
ダ灰等、塩基性の高い酸化物や金属Mgなどを利用して
CaS,Na2 S,MgS等の硫化物を生成させてスラ
グとして分離除去する方法が採られている。また、極低
硫黄濃度を達成するためには粗精錬溶鋼を更にCaO系
フラックスを用いて脱硫処理することも行われている。
In order to meet these demands, desulfurization treatment technology has been developed in iron and steel refining. Among the desulfurization treatments, the treatment at the hot metal stage uses quicklime, carbide, soda ash, and other highly basic oxides and metallic Mg to produce sulfides such as CaS, Na 2 S, and MgS, and produce slag as slag. The method of separating and removing is adopted. Further, in order to achieve an extremely low sulfur concentration, the crude refined molten steel is further desulfurized by using a CaO-based flux.

【0004】一般に、硫黄はNa,Mg,Ca等アルカ
リ金属あるいはアルカリ土類金属との結合力が高く、こ
れらの元素と下式の通り反応し硫化物を生成させて除去
しようとするのが脱硫処理である。これらのうちでもN
a,Mg,Caの順でその結合力が高いが、工業的規模
で安価で安定に供給し得る材料としてCaOを主成分と
する生石灰や石灰石、Na2 CO3 主成分とするソーダ
灰、あるいはCaC2を主成分とするカルシウムカーバ
イト、金属Mgが用いられているわけである。これらの
うち、Na系、Mg系に比べて硫黄との結合力は弱いも
ののCaOを主成分とする石灰系フラックスは資源量が
豊富でかつ安価で取り扱いも容易なことから、鉄鋼精錬
においては工業的に広く用いられている。 CaO+S→CaS+O ‥‥(1) Na2 CO3 +S→Na2 S+CO2 +O ‥‥(2) Mg+S→MgS ‥‥(3)
Generally, sulfur has a high binding force with alkali metals or alkaline earth metals such as Na, Mg and Ca, and it is desulfurized to react with these elements to form sulfides and remove them by the following formula. Processing. N of these
a, Mg, and Ca have the highest binding strength in this order, but as a material that can be inexpensively and stably supplied on an industrial scale, quick lime and limestone containing CaO as a main component, soda ash containing Na 2 CO 3 as a main component, or That is, calcium carbide mainly containing CaC 2 and metallic Mg are used. Among these, the lime-based flux containing CaO as a main component has abundant resources, is cheap, and is easy to handle, although it has a weaker binding force to sulfur than Na-based and Mg-based. Widely used. CaO + S → CaS + O (1) Na 2 CO 3 + S → Na 2 S + CO 2 + O (2) Mg + S → MgS (3)

【0005】一方、CaO自体は融点が2800℃と非
常に高く、単に溶鉄と接触させても固体状態に留まる。
この場合、脱硫反応は固体CaO内のSの固相拡散によ
って進行することになるが、この過程は一般に非常に遅
いことが知られている。従って、固体CaOのままでは
反応性に乏しいため、単体では脱硫速度が遅いという欠
点を有する。そこで、通常はCaF2 等、滓化、溶融性
を高め、反応性を上げるための副剤添加する、あるいは
これらと事前に焼成して融点を下げる等の工夫がなされ
ている。
On the other hand, CaO itself has a very high melting point of 2800 ° C. and remains in a solid state even when it is simply contacted with molten iron.
In this case, the desulfurization reaction proceeds by solid phase diffusion of S in solid CaO, but this process is generally known to be very slow. Therefore, since solid CaO as it is has poor reactivity, it has a drawback that the desulfurization rate is slow when used alone. Therefore, measures such as adding CaF 2 or the like to a slag, adding an auxiliary agent for increasing the melting property and increasing the reactivity, or lowering the melting point by firing with these in advance are made.

【0006】他方、溶銑段階での脱硫処理は溶鋼段階で
の脱硫処理時に比べて低温であり、(1)式の反応が高
温程右へ進み易いので温度の点で溶鋼での処理に比べて
不利ではあるが、CaF2 等滓化助剤を添加すると溶鋼
段階の方が著しく耐火物の損耗が進むこと、溶銑中に多
量に含まれる炭素による溶鉄中の硫黄の活量上昇による
利点もあり、積極的に溶銑脱硫処理が採用されている。
On the other hand, the desulfurization treatment in the hot metal stage is at a lower temperature than that in the desulfurization process in the molten steel stage, and the reaction of the formula (1) tends to proceed to the right as the temperature rises. Although it is disadvantageous, addition of CaF 2 slag forming aid has the advantage that the wear of refractory progresses more markedly in the molten steel stage and the sulfur content in molten iron increases due to the large amount of carbon contained in the molten pig iron. , Hot metal desulfurization treatment is actively adopted.

【0007】[0007]

【発明が解決しようとする課題】溶銑脱硫において用い
られる石灰系フラックスとしては、特公昭55−249
25号公報、特公昭63−195208号公報に見られ
るように、CaOとAl2 3 を特定配合組成で混合溶
融する旨の記述がある。これらの方法はその精錬上の改
善効果は認められるものの、事前焼成を行うことは著し
いエネルギーを要し、フラックスコスト高を招くために
安価であるという生石灰系フラックスの特徴を逸脱する
ので、一部の高級鋼向けに二次精錬で使用されることは
あっても、普通一般鋼へ広く適用出来ない方法である。
The lime-based flux used in hot metal desulfurization is disclosed in Japanese Examined Patent Publication No. 55-249.
As disclosed in Japanese Patent Publication No. 25 and Japanese Patent Publication No. 63-195208, there is a description that CaO and Al 2 O 3 are mixed and melted in a specific composition. Although these methods are recognized to have an improvement effect on refining, pre-firing requires significant energy and deviates from the feature of quick lime flux that is inexpensive because it causes high flux cost, so some Although it may be used in secondary refining for high-grade steel, it is a method that cannot be widely applied to ordinary steel.

【0008】また、特公平2−305913号公報に
は、生石灰に溶融滓化助剤としてAl2 3 を添加し、
高温の溶銑に吹き付けることにより、フラックスを溶融
させて硫反応を促進させる旨の記述がある。CaO−A
2 3 二元系の場合、混合比が重量で1:1の所で最
も融点の低い組成となり、その融点は1400℃程度で
あることが知られている。しかし、この方法では溶銑側
の温度に制約が生じる。例えば、溶銑予備脱りん後の1
350℃前後の温度では使えないという問題がある。
In Japanese Patent Publication No. 2-305913, Al 2 O 3 is added to quick lime as a molten slag forming aid,
There is a description that the flux is melted by spraying it onto hot metal to accelerate the sulfur reaction. CaO-A
In the case of the l 2 O 3 binary system, the composition having the lowest melting point is known when the mixing ratio is 1: 1 by weight, and the melting point is known to be about 1400 ° C. However, this method imposes restrictions on the temperature on the hot metal side. For example, 1 after hot metal preliminary dephosphorization
There is a problem that it cannot be used at temperatures around 350 ° C.

【0009】更に、特公平5−78723号公報にはC
aO−Al2 3 系により滓化溶融性を向上させるため
にSiO2 あるいはCaF2 を混合する旨の記述があ
る。SiO2 は珪石等の形で安価に多量に入手可能な副
材として滓化剤として使い易いものの、スラグの脱硫能
力を落とすものであるから、SiO2 を滓化助剤とする
ことは本来好ましくない。鉄鋼精錬において工業的に用
し得る副材料の中では生石灰の滓化を最も良く助け、か
つスラグの脱硫能力を低下させないことが知られている
ものとしてCaF2 があるが、これは耐火物を著く浸食
するので、例えば特に極低硫黄濃度が要求される一部の
高級鋼向けに二次精錬においてCaOとCaF2 の混合
フラックスが用いられているに過ぎない。
Furthermore, Japanese Patent Publication No. 5-78723 discloses C
There are aO-Al 2 O 3 mixed effect of describing the SiO 2 or CaF 2 for improving the slag formation meltability by system. Although SiO 2 is easy to use as a slagging agent as a secondary material that can be obtained in large quantities at low cost in the form of silica stone, etc., it reduces the desulfurization ability of slag, so it is essentially preferable to use SiO 2 as a slagging aid. Absent. CaF 2 is one of the auxiliary materials that can be industrially used in iron and steel refining, and is known to best assist the quick lime slag formation and not reduce the desulfurization ability of slag. Since it corrodes significantly, a mixed flux of CaO and CaF 2 is only used in the secondary refining, for example, for some high-grade steels that require extremely low sulfur concentrations.

【0010】一方、CaOを完全に滓化・溶融させるま
でも無く、微粉として吹き込むことにより、固体生石灰
中のSの拡散距離を短くし、脱硫速度が大きく出来るこ
とは良く知られている。そのため、例えば、特公昭54
−37020号公報には溶銑に吹き込むCaOの粒径を
0.4mm以下とする旨の記述がある。一方、生石灰粒径
があまり細かい飛散してしまう等ハンドリング上の問題
が生じること、吹き込み用のホッパー、ブロータンク、
配管内への付着が起き、操業が不可能となる等の問題が
あり、微粉化には自ずと工業的に利用出来る限界があ
る。
On the other hand, it is well known that the diffusion distance of S in solid quick lime can be shortened and the desulfurization rate can be increased by blowing CaO as fine powder without completely slagging and melting CaO. Therefore, for example, Japanese Patent Publication Sho 54
JP-A-37020 describes that the particle size of CaO blown into the hot metal is 0.4 mm or less. On the other hand, handling problems such as quick lime particle size scattering, blowing hopper, blow tank,
There is a problem such that adhesion to the inside of the pipe occurs and operation becomes impossible, and there is a limit to the industrial use of pulverization as a matter of course.

【0011】他方、微粉を吹き込む場合においても、共
存元素により脱硫効率が大きく影響を受けることが知ら
れている。例えば鉄と鋼vol.61(1975),p.2
9に記されているように、溶銑が珪素を含有する場合に
は、(1)式で生成する自由な酸素によって珪素が酸化
され、生石灰表面に高融点酸化物である3CaO・Si
2 (融点:2150℃)、2CaO・SiO2 (融
点:2180℃)が生成し、Sの生石灰粒内への拡散を
阻害し脱硫速度を低下させることが知られている。これ
を避ける手段として特公昭56−23220号公報に
は、粉末AlをAl2 3 やCaOとともに溶銑に吹き
込んで事前に溶銑中のAl濃度を調整して、更にCa
O,CaC2 を吹き込んで脱硫する旨の記述がある。A
lは酸素による珪素の酸化反応を抑制する目的で添加す
るとの記述があり、Al添加量を(4)式で規定してい
る。 [%Al]=(0.01〜0.1)[%Si]+(0.2〜1.0)×Δ[%S]‥‥(4) 但し、[%Si]:溶銑中の珪素濃度(重量%) Δ[%S]:狙いとする脱硫幅(重量%)
On the other hand, it is known that coexisting elements greatly affect the desulfurization efficiency even when fine powder is blown. For example, iron and steel vol.61 (1975), p. Two
As described in No. 9, when the hot metal contains silicon, silicon is oxidized by free oxygen generated by the formula (1), and 3CaO.Si which is a high melting point oxide on the surface of quick lime.
It is known that O 2 (melting point: 2150 ° C.) and 2CaO · SiO 2 (melting point: 2180 ° C.) are generated to inhibit the diffusion of S into the quicklime particles and reduce the desulfurization rate. As a means for avoiding this, Japanese Patent Publication No. 56-23220 discloses that powder Al is blown into hot metal together with Al 2 O 3 and CaO to adjust the Al concentration in the hot metal in advance, and then Ca
There is a description that blows O and CaC 2 to desulfurize. A
It is described that l is added for the purpose of suppressing the oxidation reaction of silicon by oxygen, and the amount of Al added is defined by the equation (4). [% Al] = (0.01 to 0.1) [% Si] + (0.2 to 1.0) × Δ [% S] (4) where [% Si]: Silicon concentration in hot metal (% by weight) Δ [% S]: Desired desulfurization width (% by weight)

【0012】更に特公昭55−110711号公報には
やはり珪素の酸化抑制の観点からAlをCaOと同に吹
き込む旨の記述がある。この点について本発明者らは本
発明に至る詳細な研究により、Alを添加する場合には
珪素濃度の低い溶銑で脱硫することが望ましいこと、こ
のような条件下では非常に高い脱硫効率が得られること
を明らかにしたが、珪素濃度の高い溶銑では、添加した
Alの効果が最大限に発揮されないという問題があっ
た。
Further, Japanese Patent Publication No. 55-110711 discloses that Al is blown in the same way as CaO from the viewpoint of suppressing the oxidation of silicon. With respect to this point, the present inventors have made detailed studies leading to the present invention. It is desirable to desulfurize with hot metal having a low silicon concentration when Al is added. Under such conditions, a very high desulfurization efficiency can be obtained. However, there is a problem that the effect of Al added is not maximized in the hot metal having a high silicon concentration.

【0013】類似の技術として特公昭56−58912
号公報にはカルシウムカーバイト20〜90%、生石灰
75〜5%、およびAl残灰1〜5%とした脱硫剤の記
述があるが、その組成についての技術的根拠は曖昧であ
る。
As a similar technique, Japanese Patent Publication No. 56-58912
The publication describes a desulfurizing agent containing 20 to 90% calcium carbide, 75 to 5% quicklime, and 1 to 5% Al residual ash, but the technical basis for its composition is ambiguous.

【0014】以上のような問題点があるため、石灰系フ
ラックスによる溶銑脱硫処理は依然としてある程度微粉
化した生石灰そのものを溶銑に吹き込む方法が広く行わ
れているのが現状である。このような状況に鑑み、本発
明は安価で効率の高い溶銑の脱硫処理を可能とする石灰
系脱硫剤を提供することを目的とするものである。
Due to the above-mentioned problems, the hot metal desulfurization treatment with a lime-based flux is still widely practiced by a method in which the lime itself, which has been pulverized to some extent, is blown into the hot metal. In view of such a situation, an object of the present invention is to provide a lime-based desulfurizing agent that enables inexpensive and highly efficient desulfurization treatment of hot metal.

【0015】[0015]

【課題を解決するための手段】本発明は、 (1)生石灰を主成分とするフラックスとAl灰の混合
フラックスによる溶銑の脱硫処理に際し、脱硫剤中のC
aOとAl2 3 の混合比がAl2 3 で33〜37.
7重量%の範囲となるように混合したもの、または添加
後のCaOとAl2 3 の混合比がAl2 3 で33〜
37.7重量%の範囲となる量の生石灰、Al灰を添加
することを特徴とする低珪素濃度溶銑の脱硫方法。 (2)原料の粒度が22mesh以下の粉体から成るフラッ
クスを吹き込む前項(1)記載の溶銑の脱硫剤である。
Means for Solving the Problems The present invention is as follows: (1) In the desulfurization treatment of hot metal with a mixed flux of a flux containing lime as a main component and Al ash, C in a desulfurizing agent is used.
The mixing ratio of aO and Al 2 O 3 is Al 2 O 3 and 33 to 37.
7 a mixture such that the weight percent range, or the mixing ratio of CaO and Al 2 O 3 after addition with Al 2 O 3. 33 to
A method for desulfurizing hot metal having a low silicon concentration, which comprises adding quick lime and Al ash in an amount in the range of 37.7% by weight. (2) The desulfurizing agent for hot metal according to the above item (1), in which a flux composed of powder having a raw material particle size of 22 mesh or less is blown.

【0016】[0016]

【作用】金属Alが存在する場合、脱硫反応は次式で表
される。
When the metallic Al is present, the desulfurization reaction is represented by the following equation.

【0017】 3CaO(固体)+3S+2Al=3CaS(固体)+Al2 3 (固体) ‥‥(5) この反応の平衡定数を用いると平衡到達硫黄濃度は
(6)式のように、スラグ側のCaO,Al2 3 ,C
aSの活量aCaO ,aAl2 O 3 ,aCaS 、溶銑中のAl
濃度を用いて表される。 平衡到達[%S]={(aCaS aAl2 O 3 )/(KaCaO [%Al]2 )}1/3 ‥‥(6)
3CaO (solid) + 3S + 2Al = 3CaS (solid) + Al 2 O 3 (solid) (5) When the equilibrium constant of this reaction is used, the equilibrium reaching sulfur concentration is CaO on the slag side as shown in equation (6). , Al 2 O 3 , C
Activity of aS aCaO, aAl 2 O 3 , aCaS, Al in hot metal
Expressed using concentration. Equilibrium reached [% S] = {(aCaS aAl 2 O 3 ) / (KaCaO [% Al] 2 )} 1/3 (6)

【0018】本実験条件の1350℃ではスラグは固体
状態であるため、固体スラグと溶銑間の反応を考慮すれ
ば良い。即ち、同一CaO−Al2 3 の比率であれば
平衡硫黄濃度は溶銑中のAl濃度の2/3乗に反比例し
て低下することとなる。従って、溶銑のAl濃度上昇の
点からはAl灰を出来るだけ多量に添加した方が良い。
1350℃におけるCaO,Al2 3 の活量を推定す
ると、図1のようになる。即ち、トリカルシウムアルミ
ネート(3CaO・Al2 3 )の理論的Al2 3
度である37.7重量%まではaCaO は最大値1に保た
れ、aAl2 O 3の活量は最低値に留まっている。しか
し、Al2 3 濃度が7%を超えるとaCaO が低下し、
aAl2 O 3 が上昇する。この結果と(6)式より、Al
灰混合比と平衡到達硫黄濃度の関係を求めると図2のよ
うになる。ここでは、Al灰として表1の組成で示され
る産業廃棄物である低級グレードのAl灰の利用を考慮
した。到達硫黄濃度が最低値となるAl灰混合比はトリ
カルシウムアルミネート(3CaO・Al2 3 )が生
成する点である。従って、生石灰とAl灰の混合フラッ
クス大の脱硫効率が得られるのは、CaOとAl灰中の
Al2 3 の混合比率がモル比で3:1となる点である
という結論を得るに至った。
Since the slag is in a solid state at the experimental conditions of 1350 ° C., the reaction between the solid slag and the hot metal may be taken into consideration. That is, the equilibrium sulfur concentration if the ratio of the same CaO-Al 2 O 3 becomes to be reduced in inverse proportion to 2/3 power of the Al concentration in the molten iron. Therefore, from the viewpoint of increasing the Al concentration in the hot metal, it is better to add Al ash as much as possible.
The activity of CaO and Al 2 O 3 at 1350 ° C. is estimated as shown in FIG. That is, aCaO is kept at the maximum value of 1 and the activity of aAl 2 O 3 is at the minimum value up to the theoretical Al 2 O 3 concentration of tricalcium aluminate (3CaO.Al 2 O 3 ) of 37.7% by weight. Stays in. However, when the Al 2 O 3 concentration exceeds 7%, aCaO decreases,
aAl 2 O 3 rises. From this result and equation (6), Al
Figure 2 shows the relationship between the ash mixture ratio and the sulfur concentration at equilibrium. Here, the use of lower grade Al ash, which is an industrial waste having the composition shown in Table 1, is considered as the Al ash. The Al ash mixing ratio at which the ultimate sulfur concentration becomes the minimum value is the point at which tricalcium aluminate (3CaO.Al 2 O 3 ) is produced. Therefore, it is concluded that the desulfurization efficiency with a large mixed flux of quicklime and Al ash is obtained when the mixing ratio of Ca 2 O and Al 2 O 3 in Al ash is 3: 1 in molar ratio. It was

【0019】[0019]

【表1】 [Table 1]

【0020】次に、本発明者らは本理論を確認する試験
を実施した。即ち、生石灰と表1の組成の産業廃棄物で
ある低級グレードのAl灰を混合して溶銑の脱硫処理を
行い、図3の結果を得た。生石灰とAl灰の重量混合比
が約1:1で最大の脱硫率が得られることが明らかとな
ったが、この最適な組成は図2の結果で到達硫黄濃度が
最低となる組成と良く一致した。
Next, the present inventors conducted a test confirming the present theory. That is, quick lime was mixed with low-grade Al ash, which is an industrial waste having the composition shown in Table 1, to perform desulfurization treatment of hot metal, and the results shown in FIG. 3 were obtained. It was clarified that the maximum desulfurization rate was obtained when the weight mixing ratio of quicklime and Al ash was about 1: 1, but this optimum composition is in good agreement with the composition with the lowest sulfur concentration reached in the results of FIG. did.

【0021】この結果を基に、トーピードカーで生石灰
とAl灰を事前に重量比で1:1に混合したフラックス
を吹き込む試験を実施したが、低珪素溶銑の場合には溶
銑側のAl濃度の増加とともにフラックスの脱硫効率K
値が増加するという図4の結果を得た。
On the basis of these results, a test was conducted in which quick lime and Al ash were mixed in advance at a weight ratio of 1: 1 in a torpedo car, and a test was carried out. In the case of low silicon hot metal, the Al concentration on the hot metal side increased. Together with flux desulfurization efficiency K
The result of FIG. 4 that the value increases is obtained.

【0022】更に、0.25%以上珪素を含む溶銑を本
フラックスで脱硫処理したところ、Al濃度0.015
%程度でAl添加の効果が飽和する傾向があり、低珪素
濃度の場合と異なった。溶銑側に0.25%以上の珪素
が溶解していると同一フラックスを用いてもあまり大き
な脱硫効率改善効果は得られなかったが、これは生石灰
表面に高融点のGehlenite(2CaO・SiO2 ・Al2
3 、融点:1600℃)が生成し、固体生石部への硫
黄の拡散が妨げられるためである。
Further, when the hot metal containing 0.25% or more of silicon was desulfurized with this flux, the Al concentration was 0.015.
%, The effect of Al addition tends to be saturated, which is different from the case of low silicon concentration. When 0.25% or more of silicon was melted on the hot metal side, even if the same flux was used, a great effect of improving desulfurization efficiency was not obtained, but this was due to the high melting point of Gehlenite (2CaO · SiO 2 · Al 2
This is because O 3 and melting point: 1600 ° C.) are generated and the diffusion of sulfur into the solid raw stone part is hindered.

【0023】本発明者らは、本発明に至る過程で反応機
構に関する詳細な実験、検討を行った。すなわち、ロー
タリーキルンを用いて1000℃で石灰石を焼成して作
成した塊状の生石灰を研磨し、直径約20mmの球形に成
形したものを溶銑に浸漬し、120分間溶銑と反応させ
た後、生石灰を研磨して、生石灰断面の溶銑との接触面
付近をX線マイクロアナライザーで分析した。
The present inventors conducted detailed experiments and studies on the reaction mechanism in the course of reaching the present invention. That is, a lump of quick lime made by burning limestone at 1000 ° C. using a rotary kiln is polished, a spherically shaped lime having a diameter of about 20 mm is immersed in hot metal, reacted with the hot metal for 120 minutes, and then quick lime is polished. Then, the vicinity of the contact surface of the quick lime cross section with the hot metal was analyzed with an X-ray microanalyzer.

【0024】図5は、反応初期の溶銑に珪素を0.5
%、アルミニウムを0.07%、硫黄を0.05%含ま
せた場合のX線マイクロアナライザーによる観察結果で
ある。この場合に、二次電子線像(SEM像)で、
1 ,d2 ,d3 ,d4 で示す位置の定量分析を実施し
た。その定量結果をCaO−SiO2 −Al2 3 三元
系状態図上にプロットとして示す。極表面付近のd2
はGehlenite(2CaO・Al2 3 ・SiO3 )の生成
が認められた。また定性写真から、生石灰内部への硫
黄、アルミニウムの浸透深さは10ミクロン程度しか生
じていないことが明らかである。
FIG. 5 shows that 0.5 mol of silicon is added to the hot metal at the initial stage of the reaction.
%, Aluminum 0.07% and sulfur 0.05% are observed by an X-ray microanalyzer. In this case, the secondary electron beam image (SEM image)
Quantitative analysis was performed at the positions indicated by d 1 , d 2 , d 3 , and d 4 . Shows a plot of the quantitative results in CaO-SiO 2 -Al 2 O 3 ternary system phase diagram on. Pole to d 2 near the surface generation of Gehlenite (2CaO · Al 2 O 3 · SiO 3) was observed. Further, from the qualitative photograph, it is clear that the penetration depth of sulfur and aluminum into the interior of the quick lime is only about 10 microns.

【0025】一方、図6は、反応初期に珪素を含まず、
アルミニウムを0.021%含ませた溶銑に上記球形生
石灰を120分間浸漬し、反応を行わせた後の生石灰断
面の表面付近のX線マイクロアナライザー定性分析結果
である。この場合には図5の結果に比べ、硫黄、アルミ
ニウムの生石灰内部への浸透深さは大きく、かつ、硫黄
も高濃度で濃化していることが明らかである。
On the other hand, in FIG. 6, silicon is not contained in the initial stage of the reaction,
It is the X-ray microanalyzer qualitative analysis result in the vicinity of the surface of the cross section of the quick lime after the spherical quick lime was immersed in the hot metal containing 0.021% of aluminum for 120 minutes to cause the reaction. In this case, it is apparent that the penetration depth of sulfur and aluminum into the quicklime is large and the sulfur is also concentrated at a high concentration in comparison with the results of FIG.

【0026】以上の結果を考察すると、珪素を含む溶銑
の場合、反応の初期の段階で(5)式の反応のみならず
(7)式の反応が併発し、CaO,Al2 3 とともに
Gehlenite(2CaO・Al2 3 ・SiO2 )を生成
し、緻密な保護膜を形成するために硫黄、Alの生石灰
内部への浸透を妨げているものと推察される。従って、
図4で高珪素濃度溶銑の場合、Al濃度が0.02%ま
では脱硫効率が向上するものの、それ以上では多少アル
ミニウム濃度を高めても脱硫効率がさほど向上しなくな
るのである。従って(5)式の脱硫反応をより有効に進
めるためには、珪素濃度の低い条件が望ましく、本発明
者らは、珪素濃度は0.25%以下が望ましいことを明
らかとした。 2CaO(固体)+2S+Si=2CaS(固体)+SiO2 (固体) ‥‥(7)
Considering the above results, in the case of hot metal containing silicon, not only the reaction of the formula (5) but also the reaction of the formula (7) occur at the initial stage of the reaction, and together with CaO and Al 2 O 3.
It is presumed that Gehlenite (2CaO · Al 2 O 3 · SiO 2 ) is generated and the penetration of sulfur and Al into the quick lime is hindered in order to form a dense protective film. Therefore,
In the case of hot metal having a high silicon concentration in FIG. 4, the desulfurization efficiency is improved up to an Al concentration of 0.02%, but above this, even if the aluminum concentration is increased to some extent, the desulfurization efficiency is not so much improved. Therefore, in order to promote the desulfurization reaction of the formula (5) more effectively, the condition of low silicon concentration is desirable, and the present inventors have made clear that the silicon concentration is desirably 0.25% or less. 2CaO (solid) + 2S + Si = 2CaS (solid) + SiO 2 (solid) (7)

【0027】以上の検討結果をまとめれば、以下のよう
な結論となる。 (イ)スラグ側の条件として、CaOとAl2 3 の混
合比率は最大3CaO・Al2 3 の化学等量までAl
2 3 を混合しても良いが、これ以上になると、CaO
の活量低下を招き、好ましくない。 (ロ)溶銑中にAl濃度は高い程脱硫効率を上げ得る
が、珪素が0.25%以上存在すると、生石炭表面に高
融点で緻密質のGehlenite を生成して生石灰粒子内部へ
の硫黄の浸透を防げ、好ましくない。
The following conclusions can be made by summarizing the above examination results. (A) As a condition on the slag side, the mixing ratio of CaO and Al 2 O 3 is up to 3 CaO · Al 2 O 3 which is a chemical equivalent.
2 O 3 may be mixed, but if it exceeds this, CaO
This leads to a decrease in activity and is not preferable. (B) The higher the Al concentration in the hot metal, the higher the desulfurization efficiency can be. However, when silicon is present in an amount of 0.25% or more, dense Gehlenite with a high melting point is generated on the surface of the raw coal to form sulfur in the quicklime particles. It is not preferable because it can prevent penetration.

【0028】工業的な応用を考慮すると、アルミニウ
ム、Al2 3 のとしては産業廃棄物として多量に発生
するAl灰が安価で利用価値が高いが、これを工業的に
利用する手段として生石灰と混合して利用する本発明を
開示したのである。また、産業廃棄物であるAl灰の品
質のばらつき、即ち、Al2 3 含有率のばらつきを考
慮すれば、CaOとAl2 3 のモル比率を厳密に3:
1とすることはなかなか難しいが、本発明者らが行った
試験によれば、Al2 3 に対するCaO重量比が1.
65〜2.0の範囲であればほぼ同様な効果が得られる
ことが明らかとなった。
Considering industrial applications, aluminum ash, which is generated as a large amount of industrial waste as aluminum and Al 2 O 3 , is inexpensive and has a high utility value. The present invention, which is used as a mixture, is disclosed. In addition, considering the variation in the quality of Al ash that is industrial waste, that is, the variation in the Al 2 O 3 content rate, the molar ratio of CaO and Al 2 O 3 is strictly 3:
It is quite difficult to set the ratio to 1, but according to the test conducted by the present inventors, the weight ratio of CaO to Al 2 O 3 is 1.
It has been clarified that substantially the same effect can be obtained within the range of 65 to 2.0.

【0029】本法においては金属Al含有量が高いAl
灰程、溶銑中のAl濃度が高くなり、脱硫効率は高くな
るから、脱硫効率向上の上では望ましいが、一方で金属
Al含有率が高いAl灰はAlの原料として価値がある
ため一般には高価であり、コスト面からは好ましくな
い。
In this method, Al having a high metal Al content is used.
Since ash has a higher Al concentration in the hot metal and higher desulfurization efficiency, it is desirable for improving desulfurization efficiency. On the other hand, Al ash having a high metal Al content is valuable as a raw material for Al and is generally expensive. Therefore, it is not preferable in terms of cost.

【0030】但し、金属Al含有率の高いAl灰が安価
に入手可能であれば何等問題無く本法が適用できる。ま
た、不純物としてSiO2 ,P2 5 ,B2 3 等脱硫
作用を悪化させる作用のある酸性酸化物の濃度が高いも
のは好ましく無く、目安としてこれら酸性酸化物の濃度
が総和で15%以下のAl灰を使用することが望まし
い。また、フラックス中の金属Alの濃度が3%以下に
なってしまうと溶銑側のAl濃度があまり上昇しないの
で、脱硫効率は生石灰単味を使用した場合とあまり変わ
らなくなる。従って、フラックス中の金属Al含有率は
3%以上とするのが望ましい。また、CaOとAl灰が
予め焼成されたものであっても良い。
However, this method can be applied without any problem if Al ash having a high metal Al content is available at a low cost. Further, it is not preferable that the concentration of acidic oxides such as SiO 2 , P 2 O 5 and B 2 O 3 that have a deteriorating action on desulfurization is high as impurities. As a guideline, the total concentration of these acidic oxides is 15%. It is desirable to use the following Al ash. Further, when the concentration of metallic Al in the flux is 3% or less, the Al concentration on the hot metal side does not increase so much, so that the desulfurization efficiency does not differ much from the case of using quicklime alone. Therefore, it is desirable that the metal Al content in the flux be 3% or more. Alternatively, CaO and Al ash may be fired in advance.

【0031】なお、本発明法は上記のように固体状態で
の反応を基本とするため、脱硫剤の粒径が大きな塊状で
は反応が遅く、良い結果をもたらさないために微粉とす
るのが良く、目安として22mesh以下が望ましい。これ
より大きな粒径の場合、図7に示すように、Al灰を混
合しても大して脱硫効率が向上しないからである。最も
望ましくは微粉として溶銑中へ吹き込むのが良い。これ
が困難な場合には、溶銑上から高速のキャリアガスで搬
送して吹き付ける、いわゆるブラスティング法も採用し
得る。一方、あまり細かいと粉砕費用が過大となり、飛
散してしまう等ハンドリング上の問題が生じること、吹
き込み用のホッパー、ブロータンク、配管内への付着が
起き、操業が不可能となる等の問題があり、微粉化には
自ずと工業的に利用出来る限界があり、利用し得る範囲
の粒径とすれば良いが、現在工業的に行われている範囲
での微粉で十分である。
Since the method of the present invention is based on the reaction in the solid state as described above, the reaction is slow when the desulfurizing agent has a large particle size, and the reaction is slow. As a guide, 22mesh or less is desirable. This is because when the particle size is larger than this, as shown in FIG. 7, even if Al ash is mixed, the desulfurization efficiency is not significantly improved. Most preferably, it should be blown into the hot metal as fine powder. When this is difficult, a so-called blasting method, in which the carrier gas is conveyed from above the hot metal with a high-speed carrier gas and sprayed, can also be used. On the other hand, if it is too fine, the crushing cost will be excessive, and handling problems such as scattering will occur, and there will be problems such as adhesion to the blowing hopper, blow tank, and pipes, making operation impossible. Therefore, there is a limit to the industrial use for fine pulverization, and the particle size may be within a usable range, but fine powder within the range currently industrially used is sufficient.

【0032】更に、現在、高炉溶銑を原料とする多くの
製鉄所では既に溶銑予備処理設備として脱珪処理あるい
は脱りん処理設備を有しているので、これらの処理後溶
銑を使えば、本発明法の高い脱硫効率が容易に得られる
ことになる。また、珪素濃度0.25%以下の溶銑を原
料としているような場合、本発明法を適用するだけの目
的でこれらの予備処理を行うことは不必要である。ま
た、反応容器としてはトーピードカー、溶銑鍋、誘導溶
解炉などいずれでも良く、単に脱硫剤吹き込み装置とそ
れに付随する若干の設備追加等、従来の設備技術の範囲
で十分実施し得るものである。
Further, at present, many steelworks using blast furnace hot metal as a raw material already have desiliconization treatment or dephosphorization treatment equipment as hot metal pretreatment equipment. The high desulfurization efficiency of the method can be easily obtained. Further, when hot metal having a silicon concentration of 0.25% or less is used as a raw material, it is unnecessary to perform these pretreatments only for the purpose of applying the method of the present invention. Further, the reaction vessel may be any of a torpedo car, a hot metal ladle, an induction melting furnace, and the like, which can be sufficiently implemented within the scope of conventional equipment technology such as simply adding a desulfurizing agent blowing device and some equipment accompanying it.

【0033】[0033]

【実施例】【Example】

(実施例1)高炉溶銑291tをトーピードカーより溶
銑予備処理炉にて脱珪脱りん処理を行った後、鍋に移し
換え、生石灰52%、表2の組成のAl灰48%の比率
で混合した脱硫ラックスを浸漬ランスを通じてN2 ガス
をキャリアーとして吹き込み脱硫処理をった。脱硫剤の
吹き込み速度は約150kg/minであった。処理前の珪素
濃度は0.01%以下であり、処理前の溶銑温度は12
90℃であった。15min 間の処理で溶銑中の硫黄濃度
0.020%が0.002%に低下した。この時、溶銑
の温度低下は約16℃であった。この時のCaO原単位
は溶銑1tあたり4.0kg/t-pで脱硫反応のK値は0.
50と高い値が得られた。ただし、K値は(8)式で示
す、生石灰の利用効率を表す指標である。 K=ln([%S]i /[%S]f ) /WCaO ‥‥(8) 但し、[%S]i :処理前硫黄濃度(%) [%S]f :処理後硫黄濃度(%) WCaO :生石灰原単位(kg/t)
(Example 1) 291 t of blast furnace hot metal was subjected to desiliconization and dephosphorization treatment in a hot metal pretreatment furnace from a torpedo car, then transferred to a pan and mixed with 52% quicklime and 48% Al ash having the composition shown in Table 2. The desulfurization rack was desulfurized by blowing N 2 gas as a carrier through an immersion lance. The blowing rate of the desulfurizing agent was about 150 kg / min. The silicon concentration before treatment is 0.01% or less, and the hot metal temperature before treatment is 12%.
90 ° C. The sulfur concentration in the hot metal decreased from 0.020% to 0.002% by the treatment for 15 minutes. At this time, the temperature drop of the hot metal was about 16 ° C. At this time, the basic unit of CaO is 4.0 kg / tp / t of hot metal, and the K value of the desulfurization reaction is 0.1
A value as high as 50 was obtained. However, the K value is an index showing the utilization efficiency of quick lime, which is shown by the equation (8). K = ln ([% S] i / [% S] f ) / WCaO (8) where [% S] i : pretreatment sulfur concentration (%) [% S] f : posttreatment sulfur concentration (%) ) WCaO: quicklime basic unit (kg / t)

【0034】[0034]

【表2】 [Table 2]

【0035】(実施例2)高炉溶銑287tを出銑樋で
ミルスケールなどの脱珪剤を投入して脱珪処理しつつト
ーピードカーへ移し換え、更に溶銑予備処理炉で脱りん
処理を行った。その後、溶銑鍋に移し換えた後、上吹き
ランスを通じてN2 ガスをキャリアーガスとし生石灰3
3%、表3の組成のAl灰67%の比率で混合した脱硫
フラックスのブラスティングによる脱硫処理を実施し
た。処理前の珪素濃度は0.10%であった。脱硫剤の
供給速度は130kg/minであった。ノズル出口での線流
速は350m/秒であった。15min 間の処理で溶銑中
の硫黄濃度は0.022%から0.003%に低下し
た。この時、温度降下はわずか12℃であった。この時
CaO原単位は2.24kg/tであり、K値として0.
9という極めて高い値が得られた。
Example 2 Blast furnace hot metal 287t was transferred to a torpedo car while being desiliconized by introducing a desiliconizing agent such as mill scale in a tap iron gutter, and further dephosphorized in a hot metal pretreatment furnace. Then, after transferring to a hot metal ladle, N 2 gas was used as a carrier gas through a top blowing lance and quick lime 3
Desulfurization treatment was carried out by blasting of a desulfurization flux mixed at a ratio of 3% and 67% of Al ash having the composition shown in Table 3. The silicon concentration before the treatment was 0.10%. The desulfurizing agent supply rate was 130 kg / min. The linear flow velocity at the nozzle outlet was 350 m / sec. The sulfur concentration in the hot metal decreased from 0.022% to 0.003% by the treatment for 15 minutes. At this time, the temperature drop was only 12 ° C. At this time, the basic unit of CaO is 2.24 kg / t, and the K value is 0.
A very high value of 9 was obtained.

【0036】[0036]

【表3】 [Table 3]

【0037】(実施例3)高炉溶銑160tをトーピー
ドカーで受銑し、混入した高炉滓を除去した後、ミルス
ケール、酸素ガスを吹き込んで脱珪処理を行った。その
後、脱珪滓を除滓した後、生石灰54%、表2の組成の
Al灰46%の混合フラックスを吹き込み、脱硫処理行
った。処理前の珪素濃度は0.17%であった。脱硫剤
の供給速度は60kg/minであった。45min で硫黄濃度
は0.019%から0.001%まで低下した。この時
の溶銑の温度降下は25℃であった。生石灰原単位5.
7kgでありK値として0.5という高い値が得られた。
(Example 3) 160 t of blast furnace hot metal was received by a torpedo car to remove the mixed blast furnace slag, and then descaling was carried out by blowing mill scale and oxygen gas. Then, after removing the desiliconized slag, a mixed flux of 54% quick lime and 46% Al ash having the composition shown in Table 2 was blown to perform desulfurization treatment. The silicon concentration before the treatment was 0.17%. The desulfurizing agent supply rate was 60 kg / min. At 45 minutes, the sulfur concentration dropped from 0.019% to 0.001%. The temperature drop of the hot metal at this time was 25 ° C. Quicklime basic unit 5.
It was 7 kg and a high K value of 0.5 was obtained.

【0038】(比較例1)高炉溶銑289tをトーピー
ドカーより溶銑予備処理炉にて脱珪脱りん処理を行った
後、鍋に移し換え、微粉の生石灰とソーダ灰混合脱硫剤
を浸漬ランスを通じてN2 ガスをキャリアーとして吹き
込み脱硫処理を行った。脱硫剤の生石灰とソー灰混合重
量比は4:1であった。脱硫剤の吹き込み速度は約15
0kg/minであった。処理前の珪素濃度は0.1%以下で
あった。また処理前の溶銑温度は1305℃であった。
30min 間の処理で溶銑中の硫黄濃度0.020%が
0.003%に低下したに留まった。この時、溶銑の温
度低下は約50℃と大きく、鍋への付着が発生した。ソ
ーダ灰と生石灰を合わせた脱硫剤原単位は15.6kg/
t、生石灰のみでも12.5kg/tと多量に要し、脱硫
生石灰のK値は0.15と低い値しか得られなかった。
COMPARATIVE EXAMPLE 1 Blast furnace hot metal 289t was desiliconized and dephosphorized in a hot metal pretreatment furnace from a torpedo car, then transferred to a pan, and fine powder of quick lime and soda ash mixed desulfurizing agent was passed through a dipping lance to obtain N 2 Gas was used as a carrier to perform desulfurization treatment. The mixing ratio by weight of desulfurizing agent, quicklime and saw ash, was 4: 1. Blowing speed of desulfurizing agent is about 15
It was 0 kg / min. The silicon concentration before the treatment was 0.1% or less. The hot metal temperature before the treatment was 1305 ° C.
The sulfur concentration of 0.020% in the hot metal dropped to 0.003% after the treatment for 30 minutes. At this time, the temperature drop of the hot metal was large at about 50 ° C., and adhesion to the pan occurred. The basic unit of desulfurization agent that combines soda ash and quicklime is 15.6 kg /
t, quicklime alone required a large amount of 12.5 kg / t, and the K value of desulfurized quicklime was as low as 0.15.

【0039】(比較例2)高炉溶銑289tをトーピー
ドカーより受銑し、更に溶銑予備処理炉に移し換えて脱
珪脱りん処理を行った。更に鍋に移し換え、微粉の生石
灰を浸漬ランスを通じてN2 ガスをキャリアーとして吹
き込み脱硫処理を行った。脱硫剤の粒度は200mh以下
と超微粉を用いた。脱硫剤の吹き込み速度は約150kg
/minであった。処理の溶銑温度は1307℃であった。
30min 間の処理で溶銑中の硫黄濃度0.020%が
0.00%に低下したに留まった。この時、溶銑の温度
低下は約50℃と大きく、鍋への付着が発生した。ま
た、K値は0.12と低かった。
(Comparative Example 2) 289 tons of blast furnace hot metal was received from a torpedo car and transferred to a hot metal pretreatment furnace for desiliconization and dephosphorization treatment. Furthermore, it was transferred to a pan and finely powdered quick lime was blown through an immersion lance using N 2 gas as a carrier for desulfurization treatment. The particle size of the desulfurizing agent was 200 mh or less, and ultrafine powder was used. Blowing speed of desulfurization agent is about 150kg
/ min. The hot metal temperature of the treatment was 1307 ° C.
During the treatment for 30 minutes, the concentration of sulfur in the hot metal, 0.020%, decreased to 0.00%. At this time, the temperature drop of the hot metal was large at about 50 ° C., and adhesion to the pan occurred. The K value was as low as 0.12.

【0040】(比較例3)高炉溶銑291tをトーピー
ドカーにより受銑し、高炉スラグを除滓した後、生石灰
31%、表3の組成のAl灰69%をN2 ガスをキャリ
アーガスとして浸漬ランスをて吹き込み、脱硫処理を行
った。処理前の溶銑の珪素濃度は0.52%であった。
脱硫剤の吹き込み速度は60kg/minであった。45min
の処理で硫黄濃度は0.020%から0.011%まで
低下したに留まった。K値は0.2に留まった。
(Comparative Example 3) After receiving 291 t of blast furnace hot metal with a torpedo car and removing blast furnace slag, 31% of quick lime and 69% of Al ash having the composition shown in Table 3 were used as N 2 gas as a carrier gas and a dipping lance was used. And then desulfurized. The silicon concentration of the hot metal before the treatment was 0.52%.
The blowing rate of the desulfurizing agent was 60 kg / min. 45min
By the treatment of 1, the sulfur concentration only dropped from 0.020% to 0.011%. The K value remained at 0.2.

【0041】(比較例4)高炉溶銑279tをトーピー
ドカーより溶銑予備処理炉にて脱珪脱りん処理を行った
後、鍋に移し換え、微粉の生石灰47%と表2の組成の
Al灰53%より成る混合脱剤を浸漬ランスを通じてN
2 ガスをキャリアーとして吹き込み脱硫処理を行った。
脱硫剤の吹き込み速度は約150kg/minであった。処理
前の珪素濃度は0.1%以下であった。また処理前の溶
銑温度は1305℃であった。30min 間の処理で溶銑
中の硫黄濃度0.020%が0.012%に低下したに
留まり、目標の0.010%以下に低減出来なかった。
この時、溶銑の温度低下は約25℃であった。脱硫生石
灰のK値は0.17と低い値しか得られなかった。この
原因は脱硫剤中のCaO/Al2 3 比が1.5と、最
適範ある1.65〜2.0から低い方へ大きく逸脱して
いたためである。
(Comparative Example 4) 279 t of blast furnace hot metal was desiliconized and dephosphorized in a hot metal pretreatment furnace from a torpedo car and then transferred to a pan to obtain 47% of fine calcified lime and 53% of Al ash having the composition shown in Table 2. Mixed desorbent consisting of N through the immersion lance
Two gases were used as a carrier to perform desulfurization treatment.
The blowing rate of the desulfurizing agent was about 150 kg / min. The silicon concentration before the treatment was 0.1% or less. The hot metal temperature before the treatment was 1305 ° C. During the treatment for 30 minutes, the sulfur concentration in the hot metal, 0.020%, decreased to 0.012% and could not be reduced to the target of 0.010% or less.
At this time, the temperature drop of the hot metal was about 25 ° C. The K value of desulfurized quicklime was as low as 0.17. This is because the CaO / Al 2 O 3 ratio in the desulfurizing agent was 1.5, which was largely deviated from the optimal range of 1.65 to 2.0 to a lower one.

【0042】[0042]

【発明の効果】以上のように本発明によれば、従来の高
価でかつ耐火物損耗の大きなCaF2を含む生石灰系ラ
ックス、あるいは耐火物損耗が大きく、温度低下の大き
なソーダ灰系フラックスを使用せず、また産業廃棄物で
ある低級グレードのAl残灰等の安価な原料を単に混合
したのみの安価な脱硫剤を利用した効率の良い脱硫方法
を提供する。これにより、安価なコストで0.001%
以下の低硫黄濃度の溶銑が温度降下も少なく、容易に得
られる。このように、本発明は工業的規模において、容
易かつ確実に、安価に極低硫黄鋼を溶製し得る脱硫剤を
提供する。
As described above, according to the present invention, the conventional lime-based lux containing CaF 2 which is expensive and has large refractory wear, or soda ash-based flux which has large refractory wear and large temperature drop is used. Further, there is provided an efficient desulfurization method utilizing an inexpensive desulfurizing agent which is obtained by simply mixing inexpensive raw materials such as low-grade Al residual ash which is industrial waste. As a result, the cost is 0.001% at low cost.
The following hot metal with a low sulfur concentration causes less temperature drop and is easily obtained. As described above, the present invention provides a desulfurizing agent which can easily, reliably, and inexpensively produce extremely low sulfur steel on an industrial scale.

【図面の簡単な説明】[Brief description of drawings]

【図1】1350℃におけるCaOとAl2 3 の混合
体におけるAl2 3 重量濃度とCaO,Al量の関係
を示す図。
FIG. 1 is a diagram showing the relationship between the Al 2 O 3 weight concentration and the amount of CaO and Al in a mixture of CaO and Al 2 O 3 at 1350 ° C.

【図2】CaOとAl灰混合脱硫剤のAl灰混合比と平
衡到達硫黄濃度の関係を示す図。
FIG. 2 is a diagram showing the relationship between the Al ash mixture ratio of CaO and Al ash mixture desulfurization agent and the equilibrium reaching sulfur concentration.

【図3】本発明者らが本発明に至る試験で得られた生石
灰とAl2 3 換算のAl灰混合比脱硫率の関係を示す
図。
FIG. 3 is a graph showing a relationship between quick lime obtained in the test leading to the present invention by the present inventors and Al ash mixture specific desulfurization rate in terms of Al 2 O 3 .

【図4】生石灰の脱硫効率K値と溶銑中Al濃度の関係
を示す図。
FIG. 4 is a diagram showing a relationship between a desulfurization efficiency K value of quicklime and an Al concentration in hot metal.

【図5】Alを0.070%含み、珪素を0.50%含
む溶銑と脱硫反応を行った生石灰粒子表面近傍の電子線
マイクロアナライザー分析結果を示す図。
FIG. 5 is a diagram showing an electron beam microanalyzer analysis result in the vicinity of the surface of quicklime particles that have been desulfurized with hot metal containing 0.070% Al and 0.50% silicon.

【図6】Alを0.021%含み、珪素を含まない溶銑
と脱硫反応を行った生石灰粒子表面近傍の電子線マイク
ロアナライザー分析結果を示す図。
FIG. 6 is a diagram showing an electron beam microanalyzer analysis result in the vicinity of the surface of quicklime particles which has been desulfurized with hot metal containing 0.021% Al and containing no silicon.

【図7】脱硫剤粒度と脱硫率の関係を示す図。FIG. 7 is a graph showing the relationship between desulfurizing agent particle size and desulfurization rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松尾 充高 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 國武 意智 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsutaka Matsuo 5-3 Tokai-cho, Tokai-shi, Aichi Pref.Nippon Steel Works Ltd. (72) Inventor Kunitake Tomo-cho, Tokai-shi, Aichi 5-3 Inside Nippon Steel Works, Nippon Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 生石灰を主成分とするフラックスとAl
灰の混合フラックスによる溶銑の脱硫処理に際し、脱硫
剤中のCaOとAl2 3 の混合比がAl23 で33
〜37.7重量%の範囲となるように混合したもの、ま
たは添加後のCaOとAl2 3 の混合比がAl2 3
で33〜37.7重量%の範囲となる量の生石灰、Al
灰を添加することを特徴とする低珪素濃度溶銑の脱硫方
法。
1. A flux containing quick lime as a main component and Al
In the desulfurization treatment of the hot metal with the mixed flux of ash, the mixing ratio of CaO and Al 2 O 3 in the desulfurizing agent is 33% as Al 2 O 3 .
˜37.7% by weight, or the mixing ratio of CaO and Al 2 O 3 after addition is Al 2 O 3
In an amount of 33 to 37.7% by weight, quicklime, Al
A method for desulfurizing hot metal having a low silicon concentration, which comprises adding ash.
【請求項2】 原料の粒度が22mesh以下の粉体から成
るフラックスを吹き込む請求項1記載の溶銑の脱硫剤。
2. The desulfurizing agent for hot metal according to claim 1, wherein a flux made of powder having a raw material particle size of 22 mesh or less is blown.
JP14792995A 1995-06-14 1995-06-14 Desulfurization method of low silicon concentration hot metal Expired - Fee Related JP3704180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14792995A JP3704180B2 (en) 1995-06-14 1995-06-14 Desulfurization method of low silicon concentration hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14792995A JP3704180B2 (en) 1995-06-14 1995-06-14 Desulfurization method of low silicon concentration hot metal

Publications (2)

Publication Number Publication Date
JPH093515A true JPH093515A (en) 1997-01-07
JP3704180B2 JP3704180B2 (en) 2005-10-05

Family

ID=15441270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14792995A Expired - Fee Related JP3704180B2 (en) 1995-06-14 1995-06-14 Desulfurization method of low silicon concentration hot metal

Country Status (1)

Country Link
JP (1) JP3704180B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946484A (en) * 1988-02-05 1990-08-07 Donaldson Company, Inc. Support for clean room ceiling grid system
JP2010229439A (en) * 2009-03-26 2010-10-14 Jfe Steel Corp Desulfurizing agent for molten pig iron, and desulfurizing method
WO2015129173A1 (en) * 2014-02-26 2015-09-03 Jfeスチール株式会社 Method for desulfurizing molten pig iron and desulfurizing agent
JP2015175057A (en) * 2014-03-18 2015-10-05 株式会社神戸製鋼所 hot metal desulfurization method
JP2015175058A (en) * 2014-03-18 2015-10-05 株式会社神戸製鋼所 hot metal desulfurization method
JP2015218391A (en) * 2014-05-21 2015-12-07 株式会社神戸製鋼所 Desulfurization method of molten iron
JP2015218392A (en) * 2014-05-21 2015-12-07 株式会社神戸製鋼所 Desulfurization method of molten iron
JP2015229784A (en) * 2014-06-04 2015-12-21 株式会社神戸製鋼所 Desulfurization method of molten pig iron
JP2016020539A (en) * 2014-06-16 2016-02-04 株式会社神戸製鋼所 Molten iron desulfurization method
WO2022172568A1 (en) * 2021-02-10 2022-08-18 Jfeスチール株式会社 Method for desulfurizing molten metal

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946484A (en) * 1988-02-05 1990-08-07 Donaldson Company, Inc. Support for clean room ceiling grid system
JP2010229439A (en) * 2009-03-26 2010-10-14 Jfe Steel Corp Desulfurizing agent for molten pig iron, and desulfurizing method
WO2015129173A1 (en) * 2014-02-26 2015-09-03 Jfeスチール株式会社 Method for desulfurizing molten pig iron and desulfurizing agent
JP6061053B2 (en) * 2014-02-26 2017-01-18 Jfeスチール株式会社 Hot metal desulfurization method and desulfurization agent
JP2015175057A (en) * 2014-03-18 2015-10-05 株式会社神戸製鋼所 hot metal desulfurization method
JP2015175058A (en) * 2014-03-18 2015-10-05 株式会社神戸製鋼所 hot metal desulfurization method
JP2015218391A (en) * 2014-05-21 2015-12-07 株式会社神戸製鋼所 Desulfurization method of molten iron
JP2015218392A (en) * 2014-05-21 2015-12-07 株式会社神戸製鋼所 Desulfurization method of molten iron
JP2015229784A (en) * 2014-06-04 2015-12-21 株式会社神戸製鋼所 Desulfurization method of molten pig iron
JP2016020539A (en) * 2014-06-16 2016-02-04 株式会社神戸製鋼所 Molten iron desulfurization method
WO2022172568A1 (en) * 2021-02-10 2022-08-18 Jfeスチール株式会社 Method for desulfurizing molten metal
TWI808638B (en) * 2021-02-10 2023-07-11 日商杰富意鋼鐵股份有限公司 Desulfurization method of molten metal

Also Published As

Publication number Publication date
JP3704180B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
JP3704180B2 (en) Desulfurization method of low silicon concentration hot metal
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
JP2006274349A (en) Method for refining steel
JPH07504230A (en) Method for desulfurizing molten iron with minimal slag formation and equipment for carrying out the process
JP5895887B2 (en) Desulfurization treatment method for molten steel
JP4894325B2 (en) Hot metal dephosphorization method
CN114457204A (en) Method for dephosphorizing molten iron
JP2006188769A (en) Production method of low phosphorus molten iron
JP3888264B2 (en) Method for producing low phosphorus hot metal
JP4984928B2 (en) Hot metal desulfurization method
KR100226901B1 (en) Desulphurization agent of molten metal
JP2006241561A (en) Method for preventing development of dust from transporting vessel for molten iron
JPH09143529A (en) Method for dephosphorizing molten iron
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
KR101863916B1 (en) Composition of Steelmaking Flux for Desulfurization and Deoxidation Using By-proudut of Magnesium Smelting Process and Waste By-product of Aluminum Smelting Process
JP5433955B2 (en) Desulfurizing agent supply apparatus and method for supplying desulfurizing agent to hot metal
JPH05140626A (en) Method for pretreating molten iron
Holappa et al. Slag Formation—Thermodynamic and kinetic aspects and mechanisms
JPH1171611A (en) Lime flux for smelting metal
Koros Pre-treatment of hot metal
JPS60194005A (en) Pretreatment of molten iron with converter slag
JP3742543B2 (en) Hot metal desulfurization method
JPH0813016A (en) Method for dephosphorizing and desulfurizing molten iron
JPH04317445A (en) Production of raw material for superrapid hardening cement improved steel slag
JPH10317035A (en) Desulphurization method of ferrous molten alloy, and desulphurizing agent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050722

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees