JPH09330725A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH09330725A
JPH09330725A JP8146953A JP14695396A JPH09330725A JP H09330725 A JPH09330725 A JP H09330725A JP 8146953 A JP8146953 A JP 8146953A JP 14695396 A JP14695396 A JP 14695396A JP H09330725 A JPH09330725 A JP H09330725A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
electrode plate
battery
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8146953A
Other languages
Japanese (ja)
Inventor
Masahiko Yoshida
正彦 吉田
Fumio Oo
文夫 大尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8146953A priority Critical patent/JPH09330725A/en
Publication of JPH09330725A publication Critical patent/JPH09330725A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic electrolyte battery in which the temperature rise in over discharge can be suppressed without being accompanied by deterioration of discharge capacity to improve the safety by adapting a lead-like negative electrode current collector as the negative electrode plate of an organic electrolyte battery using a metal single body or alloy as negative electrode. SOLUTION: In this battery, a negative electrode current collector 5 is situated on the outermost circumference of an electrode plate group, and bitten into a negative electrode plate, and an insulating part 13 is provided on its end part. Since the quantity of the negative electrode active material situated just under the current collector 5 is therefore minimized, and the negative electrode active material around the negative electrode current collector 5 quickly reacts, compared with the negative electrode material, in the other part, it is completely consumed only by the reaction with a positive electrode active material present on the inside by one turn of the negative electrode 1. Thus, the electric contact between the current collector 5 and the negative electrode plate 1 is cut in the end of discharge to prevent the precipitation of the negative electrode onto the positive electrode plate opposed to the negative electrode 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、渦巻状電極を備え
た有機電解質電池の、とくにその負極のリード状集電体
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte battery provided with a spiral electrode, and more particularly to a lead-shaped current collector for its negative electrode.

【0002】[0002]

【従来の技術】従来より渦巻状電極を備えた有機電解質
電池は、その優れた放電特性、保存性などにより、主に
カメラ、ストロボ等の瞬間的に大電流を必要とする用途
に使用されている。
2. Description of the Related Art Conventionally, organic electrolyte batteries provided with spiral electrodes have been used mainly for applications requiring a momentary large current such as cameras and strobes due to their excellent discharge characteristics and storage stability. There is.

【0003】しかしながら、有機電解質電池は、電解液
として引火性のある有機電解液を使用している。そのた
め、他の水溶液系電池と比較して、より高度な安全性に
対する配慮が必要である。
However, the organic electrolyte battery uses a flammable organic electrolyte as the electrolyte. Therefore, it is necessary to consider the higher level of safety as compared with other aqueous solution batteries.

【0004】特に電池が万一過放電状態になった場合に
は、正極側に負極活物質が析出し、析出した負極活物質
と正極活物質の反応により発熱等が発生する可能性があ
る。
In particular, if the battery should be over-discharged, the negative electrode active material may be deposited on the positive electrode side, and heat may be generated due to the reaction between the deposited negative electrode active material and the positive electrode active material.

【0005】[0005]

【発明が解決しようとする課題】正極および負極を渦巻
状に構成してなる電極群のうち最外周に位置する部分
は、その外側に反応の相手となる活物質が存在しないた
め、放電末期においても完全に反応しきれずに残存して
いる。負極活物質として金属または金属化合物を利用す
る有機電解質電池は、正極活物質よりも負極活物質の方
が体積エネルギー密度が高いため、完全に利用すること
ができない極板群の最外周に負極を位置させた場合によ
り多くエネルギーを活物質として電池内に充填できる。
そのため極板群の最外周は通常負極板としている。
In the electrode group formed by spirally forming the positive electrode and the negative electrode, the portion located at the outermost periphery has no active material serving as a reaction partner on the outer side thereof, and therefore, in the final stage of discharge. Has not completely reacted and remains. In an organic electrolyte battery that uses a metal or a metal compound as the negative electrode active material, the negative electrode active material has a higher volumetric energy density than the positive electrode active material, and therefore the negative electrode cannot be used completely on the outermost periphery of the electrode plate group. When positioned, more energy can be charged into the battery as an active material.
Therefore, the outermost periphery of the electrode plate group is usually the negative electrode plate.

【0006】しかし最外周を負極板とした場合には前述
の通り放電終了後も正極と反応し切れない負極が残存す
ることになる。つまりこの部分に負極集電体を位置させ
ると、放電末期においても集電体と電気的に接続された
負極が存在している。そのためなんらかの原因により電
池が過放電状態になると、残存する負極活物質が正極板
上に析出する。この析出物がデンドライト状の結晶とな
り、正極と負極の短絡を引き起こし、発熱等の原因とな
る。したがって、過放電時の安全性を確保するためには
最外周以外の部分から集電することが必要であった。
However, when the outermost periphery is the negative electrode plate, as described above, there remains a negative electrode that does not completely react with the positive electrode after the end of discharge. That is, when the negative electrode current collector is located at this portion, the negative electrode electrically connected to the current collector exists even at the end of discharge. Therefore, when the battery is over-discharged for some reason, the remaining negative electrode active material is deposited on the positive electrode plate. These precipitates become dendrite-like crystals, which causes a short circuit between the positive electrode and the negative electrode, which causes heat generation and the like. Therefore, it is necessary to collect current from a portion other than the outermost periphery in order to ensure safety during overdischarge.

【0007】しかしながら、最外周以外の部分から集電
するためには、正極板の間から負極集電体を極板群より
外側に引き出すことになる。そのため負極集電体上にな
んらかの絶縁被膜を設けなければ、負極集電体がセパレ
ータをつき破り、短絡を引き起こす可能性がある。
However, in order to collect current from a portion other than the outermost periphery, the negative electrode current collector is drawn out from between the positive electrode plates to the outside of the electrode plate group. Therefore, if any insulating coating is not provided on the negative electrode current collector, the negative electrode current collector may break through the separator and cause a short circuit.

【0008】従来この絶縁被膜としては、各種樹脂テー
プやガラスクロステープを用いることが一般的であっ
た。しかし極板群を構成する際に極板、セパレータにか
かるテンションの影響で、正極芯体や負極集電体による
セパレータのつき破りが起こり易く、この絶縁被膜は
0.1mm以上のものを集電体の表裏両面に貼付しない
と内部短絡を完全に防ぐことができなかった。
Conventionally, various resin tapes or glass cloth tapes have generally been used as the insulating coating. However, due to the influence of the tension applied to the electrode plates and the separator when forming the electrode plate group, the separator is liable to break through due to the positive electrode core body and the negative electrode current collector, and this insulating coating collects 0.1 mm or more. If it was not applied to both the front and back of the body, the internal short circuit could not be completely prevented.

【0009】本発明はこのような課題を解決するもので
あり、放電容量の低下をともなうことなく、過放電時の
温度上昇を抑制することができる有機電解質電池を提供
するものである。
The present invention solves such a problem, and provides an organic electrolyte battery capable of suppressing a temperature rise at the time of over-discharging without lowering the discharge capacity.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の電池は、正極および負極を有し、それら
が電池缶内に収納され、負極板に接続された集電体が電
池缶または封口板に接続された構造の電池において、負
極集電体の負極板に接触する部分の全部または一部を負
極板に食い込ませ、さらには負極集電体の端面に絶縁部
分を設けるものである。
In order to achieve the above object, the battery of the present invention comprises a positive electrode and a negative electrode, which are housed in a battery can and connected to a negative electrode plate. In a battery connected to a battery can or a sealing plate, all or part of the portion of the negative electrode current collector that contacts the negative electrode plate is bitten into the negative electrode plate, and an insulating portion is provided on the end surface of the negative electrode current collector. It is a thing.

【0011】本発明が適用される電池は、電池缶内に正
極および負極を渦巻上に構成してなるものであり、渦巻
状電極体の最外周に負極が位置するものである。さらに
負極板の最外周部分に集電体を接続し、さらに電池缶あ
るいは封口板に接続したものである。
The battery to which the present invention is applied is one in which a positive electrode and a negative electrode are spirally arranged in a battery can, and the negative electrode is located at the outermost periphery of the spiral electrode body. Further, a current collector is connected to the outermost peripheral portion of the negative electrode plate, and further connected to a battery can or a sealing plate.

【0012】[0012]

【発明の実施の形態】本発明では、負極集電体を極板群
の最外周に位置させ、集電体を負極板の厚さの1/3以
上食い込ませている。そのため従来の方法と比較して、
集電体の直下にある負極活物質の量が小さく、また負極
集電体周辺の負極活物質は他の部分の負極活物質と比較
して反応が早く進むため、負極の一周内側に存在する正
極活物質との反応のみで完全に消耗する。したがって本
発明の構造を採用することにより放電末期に集電体と負
極板との電気的接続が切れ、過放電時にも正極板上への
負極の析出が起こらない。この負極板への負極集電体の
食い込み部分は集電体の負極との接触部分全面を食い込
ませる場合でも、接触部分との端面のみを食い込ませる
場合でも同様の効果がある。さらに負極集電体上の、負
極板との接触部分の端面に絶縁部分を設けることによ
り、より確実に、放電末期に集電体と負極板との電気的
接続を切断することができる。そのため放電容量の低下
等の特性劣化を伴わずに過放電時の発熱等を防止し、安
全性の向上を図ることが可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the negative electrode current collector is located at the outermost periphery of the electrode plate group, and the current collector is bited into the negative electrode plate by 1/3 or more of the thickness of the negative electrode plate. Therefore, compared with the conventional method,
The amount of the negative electrode active material directly below the current collector is small, and the negative electrode active material around the negative electrode current collector is present inside the circumference of the negative electrode because the reaction proceeds faster than the other portions of the negative electrode active material. It is completely consumed only by the reaction with the positive electrode active material. Therefore, by adopting the structure of the present invention, the electrical connection between the current collector and the negative electrode plate is cut off at the end of discharge, and the negative electrode is not deposited on the positive electrode plate even during overdischarge. The biting portion of the negative electrode current collector into this negative electrode plate has the same effect whether it bites the entire contact portion of the current collector with the negative electrode or only the end face of the current collector. Furthermore, by providing an insulating portion on the end surface of the contact portion with the negative electrode plate on the negative electrode current collector, it is possible to more reliably disconnect the electrical connection between the current collector and the negative electrode plate at the end of discharge. Therefore, it is possible to prevent heat generation and the like at the time of over-discharging and to improve safety without deteriorating characteristics such as reduction of discharge capacity.

【0013】[0013]

【実施例】以下に本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】(実施例1)試作電池として図1に示すよ
うな直径17mm、高さ34mmの円筒型電池を作製し
た。
Example 1 As a trial battery, a cylindrical battery having a diameter of 17 mm and a height of 34 mm as shown in FIG. 1 was produced.

【0015】まず負極板1を以下に示す手順により作製
した。厚さ0.16mmのリチウム薄板を230mm×
23mmの寸法に切断し、それに厚さ0.1mmのニッ
ケル製のリードを負極集電体5とした。このとき集電体
5は図2(a)に示す位置に、図3に示すようにリチウ
ム表面1より0.06mm内部に食い込むように圧着を
した。さらに負極集電体5の上に厚さ0.05mmのポ
リプロピレン製粘着テープ13を貼付した。
First, the negative electrode plate 1 was manufactured by the following procedure. 230 mm × a 0.16 mm thick thin lithium plate
It was cut to a size of 23 mm, and a nickel lead having a thickness of 0.1 mm was used as the negative electrode current collector 5. At this time, the current collector 5 was pressure-bonded to the position shown in FIG. 2A so as to penetrate into the inside of 0.06 mm from the lithium surface 1 as shown in FIG. Further, a 0.05 mm-thick polypropylene adhesive tape 13 was attached onto the negative electrode current collector 5.

【0016】次に正極板2を以下に示す手順により作製
した。正極活物質として電解二酸化マンガンを用い、こ
れをカーボン、ポリテトラフルオロエチレン、イオン交
換水とともに練合した。二酸化マンガン、カーボン、ポ
リテトラフルオロエチレンの混合比は100:6:4と
した。次にステンレス製エキスパンドメタルの芯材(図
示せず)上に厚さ0.45mmに充填した。これを23
0mm×26mmの寸法に切断して正極集電体6を抵抗
溶接し、さらに正極集電体上にガラスクロステープを絶
縁材として貼付し、250℃において4時間乾燥した。
Next, the positive electrode plate 2 was produced by the following procedure. Electrolytic manganese dioxide was used as the positive electrode active material, and this was kneaded with carbon, polytetrafluoroethylene, and ion-exchanged water. The mixing ratio of manganese dioxide, carbon, and polytetrafluoroethylene was 100: 6: 4. Then, a core material (not shown) made of stainless expanded metal was filled to a thickness of 0.45 mm. This is 23
The positive electrode current collector 6 was resistance-welded by cutting into a size of 0 mm × 26 mm, and a glass cloth tape was attached as an insulating material on the positive electrode current collector, and dried at 250 ° C. for 4 hours.

【0017】これら正極板2と負極板1を、ポリプロピ
レン微多孔性フィルムのセパレータ3を介して渦巻状に
巻き、極板群とした。このとき負極集電体の位置は図2
(b)に示すように極板群の最外周に位置する。
The positive electrode plate 2 and the negative electrode plate 1 were spirally wound with a separator 3 of a polypropylene microporous film interposed therebetween to form an electrode plate group. At this time, the position of the negative electrode current collector is shown in FIG.
It is located at the outermost periphery of the electrode plate group as shown in (b).

【0018】この極板群を電池缶内に収納し、負極集電
体を外装缶4に、正極集電体を封口板8に、それぞれ溶
接したのち電池缶内に電解液を注入した。電解液は溶媒
としてプロピレンカーボネートとジメトキシエタンの
1:1混合液を用い、溶質としてトリフルオロメタンス
ルホン酸リチウムの0.5mol/l溶液を用いた。さ
らにこれをかしめにより封口して本発明電池とした。
The electrode plate group was housed in a battery can, and the negative electrode current collector was welded to the outer can 4 and the positive electrode current collector was welded to the sealing plate 8, and then an electrolytic solution was injected into the battery can. As the electrolyte, a 1: 1 mixed solution of propylene carbonate and dimethoxyethane was used as a solvent, and a 0.5 mol / l solution of lithium trifluoromethanesulfonate was used as a solute. Further, this was sealed by caulking to obtain a battery of the present invention.

【0019】(実施例2)(実施例2)として同様に直
径17mm、高さ34mmの円筒型電池を作製した。構
成は負極集電体部分を除いて同一とし、負極集電体とし
て図4に示す様に断面が略コの字状の突起部5aを有す
る構造のものを用いた。集電体突起5aの高さは0.0
6mmとした。
(Example 2) In the same manner as (Example 2), a cylindrical battery having a diameter of 17 mm and a height of 34 mm was produced. The configuration was the same except for the negative electrode current collector portion, and as the negative electrode current collector, as shown in FIG. 4, a structure having a protrusion 5a having a substantially U-shaped cross section was used. The height of the current collector protrusion 5a is 0.0
6 mm.

【0020】(実施例3)(実施例3)として同様に直
径17mm、高さ34mmの円筒型電池を作製した。構
成は負極集電体部分を除いて同一とし、負極集電体とし
て図5に示す様に断面が略コの字状の突起部5aを有
し、突起部の外周表面に絶縁体の被膜11を形成した構
造のものを用いた。集電体外周の絶縁体11は、シリコ
ンゴムを用いた。
(Example 3) In the same manner as (Example 3), a cylindrical battery having a diameter of 17 mm and a height of 34 mm was produced. The configuration is the same except for the negative electrode current collector portion, and as a negative electrode current collector, as shown in FIG. 5, it has a protrusion 5a having a substantially U-shaped cross section, and an insulating film 11 is formed on the outer peripheral surface of the protrusion. The structure having the structure formed was used. Silicon rubber was used for the insulator 11 on the outer periphery of the current collector.

【0021】(比較例1)比較例1として同様に直径1
7mm、高さ34mmの円筒型電池を作製した。構成は
負極集電体部分を除いて同一とし、負極集電体として図
6に示す様に単に集電体5を軽く圧着して載置しただけ
の構造のものを用いた。
(Comparative Example 1) As Comparative Example 1, the diameter is 1
A cylindrical battery having a size of 7 mm and a height of 34 mm was manufactured. The structure was the same except for the negative electrode current collector portion, and as the negative electrode current collector, as shown in FIG. 6, the current collector 5 was simply lightly crimped and placed.

【0022】(比較例2)比較例として、実施例と同サ
イズ電池を製作し、比較した。
(Comparative Example 2) As a comparative example, a battery of the same size as that of the example was manufactured and compared.

【0023】まず、負極板1および正極板2を実施例と
同様の方法で作製し、乾燥を行った。ただし、負極集電
体の位置を極板群の内側より取り出すため図7に示すよ
うに負極板の端部より内寄りの位置に圧着した。さらに
図8に示す通り、内部短絡防止のために負極集電体上に
厚さ0.1mmのガラスクロステープを貼付した。この
ため実施例と同厚の極板を使用した場合極板群の群厚が
大きくなるため、電池缶内に挿入が不可能となる、この
ため正極板の厚さは本来0.45mmのものを0.41
mmに薄く構成した、負極板の厚さは同様の0.16m
mとした。
First, the negative electrode plate 1 and the positive electrode plate 2 were prepared in the same manner as in the example and dried. However, in order to take out the position of the negative electrode current collector from the inside of the electrode plate group, the negative electrode current collector was pressure-bonded to a position inward from the end of the negative electrode plate as shown in FIG. Further, as shown in FIG. 8, a glass cloth tape having a thickness of 0.1 mm was attached on the negative electrode current collector to prevent an internal short circuit. Therefore, when an electrode plate having the same thickness as that of the embodiment is used, the electrode plate group becomes too thick to be inserted into the battery can. Therefore, the thickness of the positive electrode plate is originally 0.45 mm. 0.41
The thickness of the negative electrode plate, which was made thin to 0.1 mm, was 0.16 m.
m.

【0024】これら正極板と負極板を、ポリプロピレン
微多孔性フィルムのセパレータを介して渦巻状に巻き、
極板群とした。このとき負極集電体位置は図7(b)に
示すように極板群最外周の1周内側に位置する。
The positive electrode plate and the negative electrode plate are spirally wound with a polypropylene microporous film separator interposed therebetween,
It was a plate group. At this time, the position of the negative electrode current collector is positioned inside the outermost circumference of the electrode plate group as shown in FIG. 7B.

【0025】この極板群を電池缶内に収納し、実施例と
同様の試作方法により比較電池とした。
This electrode plate group was housed in a battery can, and a comparative battery was prepared by the same trial production method as in the example.

【0026】これらの電池の放電容量を比較した。放電
電流条件は0.9A、3秒オン、27秒オフの交番放電
とし、放電温度は20℃とした。この放電条件下での放
電結果を図9に示す。放電容量はいずれの実施例も比較
例2と比較して大きい。
The discharge capacities of these batteries were compared. The discharge current conditions were 0.9 A, 3 seconds on, 27 seconds off alternating discharge, and the discharge temperature was 20 ° C. The discharge result under this discharge condition is shown in FIG. The discharge capacities of all Examples are larger than those of Comparative Example 2.

【0027】さらに、前記条件で放電終了した電池を使
用し、これを未放電の同一仕様の電池に直列に接続し、
過放電試験を行った。(表1)にこのときの最高温度及
び外観変化を示した。
Further, a battery that has been discharged under the above conditions is used, and this battery is connected in series to an undischarged battery of the same specification,
An over-discharge test was conducted. Table 1 shows the maximum temperature and appearance change at this time.

【0028】[0028]

【表1】 [Table 1]

【0029】(表1)より、試験中の最高温度は比較例
1と比較して実施例のほうが低く、過放電時の温度上昇
が改善されている。また実施例、比較例ともに防爆弁作
動等の外観変化を起こすものはなく、同等の安全性を確
保している。
From Table 1, the maximum temperature during the test is lower in Example as compared with Comparative Example 1, and the temperature rise during overdischarge is improved. In addition, in both the examples and the comparative examples, there is no appearance change such as the operation of the explosion-proof valve, and the same safety is ensured.

【0030】[0030]

【発明の効果】負極に金属単体または合金を使用する有
機電解質電池において、本発明の負極集電体構造を採用
することにより、放電容量の劣化を伴う事なく過放電時
の温度上昇を抑制し、安全性を改善することができる。
EFFECTS OF THE INVENTION In an organic electrolyte battery using a metal alone or an alloy for the negative electrode, by adopting the negative electrode current collector structure of the present invention, it is possible to suppress the temperature rise at the time of overdischarge without deterioration of the discharge capacity. , Can improve safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】電池断面を示す図FIG. 1 is a view showing a cross section of a battery.

【図2】(A) 本発明の負極板の側面図 (B) 本発明の負極板を用いた極板群の部分断面図FIG. 2A is a side view of the negative electrode plate of the present invention. FIG. 2B is a partial sectional view of an electrode plate group using the negative electrode plate of the present invention.

【図3】本発明の負極板の側面断面図FIG. 3 is a side sectional view of the negative electrode plate of the present invention.

【図4】本発明の負極板の側面断面図FIG. 4 is a side sectional view of the negative electrode plate of the present invention.

【図5】本発明の負極板の側面断面図FIG. 5 is a side sectional view of the negative electrode plate of the present invention.

【図6】比較の負極板の側面断面図FIG. 6 is a side sectional view of a negative electrode plate for comparison.

【図7】(A) 比較の負極板の側面図 (B) 比較の負極板を用いた極板群の部分断面図FIG. 7A is a side view of a comparative negative electrode plate. FIG. 7B is a partial cross-sectional view of an electrode plate group using the comparative negative electrode plate.

【図8】比較の負極板の側面断面図FIG. 8 is a side sectional view of a negative electrode plate for comparison.

【図9】電池の放電特性を示す図FIG. 9 is a diagram showing discharge characteristics of a battery.

【符号の説明】[Explanation of symbols]

1 負極板 2 正極板 3 セパレータ 4 外装缶 5 負極集電体 6 正極集電体 7 ガスケット 8 封口板 9 上部絶縁板 10 下部絶縁板 11 集電体絶縁被膜 12 極板群 13 負極集電体絶縁ポリプロピレンテープ 14 負極集電体絶縁ガラスクロステープ 1 Negative Electrode Plate 2 Positive Electrode Plate 3 Separator 4 Exterior Can 5 Negative Current Collector 6 Positive Electrode Current Collector 7 Gasket 8 Sealing Plate 9 Upper Insulation Plate 10 Lower Insulation Plate 11 Current Collector Insulation Film 12 Electrode Plate Group 13 Negative Current Collector Insulation Polypropylene tape 14 Negative electrode current collector insulating glass cloth tape

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】負極板にリチウム等のアルカリ金属または
その合金を用い、負極板にリード状負極集電体を備えて
なる有機電解質電池。
1. An organic electrolyte battery comprising a negative electrode plate made of an alkali metal such as lithium or an alloy thereof and a negative electrode plate provided with a lead-shaped negative electrode current collector.
【請求項2】負極集電体が極板群の最外周に位置する請
求項1記載の有機電解質電池。
2. The organic electrolyte battery according to claim 1, wherein the negative electrode current collector is located at the outermost periphery of the electrode plate group.
【請求項3】負極集電体の負極板に接触する部分の全部
または一部を、負極板に食い込ませた請求項1または2
記載の有機電解質電池。
3. The negative electrode plate according to claim 1, wherein all or part of a portion of the negative electrode current collector that comes into contact with the negative electrode plate is cut into the negative electrode plate.
The organic electrolyte battery described.
【請求項4】負極集電体の食い込み部分が負極板厚さの
1/3以上である請求項3記載の有機電解質電池。
4. The organic electrolyte battery according to claim 3, wherein the biting portion of the negative electrode current collector is 1/3 or more of the thickness of the negative electrode plate.
【請求項5】負極集電体の端面に絶縁部分を設けた請求
項3または4記載の有機電解質電池。
5. The organic electrolyte battery according to claim 3, wherein an insulating portion is provided on the end surface of the negative electrode current collector.
JP8146953A 1996-06-10 1996-06-10 Organic electrolyte battery Pending JPH09330725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8146953A JPH09330725A (en) 1996-06-10 1996-06-10 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8146953A JPH09330725A (en) 1996-06-10 1996-06-10 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPH09330725A true JPH09330725A (en) 1997-12-22

Family

ID=15419318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8146953A Pending JPH09330725A (en) 1996-06-10 1996-06-10 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH09330725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328210A (en) * 2021-05-27 2021-08-31 贵州梅岭电源有限公司 Lithium metal negative plate of lithium battery and preparation method thereof
CN113328211A (en) * 2021-05-27 2021-08-31 贵州梅岭电源有限公司 High-energy-density lithium primary battery negative plate and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328210A (en) * 2021-05-27 2021-08-31 贵州梅岭电源有限公司 Lithium metal negative plate of lithium battery and preparation method thereof
CN113328211A (en) * 2021-05-27 2021-08-31 贵州梅岭电源有限公司 High-energy-density lithium primary battery negative plate and preparation method thereof
CN113328211B (en) * 2021-05-27 2022-09-27 贵州梅岭电源有限公司 High-energy-density lithium primary battery negative plate and preparation method thereof
CN113328210B (en) * 2021-05-27 2022-09-27 贵州梅岭电源有限公司 Lithium metal negative plate of lithium battery and preparation method thereof

Similar Documents

Publication Publication Date Title
US7566515B2 (en) Flat non-aqueous electrolyte secondary cell
JP2005209411A (en) Nonaqueous electrolyte secondary battery
JP2001110453A (en) Nonaqueous electrolytic solution secondary battery
JPH11233149A (en) Nonaqueous electrolyte battery
JPH0676860A (en) Secondary battery and manufacture thereof
JPH11176478A (en) Organic electrolyte secondary battery
EP4318702A1 (en) Cylindrical battery
CA2496260A1 (en) Anode design for a prismatically wound limno2 cell
JP2003100278A (en) Nonaqueous electrolyte secondary battery
JPH1154135A (en) Organic electrolyte battery
JP3352863B2 (en) Non-aqueous electrolyte battery
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JPH09330725A (en) Organic electrolyte battery
JP2007128746A (en) Battery
JPH11135110A (en) Battery with vortex-shaped electrode
JP5019557B2 (en) Cylindrical non-aqueous electrolyte primary battery
JPH11121040A (en) Lithium secondary battery
JP3230279B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2007207640A (en) Cylindrical non-aqueous electrolytic solution primary battery
JPH11265700A (en) Nonaqueous electrolyte secondary battery
JP3406796B2 (en) Organic electrolyte battery
JP2003142161A (en) Flat non-aqueous electrolyte secondary battery
JP4827111B2 (en) Flat non-aqueous electrolyte secondary battery
KR101306809B1 (en) Cylinderical nonaqueous electrolyte primary battery
EP4099429A1 (en) Non-aqueous electrolytic secondary battery