JPH0933334A - Impedance characteristic measuring method for piezoelectric component - Google Patents

Impedance characteristic measuring method for piezoelectric component

Info

Publication number
JPH0933334A
JPH0933334A JP18271495A JP18271495A JPH0933334A JP H0933334 A JPH0933334 A JP H0933334A JP 18271495 A JP18271495 A JP 18271495A JP 18271495 A JP18271495 A JP 18271495A JP H0933334 A JPH0933334 A JP H0933334A
Authority
JP
Japan
Prior art keywords
frequency
phase
resonance
impedance
piezoelectric component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18271495A
Other languages
Japanese (ja)
Other versions
JP3246280B2 (en
Inventor
Yasuhiro Tanaka
康▲廣▼ 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP18271495A priority Critical patent/JP3246280B2/en
Publication of JPH0933334A publication Critical patent/JPH0933334A/en
Application granted granted Critical
Publication of JP3246280B2 publication Critical patent/JP3246280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the impedance of a piezoelectric component without waste and with superior precision and quickness by sampling frequencies at a smaller frequency pitch as approaching the frequency of a phase of zero degree. SOLUTION: A frequency region containing a frequency in which the phase of a piezoelectric component becomes zero degree is sampled at a frequency pitch Δfs , and sampling frequencies f1 , f2 , which are the frequencies before and after first passing a phase of zero degree, and their phases ϕ1 , ϕ2 are measured, and sampling frequencies f3 , f4 , which are the frequencies before and after once more passing the phase of zero degree, and their phases ϕ3 , ϕ4 are measured. By an interpolation method, a temporary resonance frequency fr1 and an temporary anti-resonance frequency fa1 are led out, and when phases ϕ5 , ϕ6 measured at the frequencies fr1 , fa1 stay within a predetermined phase cross, the frequencies fr1 , fa1 are determined as the resonance frequency (measured value) and the anti-resonance frequency (measured values), and also the impedance is measured at the frequencies fr1 , fa1 so as to obtain a resonance impedance Zr and an anti-resonance impedance Za respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧電部品、特に発
振回路や共振回路等に使用される圧電部品のインピーダ
ンス特性測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring impedance characteristics of a piezoelectric component, particularly a piezoelectric component used in an oscillation circuit, a resonance circuit or the like.

【0002】[0002]

【従来の技術】従来、圧電セラミック振動子の共振周波
数fr、反共振周波数fa、共振インピーダンスZr及び
反共振インピーダンスZaを測定する場合は、共振周波
数fr及び反共振周波数faを含む周波数領域を一定の周
波数ピッチでサンプリングし、それぞれのサンプリング
で得られたインピーダンス値を検討して共振周波数
r、反共振周波数fa、共振インピーダンスZr及び反
共振インピーダンスZaを求めていた。
Conventionally, the resonance frequency f r of the piezoelectric ceramic resonator, the anti-resonance frequency f a, when measuring the resonance impedance Z r and antiresonant impedance Z a is a resonant frequency f r and the antiresonance frequency f a The resonance frequency f r , the anti-resonance frequency f a , the resonance impedance Z r, and the anti-resonance impedance Z a are obtained by sampling the included frequency region at a constant frequency pitch and examining the impedance values obtained by each sampling. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
方法にあっては、周波数領域を一定の周波数ピッチでサ
ンプリングするため、測定に長時間を要し、しかも、測
定に無駄があった。なぜなら、実際に必要なインピーダ
ンス値は、共振周波数fr及び反共振周波数fa近傍のも
のだけであり、残りの測定データは殆んど必要としない
からである。
However, in the conventional method, since the frequency domain is sampled at a constant frequency pitch, it takes a long time for measurement, and the measurement is wasteful. This is because the impedance values that are actually required are only those near the resonance frequency f r and the anti-resonance frequency f a , and the remaining measurement data are hardly needed.

【0004】そこで、本発明の目的は、測定の効率化を
図ると共に、測定精度を容易にアップさせることができ
る、圧電部品のインピーダンス特性測定方法を提供する
ことにある。
Therefore, an object of the present invention is to provide a method for measuring the impedance characteristic of a piezoelectric component, which can improve the measurement efficiency and easily improve the measurement accuracy.

【0005】[0005]

【課題を解決するための手段】以上の目的を達成するた
め、本発明に係る圧電部品のインピーダンス特性測定方
法は、(a)所定の周波数ピッチΔfSで圧電部品の位
相が0゜になる周波数を含む周波数領域をサンプリング
し、位相0゜を通過する前のサンプリング周波数f1
びその位相φ1と、位相0゜を通過した後のサンプリン
グ周波数f2およびその位相φ2を測定する工程と、
(b)関係式 f3=f1+(ΔfS・φ1)/(φ1−φ2) を用いて周波数f3を導出する工程と、(c)前記周波
数f3で圧電部品のインピーダンスを測定する工程と、
を備えたことを特徴とする。
In order to achieve the above object, the method for measuring the impedance characteristic of a piezoelectric component according to the present invention comprises (a) a frequency at which the phase of the piezoelectric component becomes 0 ° at a predetermined frequency pitch Δf S. And sampling the frequency region including 0, and measuring the sampling frequency f 1 and its phase φ 1 before passing the phase 0 °, and the sampling frequency f 2 and its phase φ 2 after passing the phase 0 °,
(B) a step of deriving the equation f 3 = f 1 + (Δf S · φ 1) / (φ 1 -φ 2) frequency f 3 using a piezoelectric component in (c) the frequency f 3 Impedance And the step of measuring
It is characterized by having.

【0006】また、本発明に係る圧電部品のインピーダ
ンス特性測定方法は、(d)圧電部品の共振周波数fr
と反共振周波数faの差Δfより若干小さい周波数ピッ
チΔfSで、圧電部品の位相が0゜になる周波数を含む
周波数領域を低周波側から順次サンプリングし、最初に
位相0゜を通過する前のサンプリング周波数f1及びそ
の位相φ1と、最初に位相0゜を通過した後のサンプリ
ング周波数f2及びその位相φ2と、再び位相0゜を通過
する前のサンプリング周波数f3及びその位相φ3と、再
び位相0゜を通過した後のサンプリング周波数f4及び
その位相φ4を測定する工程と、(e)仮の共振周波数
r1と仮の反共振周波数fa1を、それぞれ関係式 fr1=f1+(ΔfS・φ1)/(φ2−φ1) fa1=f3+(ΔfS・φ3)/(φ3−φ4) を用いて導出する工程と、(f)前記仮の共振周波数f
r1及び仮の反共振周波数fa1で圧電部品のインピーダン
スを測定する工程と、を備えたことを特徴とする。
[0006] The impedance characteristic measuring method of a piezoelectric component according to the present invention, (d) a piezoelectric component of the resonant frequency f r
And a frequency pitch Δf S slightly smaller than the difference Δf between the antiresonance frequency f a and the frequency range including the frequency at which the phase of the piezoelectric component becomes 0 °, are sequentially sampled from the low frequency side, and before the phase 0 ° is passed first. the sampling frequency f 1 and the phase phi 1 the first phase 0 and゜Wo sampling frequency f 2 and the phase phi 2 after passing again the phase 0゜Wo before passing through a sampling frequency f 3 and the phase phi 3 , the step of measuring the sampling frequency f 4 and the phase φ 4 thereof after passing the phase 0 ° again, and (e) the provisional resonance frequency f r1 and the provisional anti-resonance frequency f a1 are respectively expressed by the relational expression f and deriving with r1 = f 1 + (Δf S · φ 1) / (φ 2 -φ 1) f a1 = f 3 + (Δf S · φ 3) / (φ 3 -φ 4), ( f) The tentative resonance frequency f
measuring the impedance of the piezoelectric component at r1 and the provisional anti-resonance frequency f a1 .

【0007】[0007]

【作用】以上の方法は、共振周波数fr及び反共振周波
数faでの位相がそれぞれ0゜になることを利用した方
法である。そして、位相0゜の周波数に近づくにつれて
より小さい周波数ピッチでサンプリングする。従って、
共振周波数fr及び反共振周波数faの近傍であるかどう
かに関係なく、不必要な周波数をも一定の周波数ピッチ
でサンプリングしていた従来の方法と比較して、無駄の
ない、かつ精度の良い測定が迅速に行なわれる。
The above method utilizes the fact that the phases at the resonance frequency f r and the anti-resonance frequency f a are each 0 °. Then, sampling is performed with a smaller frequency pitch as the frequency approaches the phase 0 °. Therefore,
Compared with the conventional method in which unnecessary frequencies are sampled at a constant frequency pitch regardless of whether they are in the vicinity of the resonance frequency f r and the anti-resonance frequency f a , there is no waste and accuracy is improved. Good measurements are made quickly.

【0008】[0008]

【発明の実施の形態】以下、本発明に係る圧電部品のイ
ンピーダンス特性測定方法の一実施形態について添付図
面を参照して説明する。図1は、圧電セラミック振動子
のインピーダンス曲線1と位相曲線2を示すグラフであ
る。このインピーダンス曲線1と位相曲線2は圧電セラ
ミック振動子の代表値を示すものである。圧電セラミッ
ク振動子は、共振周波数frで振動子内に流れる電流は
最大になるため、インピーダンスは最小になる。一方、
反共振周波数faでは振動子内に流れる電流は最小にな
り、インピーダンスは最大になる。前者を共振インピー
ダンスZrといい、後者を反共振インピーダンスZaとい
う。また、圧電セラミック振動子は、共振周波数fr
び反共振周波数faでは位相が0゜になる。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a method for measuring impedance characteristics of a piezoelectric component according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a graph showing an impedance curve 1 and a phase curve 2 of the piezoelectric ceramic vibrator. The impedance curve 1 and the phase curve 2 show typical values of the piezoelectric ceramic vibrator. The piezoelectric ceramic vibrator, a current flowing through the vibrator at the resonance frequency f r is to become the maximum, the impedance is minimized. on the other hand,
At the anti-resonance frequency f a , the current flowing in the oscillator becomes minimum and the impedance becomes maximum. The former is called resonance impedance Z r, and the latter is called anti-resonance impedance Z a . Further, the piezoelectric ceramic vibrator has a phase of 0 ° at the resonance frequency fr and the anti-resonance frequency fa.

【0009】以上の特性(代表値)を有する圧電セラミ
ック振動子の個々の共振周波数fr1、反共振周波数
a1、共振インピーダンスZr及び反共振インピーダン
スZaを求める方法を説明する。まず、圧電セラミック
振動子の共振周波数(代表値)frと反共振周波数(代
表値)faの差Δfを図1に基づいて導出する。
A method for obtaining the individual resonance frequency f r1 , anti-resonance frequency f a1 , resonance impedance Z r and anti-resonance impedance Z a of the piezoelectric ceramic vibrator having the above characteristics (representative values) will be described. First, derived on the basis of a difference Δf of the piezoelectric resonant frequency (typical) of the ceramic resonator f r and the anti-resonance frequency (typical) f a in FIG.

【0010】次に、図2に示すように、このΔfより若
干小さい周波数ピッチΔfSで、圧電セラミック振動子
の位相特性を低周波側から順次サンプリングする。この
ときのサンプリング領域は、共振周波数(代表値)fr
と反共振周波数(代表値)faを含んでいる。これによ
って位相が0゜になる周波数を含む周波数領域をサンプ
リングすることになる。さらに、サンプリング領域を略
2ΔfSとするのが好ましい。サンプリング数が少なく
てすみ、測定をより迅速に行なうことができるからであ
る。ただし、周波数ピッチΔfSはこれに限るものでは
なく、Δfの1/2や1/3等の周波数ピッチで位相特
性をサンプリングしてもよい。
Next, as shown in FIG. 2, the phase characteristics of the piezoelectric ceramic vibrator are sequentially sampled from the low frequency side at a frequency pitch Δf S slightly smaller than Δf. The sampling area at this time is the resonance frequency (representative value) fr.
The anti-resonant frequency includes the (typical) f a. As a result, the frequency domain including the frequency having the phase of 0 ° is sampled. Further, it is preferable that the sampling area is approximately 2Δf S. This is because the number of samplings is small and the measurement can be performed more quickly. However, the frequency pitch Δf S is not limited to this, and the phase characteristics may be sampled at a frequency pitch such as 1/2 or 1/3 of Δf.

【0011】そして、最初に位相0゜を通過する前のサ
ンプリング周波数f1とその位相φ1を測定し、最初に位
相0゜を通過した後のサンプリング周波数f2とその位
相φ2を測定し、再び位相0゜を通過する前のサンプリ
ング周波数f3とその位相φ3を測定し、再び位相0゜を
通過した後のサンプリング周波数f4とその位相φ4を測
定する。ただし、本実施形態では、測定を迅速に行なう
ことができるようにサンプリング数を減らしているた
め、サンプリング周波数f2とf3が同一周波数となり、
位相φ3とφ4も同一数値となる。
Then, the sampling frequency f 1 before passing the phase 0 ° and its phase φ 1 are measured first, and the sampling frequency f 2 after passing the phase 0 ° and its phase φ 2 are measured first. , The sampling frequency f 3 before passing the phase 0 ° and its phase φ 3 are measured again, and the sampling frequency f 4 after passing the phase 0 ° and its phase φ 4 are measured again. However, in this embodiment, since the number of samplings is reduced so that the measurement can be performed quickly, the sampling frequencies f 2 and f 3 become the same frequency,
The phases φ 3 and φ 4 also have the same numerical value.

【0012】次に、補間法という関数近似の方法を利用
して、以下の関係式(1)及び(2)から仮の共振周波
数fr1と仮の共振周波数fa1をそれぞれ導出する。 fr1=f1+(ΔfS・φ1)/(φ2−φ1) ……(1) fa1=f3+(ΔfS・φ3)/(φ3−φ4) ……(2) (ただし、f1<f2<f3<f4,φ2>0>φ1,φ3
0>φ4) 次に、図3に示すように、仮の共振周波数fr1及び仮の
反共振周波数fa1での圧電セラミック振動子の位相
φ5,φ6を測定する。そして、位相φ5,φ6が所定の位
相公差内であれば、仮の共振周波数fr1及び仮の反共振
周波数fa1をこの圧電セラミック振動子の共振周波数
(測定値)及び反共振周波数(測定値)とすると共に、
これらの周波数fr1,fa1でのインピーダンスを測定し
てそれぞれ共振インピーダンスZrと反共振インピーダ
ンスZaを求める。
Next, a temporary resonance frequency f r1 and a temporary resonance frequency f a1 are derived from the following relational expressions (1) and (2) using a method of function approximation called an interpolation method. f r1 = f 1 + (Δf S · φ 1 ) / (φ 2 −φ 1 ) …… (1) f a1 = f 3 + (Δf S · φ 3 ) / (φ 3 −φ 4 ) …… ( 2) (However, f 1 <f 2 <f 3 <f 4 , φ 2 >0> φ 1 , φ 3 >
0> φ 4 ) Next, as shown in FIG. 3, the phases φ 5 and φ 6 of the piezoelectric ceramic vibrator at the provisional resonance frequency f r1 and the provisional anti-resonance frequency f a1 are measured. If the phases φ 5 and φ 6 are within the predetermined phase tolerance, the provisional resonance frequency f r1 and the provisional anti-resonance frequency f a1 are set to the resonance frequency (measurement value) and the anti-resonance frequency (measurement value) of the piezoelectric ceramic oscillator ( (Measured value)
The impedances at these frequencies f r1 and f a1 are measured to obtain the resonance impedance Z r and the anti-resonance impedance Z a , respectively.

【0013】一方、位相φ5又はφ6の少なくともいずれ
か一方が所定の位相公差外であれば、さらに補間法を利
用して公差内の位相が得られるまで前記処理を繰り返
す。例えば、仮の共振周波数fr1での位相φ5が所定の
位相公差から外れており、かつ、φ5>0である場合、
図4に示すように、仮の共振周波数fr1を始点にして、
周波数ピッチΔfSの1/2以下の周波数ピッチΔfS2
で圧電セラミック振動子の位相特性を低周波側へ順次サ
ンプリングする。本実施形態ではΔfS2=(Δf S
2)とした。そして、最初に位相0゜を通過する前のサ
ンプリング周波数f5とその位相φ7を測定し、最初に位
相0゜を通過した後のサンプリング周波数f6とその位
相φ8を測定する。ただし、本実施例では、サンプリン
グ周波数f5が仮の共振周波数fr1となり、位相φ5とφ
7も同一数値となる。
On the other hand, the phase φFiveOr φ6At least one of
If either one is out of the specified phase tolerance, use the interpolation method.
Repeat the above process until the phase within the tolerance is obtained by using
You. For example, the provisional resonance frequency fr1Phase φ atFiveIs given
Out of phase tolerance and φFiveIf> 0,
As shown in FIG. 4, the temporary resonance frequency fr1Starting from
Frequency pitch ΔfSFrequency pitch Δf less than 1/2S2
To sequentially support the phase characteristics of the piezoelectric ceramic oscillator to the low frequency side.
To sample. In this embodiment, ΔfS2= (Δf S/
2). And, before the phase 0 degree is passed first,
Sampling frequency fFiveAnd its phase φ7Measure and rank first
Sampling frequency f after passing through phase 0 °6And so much
Phase φ8To measure. However, in this embodiment, the sample
Frequency fFiveIs a temporary resonance frequency fr1And the phase φFiveAnd φ
7Will be the same value.

【0014】次に、補間法を利用して、以下の関係式
(3)から再び仮の共振周波数fr2を導出する。 fr2=f6+(ΔfS2・φ8)/(φ5−φ8) ……(3) 次に、この仮の共振周波数fr2での圧電セラミック振動
子の位相φ9を測定する。そして、位相φ9が所定の位相
公差内であれば、仮の共振周波数fr2をこの圧電セラミ
ック振動子の共振周波数(測定値)とすると共に、この
周波数fr2でのインピーダンスを測定して共振インピー
ダンスZrを求める。
Next, using the interpolation method, the provisional resonance frequency f r2 is derived again from the following relational expression (3). f r2 = f 6 + (Δf S2 · φ 8) / (φ 5 -φ 8) ...... (3) Next, to measure the phase phi 9 of the piezoelectric ceramic vibrator at the resonance frequency f r2 of the temporary. If the phase φ 9 is within the predetermined phase tolerance, the provisional resonance frequency f r2 is set as the resonance frequency (measurement value) of this piezoelectric ceramic oscillator, and the impedance at this frequency f r2 is measured to resonate. Find the impedance Z r .

【0015】以上の方法によれば、位相0゜の周波数
(すなわち、共振周波数及び反共振周波数)に近づくに
つれてより小さい周波数ピッチでサンプリングすること
になり、共振周波数及び反共振周波数の近傍であるかど
うかに関係なく、不必要な周波数をも一定の周波数ピッ
チでサンプリングしていた従来の方法と比較して、無駄
なくかつ精度良くインピーダンス特性の測定を行なうこ
とができる。
According to the above method, sampling is performed at a smaller frequency pitch as the frequency approaches the phase 0 ° (that is, the resonance frequency and the anti-resonance frequency). Regardless of the method, the impedance characteristic can be measured with high efficiency without waste, as compared with the conventional method in which unnecessary frequencies are sampled at a constant frequency pitch.

【0016】なお、本発明に係る圧電部品のインピーダ
ンス特性測定方法は前記実施形態に限定するものではな
く、その要旨の範囲内で種々に変更することができる。
The method for measuring the impedance characteristic of the piezoelectric component according to the present invention is not limited to the above embodiment, and can be variously modified within the scope of the gist.

【0017】[0017]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、位相0゜の周波数、すなわち共振周波数及び反
共振周波数に近づくにつれて、より小さい周波数ピッチ
でサンプリングすることになり、無駄のない、かつ、精
度の良い測定を迅速に行なうことができる。
As is apparent from the above description, according to the present invention, as the frequency of the phase 0 °, that is, the resonance frequency and the anti-resonance frequency is approached, sampling is performed at a smaller frequency pitch, which is a waste. It is possible to quickly perform accurate and accurate measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る圧電部品のインピーダンス特性測
定方法の一実施形態を説明するための、圧電部品のイン
ピーダンス特性及び位相特性を示すグラフ。
FIG. 1 is a graph showing an impedance characteristic and a phase characteristic of a piezoelectric component for explaining an embodiment of a method for measuring an impedance characteristic of a piezoelectric component according to the present invention.

【図2】図1に示した特性を有する圧電部品のインピー
ダンス特性を測定する方法を説明するためのグラフ。
FIG. 2 is a graph for explaining a method for measuring impedance characteristics of a piezoelectric component having the characteristics shown in FIG.

【図3】図2に続くインピーダンス特性測定方法を説明
するためのグラフ。
FIG. 3 is a graph for explaining the impedance characteristic measuring method subsequent to FIG.

【図4】図3に続くインピーダンス特性測定方法を説明
するためのグラフ。
FIG. 4 is a graph for explaining the impedance characteristic measuring method following FIG.

【符号の説明】[Explanation of symbols]

r…共振周波数 fa…反共振周波数 ΔfS…周波数ピッチ f1,f2,f3,f4…サンプリング周波数 φ1,φ2,φ3,φ4…位相 fr1…仮の共振周波数 fa1…仮の反共振周波数f r … Resonance frequency f a … Anti-resonance frequency Δf S … Frequency pitch f 1 , f 2 , f 3 , f 4 … Sampling frequency φ 1 , φ 2 , φ 3 , φ 4 … Phase f r1 … Temporary resonance frequency f a1 ... provisional anti-resonance frequency

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定の周波数ピッチΔfSで圧電部品の
位相が0゜になる周波数を含む周波数領域をサンプリン
グし、位相0゜を通過する前のサンプリング周波数f1
及びその位相φ1と、位相0゜を通過した後のサンプリ
ング周波数f2およびその位相φ2を測定する工程と、 関係式 f3=f1+(ΔfS・φ1)/(φ1−φ2) を用いて周波数f3を導出する工程と、 前記周波数f3で圧電部品のインピーダンスを測定する
工程と、 を備えたことを特徴とする圧電部品のインピーダンス特
性測定方法。
1. A sampling frequency f 1 before passing through a phase of 0 ° is sampled in a frequency region including a frequency at which the phase of the piezoelectric component is 0 ° at a predetermined frequency pitch Δf S.
And its phase φ 1, and the step of measuring the sampling frequency f 2 after passing through the phase 0 ° and its phase φ 2 , and the relational expression f 3 = f 1 + (Δf S · φ 1 ) / (φ 1 − process and the impedance characteristic measurement method of a piezoelectric component, characterized in that it and a step of measuring the impedance of the piezoelectric component by the frequency f 3 to derive frequency f 3 with phi 2).
【請求項2】 圧電部品の共振周波数frと反共振周波
数faの差Δfより若干小さい周波数ピッチΔfSで、圧
電部品の位相が0゜になる周波数を含む周波数領域を低
周波側から順次サンプリングし、最初に位相0゜を通過
する前のサンプリング周波数f1及びその位相φ1と、最
初に位相0゜を通過した後のサンプリング周波数f2
びその位相φ2と、再び位相0゜を通過する前のサンプ
リング周波数f3及びその位相φ3と、再び位相0゜を通
過した後のサンプリング周波数f4及びその位相φ4を測
定する工程と、 仮の共振周波数fr1と仮の反共振周波数fa1を、それぞ
れ関係式 fr1=f1+(ΔfS・φ1)/(φ2−φ1) fa1=f3+(ΔfS・φ3)/(φ3−φ4) を用いて導出する工程と、 前記仮の共振周波数fr1及び仮の反共振周波数fa1で圧
電部品のインピーダンスを測定する工程と、 を備えたことを特徴とする圧電部品のインピーダンス特
性測定方法。
In 2. A piezoelectric component of the resonance frequency f r and the anti-resonance frequency f slightly smaller frequency pitch than the difference Delta] f of a Delta] f S, successively the frequency region including the frequency of the piezoelectric component of the phase becomes 0 ° from the low-frequency side Sampling frequency f 1 and its phase φ 1 before passing the phase 0 °, sampling frequency f 2 and its phase φ 2 after passing the phase 0 ° first, and phase 0 ° again Measuring the sampling frequency f 3 and its phase φ 3 before passing, and the sampling frequency f 4 and its phase φ 4 after passing again phase 0 °, and the provisional resonance frequency f r1 and provisional anti-resonance The frequency f a1 is expressed by the relational expression f r1 = f 1 + (Δf S · φ 1 ) / (φ 2 −φ 1 ) f a1 = f 3 + (Δf S · φ 3 ) / (φ 3 −φ 4 ). a step of deriving with the resonance frequency f r1 and anti-resonance circumference of provisional the temporary Impedance characteristic measurement method of a piezoelectric component, characterized in that it comprises a step of measuring the impedance of the piezoelectric component, a several f a1.
JP18271495A 1995-07-19 1995-07-19 Method for measuring impedance characteristics of piezoelectric components Expired - Fee Related JP3246280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18271495A JP3246280B2 (en) 1995-07-19 1995-07-19 Method for measuring impedance characteristics of piezoelectric components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18271495A JP3246280B2 (en) 1995-07-19 1995-07-19 Method for measuring impedance characteristics of piezoelectric components

Publications (2)

Publication Number Publication Date
JPH0933334A true JPH0933334A (en) 1997-02-07
JP3246280B2 JP3246280B2 (en) 2002-01-15

Family

ID=16123159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18271495A Expired - Fee Related JP3246280B2 (en) 1995-07-19 1995-07-19 Method for measuring impedance characteristics of piezoelectric components

Country Status (1)

Country Link
JP (1) JP3246280B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819028B2 (en) * 2000-03-21 2004-11-16 Murata Manufacturing Co., Ltd. Method for selecting piezoelectric transformer characteristic
CN103196547A (en) * 2013-03-11 2013-07-10 安徽新力电业科技咨询有限责任公司 Method achieving rotary machinery vibration signal synchronization order ratio tracing analysis
WO2022209611A1 (en) * 2021-03-29 2022-10-06 日本碍子株式会社 Electronic component inspection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819028B2 (en) * 2000-03-21 2004-11-16 Murata Manufacturing Co., Ltd. Method for selecting piezoelectric transformer characteristic
CN103196547A (en) * 2013-03-11 2013-07-10 安徽新力电业科技咨询有限责任公司 Method achieving rotary machinery vibration signal synchronization order ratio tracing analysis
WO2022209611A1 (en) * 2021-03-29 2022-10-06 日本碍子株式会社 Electronic component inspection method

Also Published As

Publication number Publication date
JP3246280B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
US7140255B2 (en) Devices and method of measuring a mass
JPH0450968B2 (en)
US10119895B2 (en) Method, circuit and flexural resonator for measuring the density of fluids
CA1131704A (en) Self calibrating crystal controlled frequency counter method and apparatus
JPH0933334A (en) Impedance characteristic measuring method for piezoelectric component
JP2675733B2 (en) Chemical sensing equipment
JP4364087B2 (en) How to determine the extreme frequency
JP3288830B2 (en) Oscillation integrated circuit
JPH09330352A (en) Computer-aided repetitive detecting method for rising vibration characteristic of crystal resonator
Gufflet et al. Isochronism defect for various doubly rotated cut quartz resonators
RU2029247C1 (en) Method of measuring physical parameter of object
Zhai et al. Contactless excitation of acoustic resonance in insulating wafers
SU1406524A1 (en) Method of measuring tuned-circuit q-factor
Cheeke et al. Characterization for piezoelectric films using composite resonators
Nosek et al. Quartz strip resonators as a temperature sensor
Bunbury The design of apparatus for the measurement of Mössbauer spectra
CN114564985B (en) Improved least square-based resonant sensor resonant frequency rapid identification method
RU2785080C1 (en) Method for determining the actual oscillation frequency of a quartz hemispherical resonator of a wave solid state gyroscope
Maddalena Determination of Young's modulus of thin films
JP2001242209A (en) Acceptance determination method of quarts oscillator
Hana et al. Contribution to the measurement of the electromechanical coupling factor k33 of piezoelectric ceramics
RU2129284C1 (en) Gear measuring parameters of piezoelements in process of their manufacture
JP3401112B2 (en) Oscillation circuit for piezoelectric crystal oscillation type film thickness meter
SU970274A1 (en) Piezoelectric resonator resonance gap measuring method
JP4228686B2 (en) Piezoelectric vibrator manufacturing apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081102

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101102

LAPS Cancellation because of no payment of annual fees