JPH0933344A - Quantity-of-light measuring device - Google Patents

Quantity-of-light measuring device

Info

Publication number
JPH0933344A
JPH0933344A JP7180072A JP18007295A JPH0933344A JP H0933344 A JPH0933344 A JP H0933344A JP 7180072 A JP7180072 A JP 7180072A JP 18007295 A JP18007295 A JP 18007295A JP H0933344 A JPH0933344 A JP H0933344A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving elements
exposure
illumination area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7180072A
Other languages
Japanese (ja)
Other versions
JP3591922B2 (en
Inventor
Tsutomu Asahina
努 朝比奈
Naoto Sano
直人 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18007295A priority Critical patent/JP3591922B2/en
Priority to US08/677,525 priority patent/US5949468A/en
Publication of JPH0933344A publication Critical patent/JPH0933344A/en
Application granted granted Critical
Publication of JP3591922B2 publication Critical patent/JP3591922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/44Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements
    • B41J2/442Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements using lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quantity-of-light measuring device in which exposure distribution can be measured in a scanning exposing device. SOLUTION: A controller 18 scans a wafer stage 15 and emits a light from a pulse light source 1 to expose an illuminance meter 17 having a plurality of light emitting elements arranged in a row in the scanning direction. The output value of each light receiving element of the illuminance meter 17 is integrated for every pulse during the exposure, the correction coefficient of sensitivity dispersion of each light receiving element stored in a memory 19 is read after the end of the exposure, and the measurement value of the corresponding light receiving element is subtracted to remove the influence on the measurement Value by the sensitivity dispersion between each light Receiving element. Thus, the measurement value of every light receiving element arranged in a row in the scanning direction can be provided as the exposure distribution in the scanning direction of the exposed area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光量測定装置に関
し、特に、この光量測定装置を用いて、1ショットの露
光領域の露光量分布を測定することにより、ウエハに適
切な露光量を与えることが可能な走査型露光装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light amount measuring device, and more particularly, to giving an appropriate light exposure amount to a wafer by measuring the light amount distribution in an exposure area of one shot using this light amount measuring device. The present invention relates to a scanning type exposure apparatus capable of performing the above.

【0002】[0002]

【従来の技術】半導体デバイスをフォトリソグラフィー
技術を用いて製造する際、レチクルのパターンを投影光
学系を介してフォトレジストが塗布されたウエハ上に露
光する投影露光装置が使用されている。近年、半導体デ
バイス1個当たりのチップパターンが、より大型化、微
細化する傾向にあり、そのため露光領域が大きく、且つ
高解像度の投影露光装置が求められている。
2. Description of the Related Art When a semiconductor device is manufactured using a photolithography technique, a projection exposure apparatus is used which exposes a reticle pattern onto a wafer coated with a photoresist through a projection optical system. In recent years, a chip pattern per semiconductor device tends to be larger and finer, and therefore a projection exposure apparatus having a large exposure area and high resolution is required.

【0003】露光領域の大面積化という要求に応えて、
スリット状の照明領域に対し、レチクルとウエハを同期
させて走査させることにより、照明領域よりも大きいレ
チクルのパターンをウエハ上に露光転写する走査型露光
装置が開発されている。
In response to the demand for a larger exposure area,
A scanning type exposure apparatus has been developed in which a reticle and a wafer are synchronously scanned with respect to a slit-shaped illumination area to expose and transfer a reticle pattern larger than the illumination area onto the wafer.

【0004】一方、高解像度の実現は光源波長の短波長
化によってなされ、従来の光源である水銀ランプに換え
てエキシマレーザが用いられようとしている。エキシマ
レーザは遠紫外領域で高出力であるものの、従来の光源
とは異なり、パルス発光のレーザであるという特徴をも
つ。
On the other hand, the realization of high resolution is made by shortening the wavelength of the light source, and excimer laser is about to be used instead of the mercury lamp which is the conventional light source. The excimer laser has a high output in the far-ultraviolet region, but is different from the conventional light source in that it is a pulsed laser.

【0005】[0005]

【発明が解決しようとしている課題】エキシマレーザの
ようなパルスレーザを光源とした走査型露光装置では、
光源の出力変動、発光タイミングのずれ、ステージの位
置ずれなどの様々な要因によって、露光領域の走査方向
の露光量分布が変化する。したがって、走査型露光装置
では、走査方向の露光量分布を測定すること、及びその
測定結果からウエハに与える露光量の制御を行い、露光
領域における露光ムラを抑えることが重要な課題であ
る。
In a scanning type exposure apparatus using a pulse laser such as an excimer laser as a light source,
The exposure amount distribution in the scanning direction of the exposure area changes due to various factors such as output fluctuation of the light source, deviation of light emission timing, and positional deviation of the stage. Therefore, in the scanning type exposure apparatus, it is an important subject to measure the exposure amount distribution in the scanning direction and control the exposure amount given to the wafer from the measurement result to suppress the exposure unevenness in the exposure region.

【0006】走査型露光装置で露光量を測定するには、
従来のステッパ等に搭載されている照度計を用いる方法
が考えられる。照度計は、受光部に微小開口を有する光
強度検出器であり、受光部の高さとウエハ面の高さが一
致するようウエハステージ上に設置されている。
To measure the exposure dose with a scanning type exposure apparatus,
A method using an illuminance meter mounted on a conventional stepper or the like can be considered. The illuminance meter is a light intensity detector having a minute aperture in the light receiving portion, and is installed on the wafer stage so that the height of the light receiving portion and the height of the wafer surface match.

【0007】この照度計を一回走査して露光することに
よって、一つの微小領域における露光量が測定できる。
次に照度計を走査方向の他の位置に移動させて再び走査
露光し、露光量を測定する。この動作を繰り返し行うこ
とにより、マトリクス状あるいはライン状に複数の微小
領域の露光量が測定できる。
By exposing the illuminometer once to perform exposure, the exposure amount in one minute area can be measured.
Next, the illuminance meter is moved to another position in the scanning direction, scanning exposure is performed again, and the exposure amount is measured. By repeating this operation, it is possible to measure the exposure amount of a plurality of minute regions in a matrix or a line.

【0008】しかしながら、前述したようにエキシマレ
ーザは発光毎に出力の変動があるため、走査露光の度に
ある微小領域における露光量は変化する。上記の方法で
は、露光量の測定に当たって複数回の走査露光を行って
いるので、露光量がばらつく範囲を測定することはでき
ても、露光領域内の露光量分布を測定することはできな
い。したがって、露光量分布を測定するには、一回の走
査で露光量を測定しなければならない。
However, as described above, the output of the excimer laser fluctuates with each emission of light, so that the exposure amount in a minute area changes every scanning exposure. In the above method, since scanning exposure is performed a plurality of times in measuring the exposure amount, the range in which the exposure amount varies can be measured, but the exposure amount distribution in the exposure region cannot be measured. Therefore, in order to measure the exposure dose distribution, the exposure dose must be measured in one scan.

【0009】本発明は上述したような問題点に鑑み、ウ
エハ上の露光量分布を測定できる走査型露光装置を提供
することを目的とする。
In view of the above problems, it is an object of the present invention to provide a scanning type exposure apparatus capable of measuring the exposure dose distribution on a wafer.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本願第1発明は、複数の受光素子よりなる光強度測
定手段と、該光強度測定手段を被測定領域に対して相対
的に走査する走査手段とを有し、該走査手段によって前
記光強度測定手段を前記被測定領域に対して相対的に走
査しながら前記複数の受光素子が順次受光する光強度を
各受光素子毎に記憶手段に記憶し、該記憶手段に記憶さ
れた情報を用いて光量を測定することを特徴とする光量
測定装置である。
In order to achieve the above object, the first invention of the present application is to provide a light intensity measuring means composed of a plurality of light receiving elements, and the light intensity measuring means relative to an area to be measured. Scanning means for scanning, and the scanning means scans the light intensity measuring means relative to the region to be measured, and stores the light intensity sequentially received by the plurality of light receiving elements for each light receiving element. A light quantity measuring device, characterized in that the light quantity is stored in a means and the light quantity is measured using the information stored in the storage means.

【0011】本願第1発明の光量測定装置により、走査
型露光装置のような走査照明系を有する装置において光
量分布を測定できる。
With the light quantity measuring device of the first invention of the present application, the light quantity distribution can be measured in an apparatus having a scanning illumination system such as a scanning type exposure apparatus.

【0012】本願第2発明は、複数の受光素子を照明領
域に対して相対的に走査し、前記各受光素子の測定値か
ら、該各受光素子の感度ばらつきを検出することを特徴
とする感度ばらつきの検出方法である。
A second invention of the present application is characterized in that a plurality of light receiving elements are relatively scanned with respect to an illumination region, and a sensitivity variation of each light receiving element is detected from a measurement value of each light receiving element. This is a variation detection method.

【0013】本願第2発明の感度ばらつきの検出方法に
より、複数の受光素子の感度ばらつきを補正するための
データが得られ、正確に光強度を検出できる。
By the sensitivity variation detecting method of the second invention of the present application, data for correcting the sensitivity variations of a plurality of light receiving elements can be obtained, and the light intensity can be accurately detected.

【0014】本願第3発明は、本願第1発明の光量測定
装置を用いて露光量を測定することを特徴とする露光装
置である。
A third invention of the present application is an exposure apparatus characterized in that an exposure amount is measured by using the light amount measuring apparatus of the first invention of the present application.

【0015】本願第4発明は、光源と、該光源より発せ
られた光の照明領域をマスク及びウエハに対して相対的
に走査する走査手段とを有し、前記照明領域よりも広い
前記マスク及びウエハ上の被照明領域を照明し、前記マ
スク上に形成された転写パターンを前記ウエハに露光転
写する露光装置において、露光量分布測定手段を有する
ことを特徴とする露光装置である。
According to a fourth aspect of the present invention, there is provided a light source and a scanning means for scanning an illumination area of the light emitted from the light source relative to the mask and the wafer, and the mask is wider than the illumination area. An exposure apparatus for illuminating an illuminated area on a wafer and exposing and transferring a transfer pattern formed on the mask onto the wafer, wherein the exposure apparatus has an exposure amount distribution measuring unit.

【0016】本願第5発明は、パルス光源と、該パルス
光源より発した複数のパルス光が順次形成する照明領域
をマスク及びウエハに対して相対的に走査する走査手段
とを有し、前記照明領域を前記マスク及びウエハ上で相
対的に変位させながら重ね合わせ、前記照明領域よりも
広い前記マスク及びウエハ上の被照明領域を照明し、前
記マスクに形成された転写パターンを前記ウエハに露光
転写する露光装置において、少なくとも走査方向に並ん
だ複数の受光素子よりなる光強度測定手段を有し、前記
光強度測定手段を前記照明領域に対して相対的に走査し
ながら照明し、前記複数の受光素子が順次受光する前記
複数のパルス光の光強度を各受光素子毎に記憶手段に記
憶し、該記憶手段に記憶された情報を用いて前記被照明
領域の露光量分布を求めることを特徴とする露光装置で
ある。
According to a fifth aspect of the present invention, there is provided a pulse light source, and a scanning means for relatively scanning an illumination area formed by a plurality of pulsed lights emitted from the pulse light source with respect to the mask and the wafer. Areas are overlapped while relatively displacing on the mask and the wafer, and an illuminated area on the mask and the wafer, which is wider than the illuminated area, is illuminated, and the transfer pattern formed on the mask is exposed and transferred to the wafer. In the exposure apparatus described above, at least the light intensity measuring means including a plurality of light receiving elements arranged in the scanning direction is provided, and the light intensity measuring means illuminates while relatively scanning the illumination area, The light intensity of the plurality of pulsed lights sequentially received by the elements is stored in the storage means for each light receiving element, and the exposure amount distribution of the illuminated region is used by using the information stored in the storage means. An exposure device and obtaining.

【0017】本願第6発明は、パルス光源と、該パルス
光源より発した複数のパルス光が順次形成する照明領域
をマスク及びウエハに対して相対的に走査する走査手段
とを有し、前記照明領域を前記マスク及びウエハ上で相
対的に変位させながら重ね合わせ、前記照明領域よりも
広い前記マスク及びウエハ上の被照明領域を照明し、前
記マスクに形成された転写パターンを前記ウエハに露光
転写する露光装置において、少なくとも走査方向に並ん
だ複数の受光素子よりなる光強度測定手段を有し、該光
強度測定手段を前記照明領域に対して静止して照明し、
各受光素子に入射した前記パルス光の光強度を各パルス
光毎に記憶手段に記憶し、該記憶手段に記憶された前記
光強度を実露光時における前記照明領域の相対的な変位
量に応じた分だけずらして積算させ前記被照明領域の露
光量分布を求めることを特徴とする露光装置である。
According to a sixth aspect of the present invention, there is provided a pulse light source and a scanning means for relatively scanning an illumination area formed by a plurality of pulsed light emitted from the pulse light source with respect to the mask and the wafer. Areas are overlapped while relatively displacing on the mask and the wafer, and an illuminated area on the mask and the wafer, which is wider than the illuminated area, is illuminated, and the transfer pattern formed on the mask is exposed and transferred to the wafer. In the exposure apparatus, which has at least a light intensity measuring unit composed of a plurality of light receiving elements arranged in the scanning direction, the light intensity measuring unit is illuminated stationary with respect to the illumination region,
The light intensity of the pulsed light incident on each light receiving element is stored in the storage unit for each pulsed light, and the light intensity stored in the storage unit is determined according to the relative displacement amount of the illumination area during actual exposure. The exposure apparatus is characterized in that the exposure amount distribution of the illuminated region is obtained by shifting the amount and adding up.

【0018】本願第7発明は、本願第3乃至第6発明の
走査型露光装置を用いてデバイスを製造することを特徴
とするデバイス製造方法である。
A seventh invention of the present application is a device manufacturing method characterized by manufacturing a device using the scanning exposure apparatus of the third to sixth inventions of the present application.

【0019】本願第3乃至第6発明の露光装置及び本願
第7発明のデバイス製造方法を用いることにより、I
C、LSI等の半導体デバイス、液晶デバイス、CCD
等の撮像デバイス、磁気ヘッド等のデバイスを正確に製
造することができる。
By using the exposure apparatus of the third to sixth inventions of the present application and the device manufacturing method of the seventh invention of the present application, I
Semiconductor devices such as C and LSI, liquid crystal devices, CCD
It is possible to accurately manufacture an image pickup device such as the above and a device such as a magnetic head.

【0020】[0020]

【発明の実施の形態】図1は本発明の特徴を最もよく表
す走査型露光装置の図である。1はエキシマレーザ等の
パルス光源である。2はパルス光源1から発振されたパ
ルス光のビーム形状を整えるための、シリンドリカルレ
ンズ、ビームエキスパンダ等で構成されたビーム整形光
学系である。3はパルス光源1からのパルス光の光量を
調節するためのNDフィルタ等の減光手段である。4は
パルス光源1からのパルス光の可干渉性を低減させて、
レチクル11を均一に照明するためのインコヒーレント
均一化光学系である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram of a scanning type exposure apparatus that best represents the features of the present invention. Reference numeral 1 is a pulse light source such as an excimer laser. Reference numeral 2 denotes a beam shaping optical system including a cylindrical lens, a beam expander, etc. for adjusting the beam shape of the pulsed light emitted from the pulsed light source 1. Reference numeral 3 is a light-reducing means such as an ND filter for adjusting the amount of pulsed light from the pulsed light source 1. 4 reduces the coherence of the pulsed light from the pulsed light source 1,
An incoherent homogenizing optical system for uniformly illuminating the reticle 11.

【0021】5はパルス光の一部を光検出器16に入射
させ、大部分を透過させるビームスプリッタである。6
は視野絞り7を均一に照明するための第1リレーレンズ
であり、光検出器16の受光面と視野絞り7は共役の関
係にある。7は矩形に光束を絞る視野絞りであり、8は
第2リレーレンズ、9は光路を曲げるためのミラー、1
0はコンデンサーレンズである。8、9、10によっ
て、レチクル11を均一に照明し、視野絞り7はレチク
ル11と共役の関係である。レチクル11は実際の露光
時には転写されるべきパターンが描かれているが、本実
施例では照明領域の光強度分布、および露光領域の露光
量分布を測定するため、パターンが描かれていないレチ
クルがレチクルステージ12に搭載されている。もしく
はレチクル11を取り外しておく。13は、レチクル1
1のパターンをウエハ14に縮小投影する投影レンズで
ある。
Reference numeral 5 is a beam splitter which allows a part of the pulsed light to enter the photodetector 16 and to transmit most of it. 6
Is a first relay lens for uniformly illuminating the field stop 7, and the light receiving surface of the photodetector 16 and the field stop 7 have a conjugate relationship. Reference numeral 7 is a field stop that narrows the light flux into a rectangular shape, 8 is a second relay lens, 9 is a mirror for bending the optical path, and 1 is a mirror.
0 is a condenser lens. The reticle 11 is uniformly illuminated by 8, 9, 10 and the field stop 7 has a conjugate relationship with the reticle 11. The reticle 11 has a pattern to be transferred at the time of actual exposure. In the present embodiment, however, the reticle having no pattern is drawn because the light intensity distribution in the illumination area and the exposure amount distribution in the exposure area are measured. It is mounted on the reticle stage 12. Alternatively, the reticle 11 is removed. 13 is a reticle 1
It is a projection lens for reducing and projecting the pattern 1 on the wafer 14.

【0022】15はウエハ14が搭載されるウエハステ
ージである。17は照明領域内の光強度分布、および露
光領域内の露光量分布を測定する照度計である。照度計
17の受光部には走査方向に一次元に配列された受光素
子が採用されている。この受光部は、ウエハ面と高さが
一致するようにウエハステージ15上に照度計17を設
置している。18は、光検出器16と照度計17からの
出力を取り込み、演算を行い、レチクルステージ12と
ウエハステージ15を制御し、パルス光源1の発光タイ
ミングを制御するコントローラ、19はコントローラ1
8のデータを記憶するメモリである。
Reference numeral 15 is a wafer stage on which the wafer 14 is mounted. An illuminance meter 17 measures the light intensity distribution in the illumination area and the exposure amount distribution in the exposure area. The light receiving section of the illuminance meter 17 employs light receiving elements arranged one-dimensionally in the scanning direction. The light receiving unit has an illuminometer 17 installed on the wafer stage 15 so that the height of the light receiving unit coincides with that of the wafer surface. Reference numeral 18 is a controller that takes in the outputs from the photodetector 16 and the illuminance meter 17, performs calculations, controls the reticle stage 12 and the wafer stage 15, and controls the light emission timing of the pulse light source 1, and 19 is the controller 1
8 is a memory for storing 8 data.

【0023】以上の構成により、照明領域における光強
度分布を測定する場合には、図2(a)に示すように、
照度計17の受光素子が照明領域の走査方向の長さをカ
バーする位置に来るように、コントローラ18によりウ
エハステージ15の位置を制御し、パルス光源1を発光
させる。そして、メモリ19に格納してあった各受光素
子の感度ばらつきの補正係数(補正係数の求め方は後述
する)を読み出して、それぞれ対応する受光素子の測定
値を除算することによって、各受光素子間の感度ばらつ
きが測定値に与えた影響を除去する。このようにして、
走査方向に一列に配列された受光素子毎の前記測定値が
照明領域の走査方向における光強度分布として得られ
る。更に、受光素子を走査方向と直角方向に移動させた
位置で前述の測定を繰り返すことによって、照明領域全
域の光強度分布が得られる。
With the above configuration, when measuring the light intensity distribution in the illumination area, as shown in FIG.
The position of the wafer stage 15 is controlled by the controller 18 so that the light receiving element of the illuminance meter 17 is positioned to cover the length of the illumination area in the scanning direction, and the pulse light source 1 is caused to emit light. Then, the correction coefficient of the sensitivity variation of each light receiving element stored in the memory 19 (how to obtain the correction coefficient will be described later) is read out, and the measurement value of the corresponding light receiving element is divided to obtain each light receiving element. Eliminate the influence of the sensitivity variation between the two on the measured value. In this way,
The measured value for each light receiving element arranged in a line in the scanning direction is obtained as a light intensity distribution in the scanning direction of the illumination region. Further, by repeating the above-described measurement at the position where the light receiving element is moved in the direction perpendicular to the scanning direction, the light intensity distribution over the entire illumination area can be obtained.

【0024】また、露光領域の走査方向における露光量
分布の測定を行う場合にも、図2(b)に示すように照
度計17の受光素子が露光領域の走査方向の長さをカバ
ーできる位置に来るようにコントローラ18がウエハス
テージ15を走査開始位置に停止させる。コントローラ
18がウエハステージ15を走査させ、パルス光源1を
発光させて照度計17に対して露光を行う。露光中、パ
ルス毎に照度計17の各受光素子の出力値を積算してい
き、図2(c)に示した露光終了後、メモリ19に格納
してあった各受光素子の感度ばらつきの補正係数を読み
出して、それぞれ対応する受光素子の測定値を除算し、
各受光素子間の感度ばらつきが測定値に与えた影響を除
去する。このようにして、走査方向に一列に配列された
受光素子毎の前記測定値が露光領域の走査方向における
露光量分布として得られる。
Also, when the exposure amount distribution in the scanning direction of the exposure area is measured, as shown in FIG. 2B, the light receiving element of the illuminance meter 17 is located at a position where it can cover the length of the exposure area in the scanning direction. Controller 18 stops wafer stage 15 at the scanning start position. The controller 18 scans the wafer stage 15, causes the pulse light source 1 to emit light, and exposes the illuminance meter 17. During the exposure, the output value of each light receiving element of the illuminance meter 17 is integrated for each pulse, and after the exposure shown in FIG. 2C, the sensitivity variation of each light receiving element stored in the memory 19 is corrected. Read the coefficient, divide the measured value of the corresponding light receiving element,
The influence of the sensitivity variation between the light receiving elements on the measurement value is removed. In this way, the measured value for each light receiving element arranged in a line in the scanning direction is obtained as the exposure amount distribution in the scanning direction of the exposure region.

【0025】以下に、照度計17の受光素子間の感度ば
らつきの補正方法を示す。
A method of correcting the sensitivity variation between the light receiving elements of the illuminance meter 17 will be described below.

【0026】この補正方法は、各受光素子に等しい露光
量を与えることによって、受光素子の出力の違いから感
度ばらつきの補正係数を求めるという方法である。等し
い露光量を各受光素子に与えるには、1パルス毎の照度
計17の走査方向の変位量が、素子間隔の整数倍で且つ
受光素子全体の長さよりも短い距離、もしくは素子間隔
の整数分の一ずつの距離でパルス露光を行えばよい。そ
してパルス光源の出力変動を補正し、照明領域の走査方
向における断面の光強度を積算した露光量を各受光素子
に与える。
This correction method is a method of obtaining a correction coefficient for the sensitivity variation from the difference in the output of the light receiving element by giving the same light exposure amount to each light receiving element. In order to give an equal exposure amount to each light receiving element, the amount of displacement of the illuminance meter 17 in the scanning direction for each pulse is an integral multiple of the element interval and is shorter than the length of the entire light receiving element, or an integer amount of the element interval. The pulse exposure may be performed at each distance. Then, the output fluctuation of the pulse light source is corrected, and the exposure amount obtained by integrating the light intensity of the cross section in the scanning direction of the illumination region is given to each light receiving element.

【0027】受光素子の例としては、CCDラインセン
サやフォトダイオード・アレイが挙げられる。本実施例
では、走査方向の長さが30mm以上のものを使用す
る。また、露光量分布を十分に分解できるように、素子
間隔20μm、走査方向と直角方向の幅20μm程度の
ものが考えられる。
Examples of the light receiving element include a CCD line sensor and a photodiode array. In this embodiment, one having a length in the scanning direction of 30 mm or more is used. Further, in order to be able to sufficiently decompose the exposure dose distribution, a device interval of 20 μm and a width of about 20 μm in the direction perpendicular to the scanning direction can be considered.

【0028】以下に素子数M、素子間隔pの受光素子を
照度計17に採用した場合の各受光素子間の感度ばらつ
きの補正係数を求める手順を図3のフローチャート、図
4の動作説明図を用いて説明する。
The procedure for obtaining the correction coefficient of the sensitivity variation between the respective light receiving elements when the light receiving elements having the number M of elements and the element spacing p is adopted in the illuminance meter 17 will be described below with reference to the flowchart of FIG. It demonstrates using.

【0029】ステップ1では、まず図4(a)に示すよ
うに、全受光素子が照明領域にかからない位置に静止さ
せておく。初期値として、1番目の受光素子から照明領
域までの距離をL0、パルス光源1が一回発光する間に
ウエハステージ15が走査する間隔をP、全受光素子が
照明領域を通過するまでの走査距離をLとする。すなわ
ち、ラインセンサの感度ムラを補正するのにステージを
走査する範囲および走査条件をセットする。
In step 1, first, as shown in FIG. 4A, all the light receiving elements are made to stand still at a position where they do not cover the illumination area. As an initial value, the distance from the first light receiving element to the illumination area is L0, the interval at which the wafer stage 15 scans while the pulse light source 1 emits light once is P, and the scanning until all the light receiving elements pass through the illumination area. Let the distance be L. That is, the scanning range and scanning conditions of the stage are set to correct the sensitivity unevenness of the line sensor.

【0030】ここでL0はウエハステージ15が走査し
始めて一定の速度に達するのに十分な距離であり、Pは
素子間隔pの整数倍もしくは整数分の一ずつの距離であ
る。
Here, L0 is a distance sufficient for the wafer stage 15 to start scanning and reach a constant speed, and P is a distance which is an integral multiple of the element interval p or is an integer fraction.

【0031】ステップ2で、コントローラ18がウエハ
ステージ15の走査を開始させる。
In step 2, the controller 18 starts scanning the wafer stage 15.

【0032】ステップ3では、ウエハステージ15が一
定速度に達したか判断する。Noならば、ステップ4に
行き、Yesならば、ステップ5に進む。
In step 3, it is determined whether the wafer stage 15 has reached a certain speed. If No, go to Step 4, and if Yes, go to Step 5.

【0033】ステップ4では、ウエハステージ15が所
望の速度になるように速度を調整する。
In step 4, the speed is adjusted so that the wafer stage 15 has a desired speed.

【0034】ステップ5では、受光素子が照明領域にか
かる前に、コントローラ18はパルス光源1に第1回目
の発光をさせる。このとき、パルス光源1の発光回数を
i=1にセットし、以降コントローラ18でiをカウン
トしていく。そして、パルス光源1の一部の出力をモニ
タしている光検出器16からの出力をコントローラ18
で取り込み、メモリ19に測定値E1として保存する。
In step 5, the controller 18 causes the pulse light source 1 to emit light for the first time before the light receiving element reaches the illuminated area. At this time, the number of times of light emission of the pulse light source 1 is set to i = 1, and thereafter the controller 18 counts i. Then, the controller 18 outputs the output from the photodetector 16 that monitors the output of part of the pulse light source 1.
And the measured value E1 is stored in the memory 19.

【0035】ステップ6では、ウエハステージ15が受
光素子間隔pで決まる一定値P(素子間隔の整数倍また
は整数分の1)だけ動いたら、パルス光源1に2回目の
発光をさせる。各受光素子の出力Vk2(kは受光素子
の順番位置:1≦k≦M)と光検出器16からの出力E
2をコントローラ18が取り込み、メモリ19に保存す
る。
In step 6, when the wafer stage 15 moves by a constant value P (an integer multiple or an integer fraction of the element spacing) determined by the light receiving element spacing p, the pulse light source 1 is caused to emit light for the second time. The output Vk2 of each light receiving element (k is the order position of the light receiving element: 1 ≦ k ≦ M) and the output E from the photodetector 16
2 is taken in by the controller 18 and stored in the memory 19.

【0036】以後、ウエハステージ15が一定間隔分P
だけ走査するたびにパルス光源1を発光させ(iは発光
回数)、各受光素子の出力Vkiおよび光検出器16の
出力Eiをコントローラ18に取り込み、メモリ19に
保存する。
After that, the wafer stage 15 is moved to P for a predetermined interval.
The pulse light source 1 is caused to emit light (i is the number of times of light emission) each time the scanning is performed, and the output Vki of each light receiving element and the output Ei of the photodetector 16 are taken into the controller 18 and stored in the memory 19.

【0037】ステップ7では、図4(b)に示すよう
に、受光素子が照明領域を通過するまでの走査距離Lだ
け、ウエハステージ15が走査したならば、ステップ8
に進む。
In step 7, as shown in FIG. 4B, if the wafer stage 15 scans by the scanning distance L until the light receiving element passes through the illumination area, step 8 follows.
Proceed to.

【0038】ステップ8では、メモリ19からEi、V
kiを呼び出す。E1を基準としてパルス光源の出力ば
らつきの補正係数αi=Ei/E1を求める。αiでV
kiを除算すると、パルスパルス光源1の出力ばらつき
の影響によるVkiの変動が除かれる。
At step 8, Ei, V are read from the memory 19.
Call ki. A correction coefficient αi = Ei / E1 for the output variation of the pulse light source is obtained with E1 as a reference. V with αi
When ki is divided, the fluctuation of Vki due to the influence of the output variation of the pulse light source 1 is removed.

【0039】次に、k番目の受光素子の出力の積算値は
Σ(Vki/αi)と表せる。ここで、Σ(Vki/α
i)は照明領域の走査方向における断面の光強度分布を
積算した値となり、1からM番目までの受光素子それぞ
れにおける積算値Σ(V1i/αi)、・・・、Σ(V
Mi/αi)は、受光素子間の感度ばらつきが無ければ
等しくなる。すなわち、これらΣ(Vki/αi)の値
の違いが感度ばらつきに相当する。したがって、受光素
子の1番目(k=1)の積算値Σ(V1i/αi )で
他の受光素子の積算値を規格化することによって、受光
素子間の感度ばらつきの補正係数βk=Σ(Vki/α
i)/Σ(V1i/αi)が得られる。そして、これら
補正係数をメモリ19に保存する。
Next, the integrated value of the output of the k-th light receiving element can be expressed as Σ (Vki / αi). Where Σ (Vki / α
i) is a value obtained by integrating the light intensity distribution of the cross section of the illumination area in the scanning direction, and is an integrated value Σ (V1i / αi), ..., Σ (V
Mi / αi) becomes equal if there is no sensitivity variation among the light receiving elements. That is, the difference in the values of Σ (Vki / αi) corresponds to the sensitivity variation. Therefore, by standardizing the integrated value of the other light receiving elements with the first integrated value Σ (V1i / αi) of the light receiving elements (k = 1), the correction coefficient βk = Σ (Vki / Α
i) / Σ (V1i / αi) is obtained. Then, these correction coefficients are stored in the memory 19.

【0040】ステップ9で、補正係数を求める手順を終
了する。
In step 9, the procedure for obtaining the correction coefficient ends.

【0041】また、上記実施例ではラインセンサの感度
ばらつき補正係数を求めるときに、照度計17を走査し
て測定したが、ウエハステージを素子間隔の整数倍また
は整数分の1だけ、照度計17を移動させ、停止した時
点でパルス露光を行うという動作でも、ラインセンサの
感度ばらつき補正係数を求めることが可能である。その
うえ、停止した位置で複数回の露光を行って積算露光を
行えば、光源の出力変動による影響を平均化させる効果
も生じる。
Further, in the above-described embodiment, when the sensitivity variation correction coefficient of the line sensor is obtained, the illuminance meter 17 is scanned and measured. However, the illuminance meter 17 is measured by scanning the wafer stage by an integral multiple or a fraction of the element interval. It is also possible to obtain the sensitivity variation correction coefficient of the line sensor by the operation of moving and moving and stopping the pulse exposure. In addition, if the exposure is performed a plurality of times at the stopped position to perform the integrated exposure, an effect of averaging the influence of the output fluctuation of the light source is produced.

【0042】本実施例に関して、ウエハ面上の照明領域
の形状が図2に示すように矩形状であっても、図5に示
すように照明領域の形状が円弧状であっても、走査方向
に直角方向の照明領域の長さが30mm程度であるのに
対して、照度計17の受光素子の走査方向に直角方向の
幅が20μmと非常に小さいため、照明領域の形状に関
係なく照度分布、および露光量分布の測定が可能であ
る。
Regarding the present embodiment, whether the shape of the illumination area on the wafer surface is rectangular as shown in FIG. 2 or the shape of the illumination area as shown in FIG. While the length of the illumination area in the right angle direction is about 30 mm, the width of the light receiving element of the illuminometer 17 in the direction perpendicular to the scanning direction is very small at 20 μm, so that the illuminance distribution is independent of the shape of the illumination area. , And the exposure dose distribution can be measured.

【0043】上記実施例では受光素子の長さを、走査方
向の露光領域をカバーできる長さ(30mm以上)とし
たが、この長さを照明領域の走査方向の長さ(5mm程
度)がカバーできる長さに短くしても露光量分布の測定
が可能である。この場合には、照度計を走査させずに走
査方向の照明領域をカバーする位置に静止させた状態で
露光を行い、照明領域の照度分布を測定する。パルス露
光毎に各受光素子からの出力の測定値を保存しておき、
露光終了後に、パルス毎の測定値を実露光時の各パルス
発光毎のウエハステージの変位量に相当する素子数分ず
らして積算することによって、露光量分布が求められ
る。
In the above embodiment, the length of the light receiving element is set to a length (30 mm or more) capable of covering the exposure area in the scanning direction, but this length is covered by the length of the illumination area in the scanning direction (about 5 mm). The exposure dose distribution can be measured even if the length is shortened. In this case, the illuminance meter is not scanned and exposure is performed in a state where the illuminance meter is stationary at a position covering the illumination area in the scanning direction, and the illuminance distribution of the illumination area is measured. Save the measured value of the output from each light receiving element for each pulse exposure,
After the exposure is completed, the exposure amount distribution is obtained by shifting the measured values for each pulse by the number of elements corresponding to the displacement amount of the wafer stage for each pulse emission at the time of actual exposure and integrating the measured values.

【0044】また、図6に示すように、照明領域の走査
方向における断面の光強度分布形状が矩形状(図6
(a))であっても、台形状(図6(b))であって
も、ガウス分布状(図6(c))であっても、走査方向
の照明領域の幅が5mm程度であるのに対して、照時計
17の受光素子の走査方向の幅が20μmと非常に小さ
いため、それぞれの光分布形状の変化を十分分解でき、
照明領域の走査方向における断面の光強度分布の形状に
かかわらず、照明領域の光強度分布、および露光量分布
の測定が可能である。
Further, as shown in FIG. 6, the light intensity distribution shape of the cross section of the illumination area in the scanning direction is rectangular (see FIG. 6).
(A)), trapezoidal shape (FIG. 6 (b)), Gaussian distribution shape (FIG. 6 (c)), the width of the illumination area in the scanning direction is about 5 mm. On the other hand, since the width of the light receiving element of the timepiece 17 in the scanning direction is as small as 20 μm, the change in each light distribution shape can be sufficiently resolved,
It is possible to measure the light intensity distribution and the exposure amount distribution of the illumination region regardless of the shape of the light intensity distribution of the cross section in the scanning direction of the illumination region.

【0045】上記の実施例では、光源にパルス光源を用
いているが、水銀ランプやYAGレーザ等の連続発光す
る光源を用いた場合においても、前述の受光素子間の感
度ばらつきの補正係数を求める方法と、受光部に一次元
に配列された受光素子を採用した照度計を用いることに
よって、光源の出力が変動することによる影響を受けず
に露光領域の露光量分布の測定が可能な露光装置を実現
できる。
In the above embodiment, the pulsed light source is used as the light source. However, even when a continuous light source such as a mercury lamp or a YAG laser is used, the correction coefficient for the sensitivity variation between the light receiving elements is obtained. Method and an exposure apparatus capable of measuring the exposure dose distribution in the exposure area without being affected by fluctuations in the output of the light source, by using the illuminance meter employing a one-dimensionally arranged light receiving element in the light receiving section Can be realized.

【0046】以上の実施例では、走査方向に一次元に配
列された受光素子を照度計に採用したが、走査方向およ
び走査方向に直角な方向に二次元に配列された受光素子
を採用しても、前述の受光素子間の感度ばらつきを補正
する方法を用いて、露光領域の露光量分布を実露光と同
条件で測定できる露光装置を実現できる。
In the above embodiments, the light receiving elements arranged one-dimensionally in the scanning direction are adopted in the illuminometer, but the light receiving elements arranged two-dimensionally in the scanning direction and the direction perpendicular to the scanning direction are adopted. Also, by using the method for correcting the sensitivity variation between the light receiving elements described above, it is possible to realize an exposure apparatus that can measure the exposure dose distribution in the exposure region under the same conditions as the actual exposure.

【0047】次に図1の投影露光装置を利用した半導体
デバイスの製造方法の実施例を説明する。図7は半導体
デバイス(ICやLSI等の半導体チップ、液晶パネル
やCCD)の製造フローを示す。ステップ71(回路設
計)では半導体デバイスの回路設計を行う。ステップ7
2(マスク製作)では設計した回路パターンを形成した
マスク(レチクル11)を製作する。一方、ステップ7
3(ウエハ製造)ではシリコン等の材料を用いてウエハ
(ウエハ14)を製造する。ステップ74(ウエハプロ
セス)は前工程と呼ばれ、上記用意したマスクとウエハ
とを用いて、リソグラフィー技術によってウエハ上に実
際の回路を形成する。次のステップ75(組み立て)は
後工程と呼ばれ、ステップ74によって作成されたウエ
ハを用いてチップ化する工程であり、アッセンブリ工程
(ダイシング、ボンディング)、パッケージング工程
(チップ封入)等の工程を含む。ステップ76(検査)
ではステップ75で作成された半導体デバイスの動作確
認テスト、耐久性テスト等の検査を行う。こうした工程
を経て半導体デバイスが完成し、これが出荷(ステップ
77)される。
Next, an embodiment of a method of manufacturing a semiconductor device using the projection exposure apparatus of FIG. 1 will be described. FIG. 7 shows a manufacturing flow of semiconductor devices (semiconductor chips such as IC and LSI, liquid crystal panels and CCDs). In step 71 (circuit design), the circuit of the semiconductor device is designed. Step 7
In 2 (mask manufacturing), a mask (reticle 11) on which the designed circuit pattern is formed is manufactured. Step 7
In 3 (wafer manufacturing), a wafer (wafer 14) is manufactured using a material such as silicon. Step 74 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by the lithography technique using the mask and the wafer prepared above. The next step 75 (assembly) is called a post-process, and is a process of forming a chip using the wafer created in step 74. Including. Step 76 (inspection)
Then, inspections such as an operation confirmation test and a durability test of the semiconductor device created in step 75 are performed. Through these steps, the semiconductor device is completed and shipped (step 77).

【0048】図8は上記ウエハプロセスの詳細なフロー
を示す。ステップ81(酸化)ではウエハ(ウエハ1
4)の表面を酸化させる。ステップ82(CVD)では
ウエハの表面に絶縁膜を形成する。ステップ83(電極
形成)ではウエハ上に電極を蒸着によって形成する。ス
テップ84(イオン打込み)ではウエハにイオンを打ち
込む。ステップ85(レジスト処理)ではウエハにレジ
スト(感材)を塗布する。ステップ86(露光)では上
記投影露光装置によってマスク(レチクル11)の回路
パターンの像でウエハを露光する。ステップ87(現
像)では露光したウエハを現像する。ステップ88(エ
ッチング)では現像したレジスト以外の部分を削り取
る。ステップ89(レジスト剥離)ではエッチングが済
んで不要となったレジストを取り除く。これらステップ
を繰り返し行うことによりウエハ上に回路パターンが形
成される。
FIG. 8 shows a detailed flow of the wafer process. In step 81 (oxidation), a wafer (wafer 1
4) The surface is oxidized. In step 82 (CVD), an insulating film is formed on the surface of the wafer. In step 83 (electrode formation), electrodes are formed on the wafer by vapor deposition. In step 84 (ion implantation), ions are implanted in the wafer. In step 85 (resist processing), a resist (photosensitive material) is applied to the wafer. In step 86 (exposure), the projection exposure apparatus exposes the wafer with an image of the circuit pattern of the mask (reticle 11). In step 87 (development), the exposed wafer is developed. In step 88 (etching), parts other than the developed resist are removed. In step 89 (resist stripping), the resist that is no longer needed after etching is removed. By repeating these steps, a circuit pattern is formed on the wafer.

【0049】本実施例の製造方法を用いれば、従来は難
しかった高集積度の半導体デバイスを製造することが可
能になる。
By using the manufacturing method of this embodiment, it becomes possible to manufacture a highly integrated semiconductor device, which has been difficult in the past.

【0050】[0050]

【発明の効果】以上の説明のように本発明の光量測定装
置を走査型露光装置に用いることにより、従来の走査型
露光装置では不可能であった露光領域の走査方向におけ
る露光量分布の測定を、実露光と同条件で測定すること
が可能になり、ウエハに適切な露光量を与えることがで
き、均一に露光することが可能になる。
As described above, by using the light quantity measuring apparatus of the present invention in the scanning type exposure apparatus, it is possible to measure the exposure amount distribution in the scanning direction of the exposure area, which is impossible with the conventional scanning type exposure apparatus. Can be measured under the same conditions as the actual exposure, an appropriate exposure amount can be given to the wafer, and uniform exposure can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した走査型露光装置全体のシステ
ム構成図である。
FIG. 1 is a system configuration diagram of an entire scanning exposure apparatus to which the present invention is applied.

【図2】照明領域の光強度分布、及び露光領域の露光量
分布を測定する場合の説明図である。
FIG. 2 is an explanatory diagram for measuring a light intensity distribution in an illumination area and an exposure amount distribution in an exposure area.

【図3】受光素子間の感度ばらつきの補正係数を求める
際のフローチャートである。
FIG. 3 is a flowchart for obtaining a correction coefficient for sensitivity variation between light receiving elements.

【図4】受光素子間の感度ばらつきの補正係数と求める
際の動作説明図である。
FIG. 4 is an explanatory diagram of an operation when obtaining a correction coefficient of sensitivity variation between light receiving elements and a correction coefficient.

【図5】円弧状の照明領域を示した図である。FIG. 5 is a diagram showing an arcuate illumination area.

【図6】照明領域の走査方向における断面の光強度分布
の形状を示した図である。
FIG. 6 is a diagram showing a shape of a light intensity distribution of a cross section in the scanning direction of an illumination region.

【図7】半導体デバイスの製造工程を示す図である。FIG. 7 is a diagram showing a manufacturing process of a semiconductor device.

【図8】図7の工程中のウエハプロセスの詳細を示す図
である。
FIG. 8 is a diagram showing details of a wafer process during the step of FIG. 7;

【符号の説明】[Explanation of symbols]

1 パルス光源 2 ビーム整形光学系 3 減光手段 4 インコヒーレント・均一化光学系 5 ビームスプリッタ 6 第1リレーレンズ 7 視野絞り 8 第2リレーレンズ 9 ミラー 10 コンデンサーレンズ 11 レチクル 12 レチクルステージ 13 投影レンズ 14 ウエハ 15 ウエハステージ 16 光検出器 17 照度計 18 コントローラ 19 メモリ 1 pulse light source 2 beam shaping optical system 3 dimming means 4 incoherent / uniformizing optical system 5 beam splitter 6 first relay lens 7 field stop 8 second relay lens 9 mirror 10 condenser lens 11 reticle 12 reticle stage 13 projection lens 14 Wafer 15 Wafer stage 16 Photodetector 17 Illuminance meter 18 Controller 19 Memory

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 複数の受光素子よりなる光強度測定手段
と、該光強度測定手段を被測定領域に対して相対的に走
査する走査手段とを有し、該走査手段によって前記光強
度測定手段を前記被測定領域に対して相対的に走査しな
がら前記複数の受光素子が順次受光する光強度を各受光
素子毎に記憶手段に記憶し、該記憶手段に記憶された情
報を用いて光量を測定することを特徴とする光量測定装
置。
1. A light intensity measuring means comprising a plurality of light receiving elements, and a scanning means for scanning the light intensity measuring means relative to an area to be measured. The light intensity measuring means by the scanning means. The light intensity sequentially received by the plurality of light receiving elements while scanning relative to the measured region is stored in the storage means for each light receiving element, and the light amount is calculated using the information stored in the storage means. A light quantity measuring device characterized by measuring.
【請求項2】 前記複数の受光素子は、少なくとも走査
方向に並んでいることを特徴とする請求項1記載の光量
測定装置。
2. The light quantity measuring device according to claim 1, wherein the plurality of light receiving elements are arranged at least in the scanning direction.
【請求項3】 前記複数の受光素子間の感度ばらつきを
補正する補正手段を有することを特徴とする請求項1、
2記載の光量測定装置。
3. A correction means for correcting sensitivity variations among the plurality of light receiving elements is provided.
2. The light quantity measuring device according to 2.
【請求項4】 複数の受光素子を照明領域に対して相対
的に走査し、前記各受光素子の測定値から、該各受光素
子の感度ばらつきを検出することを特徴とする感度ばら
つきの検出方法。
4. A method for detecting a variation in sensitivity, wherein a plurality of light receiving elements are relatively scanned with respect to an illumination area, and a variation in sensitivity of each light receiving element is detected from a measured value of each light receiving element. .
【請求項5】 パルス光により前記照明領域が形成さ
れ、前記複数の受光素子の走査方向の素子間隔が前記照
明領域の走査方向の幅に対して十分に小さい場合におい
て、前記複数の受光素子の前記照明領域に対する1パル
ス光毎の相対的な変位量が、前記複数の受光素子の走査
方向の素子間隔の整数倍であり、且つ前記複数の受光素
子の走査方向の長さよりも小さいことを特徴とする請求
項4記載の感度ばらつきの検出方法。
5. The illumination area is formed by pulsed light, and when the element spacing in the scanning direction of the plurality of light receiving elements is sufficiently smaller than the width of the illumination area in the scanning direction, the plurality of light receiving elements of the plurality of light receiving elements are formed. A relative displacement amount for each pulsed light with respect to the illumination region is an integral multiple of an element interval in the scanning direction of the plurality of light receiving elements, and is smaller than a length in the scanning direction of the plurality of light receiving elements. The method for detecting a variation in sensitivity according to claim 4.
【請求項6】 パルス光により前記照明領域が形成され
る場合において、前記複数の受光素子の前記照明領域に
対する1パルス光毎の相対的な変位量が、前記複数の受
光素子の走査方向の素子間隔の整数分の1であることを
特徴とする請求項4記載の感度ばらつきの検出方法。
6. When the illumination area is formed by pulsed light, a relative displacement amount of each of the plurality of light receiving elements with respect to the illumination area for each pulsed light is an element in a scanning direction of the plurality of light receiving elements. 5. The method for detecting variation in sensitivity according to claim 4, wherein the interval is 1 / integral.
【請求項7】 請求項1乃至3記載の光量測定装置を用
いて露光量を測定することを特徴とする露光装置。
7. An exposure apparatus, wherein the exposure amount is measured by using the light amount measuring apparatus according to claim 1.
【請求項8】 光源と、該光源より発せられた光の照明
領域をマスク及びウエハに対して相対的に走査する走査
手段とを有し、前記照明領域よりも広い前記マスク及び
ウエハ上の被照明領域を照明し、前記マスク上に形成さ
れた転写パターンを前記ウエハに露光転写する露光装置
において、露光量分布測定手段を有することを特徴とす
る露光装置。
8. A light source and a scanning means for scanning an illumination area of light emitted from the light source relative to the mask and the wafer, and the object on the mask and the wafer wider than the illumination area. An exposure apparatus for illuminating an illumination area and exposing and transferring a transfer pattern formed on the mask onto the wafer, comprising an exposure amount distribution measuring unit.
【請求項9】 前記露光量分布測定手段は、複数の受光
素子よりなる光強度測定手段と、該光強度測定手段を前
記照明領域に対して相対的に走査しながら照明し、前記
複数の受光素子が順次受光する光強度を各受光素子毎に
記憶する記憶手段とを有することを特徴とする請求項8
記載の露光装置。
9. The exposure amount distribution measuring means illuminates the light intensity measuring means composed of a plurality of light receiving elements and scans the light intensity measuring means relative to the illumination area to illuminate the plurality of light receiving elements. 9. A storage unit for storing, for each light receiving element, the intensity of light sequentially received by the element.
The exposure apparatus described.
【請求項10】 前記複数の受光素子は、少なくとも走
査方向に並んでいることを特徴とする請求項9記載の露
光装置。
10. The exposure apparatus according to claim 9, wherein the plurality of light receiving elements are arranged at least in the scanning direction.
【請求項11】 パルス光源と、該パルス光源より発し
た複数のパルス光が順次形成する照明領域をマスク及び
ウエハに対して相対的に走査する走査手段とを有し、前
記照明領域を前記マスク及びウエハ上で相対的に変位さ
せながら重ね合わせ、前記照明領域よりも広い前記マス
ク及びウエハ上の被照明領域を照明し、前記マスクに形
成された転写パターンを前記ウエハに露光転写する露光
装置において、少なくとも走査方向に並んだ複数の受光
素子よりなる光強度測定手段を有し、前記光強度測定手
段を前記照明領域に対して相対的に走査しながら照明
し、前記複数の受光素子が順次受光する前記複数のパル
ス光の光強度を各受光素子毎に記憶手段に記憶し、該記
憶手段に記憶された情報を用いて前記被照明領域の露光
量分布を求めることを特徴とする露光装置。
11. A mask comprising a pulsed light source and a scanning means for relatively scanning an illumination area formed by a plurality of pulsed lights emitted from the pulsed light source with respect to a mask and a wafer, the illumination area being the mask. And an exposure apparatus for illuminating the mask and an illuminated area on the wafer that are wider than the illumination area while overlapping them while relatively displacing on the wafer, and exposing and transferring the transfer pattern formed on the mask onto the wafer. A light intensity measuring unit including at least a plurality of light receiving elements arranged in the scanning direction, illuminating the light intensity measuring unit while scanning relative to the illumination area, and the plurality of light receiving elements sequentially receiving light. The light intensity of the plurality of pulsed lights is stored in the storage means for each light receiving element, and the exposure amount distribution of the illuminated area is obtained using the information stored in the storage means. Characteristic exposure equipment.
【請求項12】 パルス光源と、該パルス光源より発し
た複数のパルス光が順次形成する照明領域をマスク及び
ウエハに対して相対的に走査する走査手段とを有し、前
記照明領域を前記マスク及びウエハ上で相対的に変位さ
せながら重ね合わせ、前記照明領域よりも広い前記マス
ク及びウエハ上の被照明領域を照明し、前記マスクに形
成された転写パターンを前記ウエハに露光転写する露光
装置において、少なくとも走査方向に並んだ複数の受光
素子よりなる光強度測定手段を有し、該光強度測定手段
を前記照明領域に対して静止して照明し、各受光素子に
入射した前記パルス光の光強度を各パルス光毎に記憶手
段に記憶し、該記憶手段に記憶された前記光強度を実露
光時における前記照明領域の相対的な変位量に応じた分
だけずらして積算させ前記被照明領域の露光量分布を求
めることを特徴とする露光装置。
12. A mask comprising: a pulse light source; and a scanning unit that scans an illumination area formed by a plurality of pulsed lights emitted from the pulse light source sequentially with respect to a mask and a wafer, the illumination area being the mask. And an exposure apparatus for illuminating the mask and an illuminated area on the wafer that are wider than the illumination area while overlapping them while relatively displacing on the wafer, and exposing and transferring the transfer pattern formed on the mask onto the wafer. , Light of the pulsed light having a light intensity measuring unit composed of at least a plurality of light receiving elements arranged in the scanning direction, illuminating the light intensity measuring unit stationary with respect to the illumination area, and entering each light receiving element. The intensity is stored in the storage means for each pulsed light, and the light intensity stored in the storage means is shifted by an amount corresponding to the relative displacement amount of the illumination area at the time of actual exposure and integrated. An exposure apparatus, wherein an exposure amount distribution of the illuminated area is obtained.
【請求項13】 前記複数の受光素子間の感度ばらつき
を補正する補正手段を有することを特徴とする請求項8
乃至12記載の露光装置。
13. A correction means for correcting sensitivity variations among the plurality of light receiving elements is provided.
13. The exposure apparatus according to any one of 1 to 12.
【請求項14】 前記光強度測定手段は、1次元ライン
センサであることを特徴とする請求項8乃至13記載の
露光装置。
14. The exposure apparatus according to claim 8, wherein the light intensity measuring means is a one-dimensional line sensor.
【請求項15】 前記光強度測定手段は、2次元エリア
センサであることを特徴とする請求項8乃至13記載の
露光装置。
15. The exposure apparatus according to claim 8, wherein the light intensity measuring means is a two-dimensional area sensor.
【請求項16】 請求項8乃至15記載の露光装置を用
いてデバイスを製造することを特徴とするデバイス製造
方法。
16. A device manufacturing method comprising manufacturing a device using the exposure apparatus according to claim 8.
JP18007295A 1995-07-17 1995-07-17 Light intensity measurement device Expired - Fee Related JP3591922B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18007295A JP3591922B2 (en) 1995-07-17 1995-07-17 Light intensity measurement device
US08/677,525 US5949468A (en) 1995-07-17 1996-07-10 Light quantity measuring system and exposure apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18007295A JP3591922B2 (en) 1995-07-17 1995-07-17 Light intensity measurement device

Publications (2)

Publication Number Publication Date
JPH0933344A true JPH0933344A (en) 1997-02-07
JP3591922B2 JP3591922B2 (en) 2004-11-24

Family

ID=16076976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18007295A Expired - Fee Related JP3591922B2 (en) 1995-07-17 1995-07-17 Light intensity measurement device

Country Status (2)

Country Link
US (1) US5949468A (en)
JP (1) JP3591922B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086172A (en) * 2003-09-11 2005-03-31 Nikon Corp Method of measuring nonuniformity of integrated light quantity, exposure method and method for manufacturing device
JP2005352146A (en) * 2004-06-10 2005-12-22 Olympus Corp Microscope illumination intensity measuring apparatus
JP2021526224A (en) * 2018-06-05 2021-09-30 ピロポス インコーポレイテッド Small OCT spectrometer suitable for mobile environments

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106139A (en) * 1997-10-30 2000-08-22 Nikon Corporation Illumination optical apparatus and semiconductor device manufacturing method
US6204870B1 (en) * 1998-09-08 2001-03-20 Canon Kabushiki Kaisha Image formation apparatus control by measurement of image patterns having different emission rising characteristics
EP2145330B1 (en) * 2007-04-11 2014-07-16 Red.Com, Inc. Video camera
US8237830B2 (en) * 2007-04-11 2012-08-07 Red.Com, Inc. Video camera
US9521384B2 (en) 2013-02-14 2016-12-13 Red.Com, Inc. Green average subtraction in image data
EP3649783A1 (en) 2017-07-05 2020-05-13 Red.Com, Llc Video image data processing in electronic devices

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2210945C3 (en) * 1972-03-07 1978-09-21 Gerhard 8200 Rosenheim Krause Exposure meter
US4519692A (en) * 1983-04-08 1985-05-28 Warner-Lambert Technologies, Inc. Exposure and camera control
US4822975A (en) * 1984-01-30 1989-04-18 Canon Kabushiki Kaisha Method and apparatus for scanning exposure
US5171965A (en) * 1984-02-01 1992-12-15 Canon Kabushiki Kaisha Exposure method and apparatus
DE3427611A1 (en) * 1984-07-26 1988-06-09 Bille Josef LASER BEAM LITHOGRAPH
JPS6197830A (en) * 1984-10-18 1986-05-16 Canon Inc Exposure device
JPH0614508B2 (en) * 1985-03-06 1994-02-23 キヤノン株式会社 Step-and-repeat exposure method
EP0266203B1 (en) * 1986-10-30 1994-07-06 Canon Kabushiki Kaisha An illumination device
US4884101A (en) * 1987-02-03 1989-11-28 Nikon Corporation Apparatus capable of adjusting the light amount
JPS63193130A (en) * 1987-02-05 1988-08-10 Canon Inc Light quantity controller
US4804978A (en) * 1988-02-19 1989-02-14 The Perkin-Elmer Corporation Exposure control system for full field photolithography using pulsed sources
JP2569711B2 (en) * 1988-04-07 1997-01-08 株式会社ニコン Exposure control device and exposure method using the same
US5191374A (en) * 1988-11-17 1993-03-02 Nikon Corporation Exposure control apparatus
JPH02177313A (en) * 1988-12-28 1990-07-10 Canon Inc Exposure controller
JPH02177415A (en) * 1988-12-28 1990-07-10 Canon Inc Exposure device
US5475491A (en) * 1989-02-10 1995-12-12 Canon Kabushiki Kaisha Exposure apparatus
US5121160A (en) * 1989-03-09 1992-06-09 Canon Kabushiki Kaisha Exposure method and apparatus
JP2731953B2 (en) * 1989-08-07 1998-03-25 キヤノン株式会社 Energy control device
JP2849944B2 (en) * 1990-07-11 1999-01-27 キヤノン株式会社 Exposure apparatus, energy control apparatus, and semiconductor element manufacturing method
JP2902172B2 (en) * 1991-09-04 1999-06-07 キヤノン株式会社 Exposure equipment
US5250797A (en) * 1990-10-05 1993-10-05 Canon Kabushiki Kaisha Exposure method and apparatus for controlling light pulse emission using determined exposure quantities and control parameters
JP3210123B2 (en) * 1992-03-27 2001-09-17 キヤノン株式会社 Imaging method and device manufacturing method using the method
JPH06119971A (en) * 1992-10-02 1994-04-28 Seikosha Co Ltd Manufacture of el element
JP2862477B2 (en) * 1993-06-29 1999-03-03 キヤノン株式会社 Exposure apparatus and method for manufacturing device using the exposure apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086172A (en) * 2003-09-11 2005-03-31 Nikon Corp Method of measuring nonuniformity of integrated light quantity, exposure method and method for manufacturing device
JP2005352146A (en) * 2004-06-10 2005-12-22 Olympus Corp Microscope illumination intensity measuring apparatus
JP4689975B2 (en) * 2004-06-10 2011-06-01 オリンパス株式会社 Microscope illumination intensity measuring device
JP2021526224A (en) * 2018-06-05 2021-09-30 ピロポス インコーポレイテッド Small OCT spectrometer suitable for mobile environments
US11815397B2 (en) 2018-06-05 2023-11-14 Philophos, Inc. Compact OCT spectrometer suitable for mobile environment

Also Published As

Publication number Publication date
US5949468A (en) 1999-09-07
JP3591922B2 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
JP3267414B2 (en) Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus
US20010028448A1 (en) Exposure amount control method in exposure apparatus
JPH0729810A (en) Scanning aligner
JPH10135123A (en) Projection aligenr and manufacturing semiconductor device, using the same
JP3360760B2 (en) Exposure amount unevenness measurement method, exposure method and exposure apparatus
JP2007250947A (en) Exposure apparatus and image surface detecting method
JP4392879B2 (en) Projection exposure apparatus and device manufacturing method
JPH11317349A (en) Projection aligner and method for manufacturing device using the same
JP2765422B2 (en) Exposure apparatus and method for manufacturing semiconductor device using the same
US7154524B2 (en) Exposure apparatus including a controller configured to read electrical signals from an array of photoelectric converters
JP3591922B2 (en) Light intensity measurement device
US6657725B1 (en) Scanning type projection exposure apparatus and device production method using the same
JPH0737774A (en) Scanning aligner
JPH07220989A (en) Exposure apparatus and manufacture of device using the same
JP2005302825A (en) Exposure system
JP2003086492A (en) Aligner, control method and manufacturing method of the aligner
JPH08162397A (en) Projection light exposure device and manufacture of semiconductor device by use thereof
US6744492B2 (en) Exposure apparatus
JP3428825B2 (en) Surface position detection method and surface position detection device
JP2009164355A (en) Scanning exposure apparatus and method of manufacturing device
JPH08339954A (en) Illumination method and illumination device, and aligner using them
JP3376219B2 (en) Surface position detecting device and method
JPH09270382A (en) Projection aligner and manufacture of semiconductor device using the same
JP3167101B2 (en) Exposure apparatus and device manufacturing method using the same
JP3548323B2 (en) Scanning exposure apparatus and device manufacturing method using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees