JPH09330701A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09330701A
JPH09330701A JP8166940A JP16694096A JPH09330701A JP H09330701 A JPH09330701 A JP H09330701A JP 8166940 A JP8166940 A JP 8166940A JP 16694096 A JP16694096 A JP 16694096A JP H09330701 A JPH09330701 A JP H09330701A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
electrolyte secondary
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8166940A
Other languages
Japanese (ja)
Inventor
Naoyuki Kanno
直之 管野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8166940A priority Critical patent/JPH09330701A/en
Publication of JPH09330701A publication Critical patent/JPH09330701A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a practical nonaqueous electrolyte secondary battery with high capacity and excellent charge and discharge cycle performance in which the density can be increased even when a positive electrode is pressure molded into a sheet for higher performance of smaller size by providing a positive electrode active material formed of LixMnOy obtained from electrolyzed manganese dioxide and a different kind of transition metal added thereto. SOLUTION: In a coin type nonaqueous electrolyte secondary battery 1, a positive electrode 3 is put in a battery can 2, a separator 4 is placed thereon, a nonaqueous electrolyte injected to the battery can, the battery can is covered with a battery lid 6 having a negative electrode 5 on the inside after a nonaqueous electrolyte is injected thereto, and a gasket 7 is interposed to the clearance between the battery lid 6 and the battery can 25 followed by caulking and sealing. The positive electrode 3 is obtained by filling a positive electrode mix 9 onto a positive electrode current collector 8 followed by pressure molding. The positive electrode active material in the positive electrode mix 9 is formed of LixMnOy obtained from electrolyzed manganese dioxide and a different kind of transition metal added thereto. This battery is applicable to other various types of batteries without being limited to coil type battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関し、更に詳しくは正極材料にLixMnOyを用
い、負極材料に主としてリチウム金属、リチウム合金も
しくはリチウムがドープ・脱ドープ可能な炭素材料を用
いる非水電解液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more specifically, it uses LixMnOy as a positive electrode material and a lithium material, a lithium alloy, or a carbon material capable of being doped or dedoped with lithium as a negative electrode material. The present invention relates to a non-aqueous electrolyte secondary battery using.

【0002】[0002]

【従来の技術】近年、電子技術等の進歩によって、種々
の電子機器(例えば、ヘッドホンステレオ、CDプレイ
ヤー、パーソナルコンピュータ等)の高性能化、小型
化、携帯化が進み、これら電子機器の電源として使用さ
れる二次電池にも高性能化、小型化が強く要求されるよ
うになってきた。
2. Description of the Related Art In recent years, due to advances in electronic technology and the like, various electronic devices (for example, headphone stereos, CD players, personal computers, etc.) have been improved in performance, downsized, and portable, and have been used as power sources for these electronic devices. There is also a strong demand for higher performance and smaller size of secondary batteries used.

【0003】従来、これら電子機器の電源として使用さ
れる二次電池には、ニッケル・カドミウム電池、鉛電池
等があり、最近、非水電解液二次電池に属するリチウム
イオン二次電池が実用化されてきた。
Conventionally, there are nickel-cadmium batteries, lead batteries, etc. as secondary batteries used as a power source for these electronic devices. Recently, lithium ion secondary batteries belonging to non-aqueous electrolyte secondary batteries have been put into practical use. It has been.

【0004】特に、リチウムイオン二次電池は、小型
化、軽量化できる二次電池として最も有望な電池であ
る。このリチウムイオン電池は、正極活物質としてLi
CoO2やLiNiO2を用い、負極活物質としてリチウ
ムがドープ・脱ドープ可能な炭素材料を用い、セパレー
タとして樹脂製の微多孔膜を用い、電解液として非水電
解液を用いる二次電池である。しかしながら、このリチ
ウムイオン電池は、現時点においては材料が手に入りに
くく、価格が高い。
In particular, the lithium ion secondary battery is the most promising secondary battery that can be made compact and lightweight. This lithium ion battery uses Li as a positive electrode active material.
A secondary battery in which CoO 2 or LiNiO 2 is used, a carbon material capable of being doped or dedoped with lithium is used as a negative electrode active material, a resin microporous film is used as a separator, and a nonaqueous electrolytic solution is used as an electrolytic solution. . However, at present, this lithium-ion battery is difficult to obtain the material, and the price is high.

【0005】一方、材料が手に入り易く、価格が安いと
いう理由から、正極活物質として微粉末のLiMn24
を用い、負極活物質としてリチウムがドープ・脱ドープ
可能な炭素材料を用いる非水電解液二次電池の研究開発
も行われてきた。
On the other hand, fine powder LiMn 2 O 4 is used as the positive electrode active material because the material is easily available and the price is low.
Research and development of non-aqueous electrolyte secondary batteries using a carbon material capable of being doped and dedoped with lithium as a negative electrode active material have also been carried out.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ように、微粉末であるLiMn24を正極材料とする
と、特に電極である正極をシート状に加圧成型した場
合、この粉末としての性状から、密度を高くできず、し
かも硬いため、大容量で柔軟性を有する正極を形成する
ことが困難となり、実用的な電極を作製することができ
ない。さらに、充放電サイクル性能も、数十回の充放電
で大きく性能低下が見られ、リチウムの正極側から負極
側への移動に伴い充放電性能が急速に失われ、この点か
らも実用性に乏しかった。
However, as described above, when LiMn 2 O 4 which is a fine powder is used as the positive electrode material, when the positive electrode which is the electrode is pressure-molded into a sheet shape, the properties of this powder are improved. Therefore, it is difficult to form a positive electrode having a large capacity and flexibility because the density cannot be increased and it is hard, and a practical electrode cannot be manufactured. In addition, the charge / discharge cycle performance was significantly degraded after several tens of charge / discharge cycles, and the charge / discharge performance was rapidly lost as lithium moved from the positive electrode side to the negative electrode side. I was scarce.

【0007】そこで、微粉末のLiMn24の正極活物
質の代わりに粒子径の大きな電解二酸化マンガンより得
られたLiMn24を正極活物質とする研究も進められ
ている。この場合には、正極をシート状に加圧成型して
も、大容量で柔軟性を有する正極を形成することができ
るが、導電性を良くするため、正極活物質と混合する導
電材が10重量%以上必要とされ、しかも充放電サイク
ルを行うと、抵抗が増えて、導電性が維持できず、容量
が低下してしまい、実用性に乏しかった。
[0007] Therefore, research is being conducted to use LiMn 2 O 4 obtained from electrolytic manganese dioxide having a large particle size as the positive electrode active material instead of the fine powder of LiMn 2 O 4 positive electrode active material. In this case, the positive electrode having a large capacity and flexibility can be formed even if the positive electrode is pressure-molded into a sheet, but in order to improve the conductivity, the conductive material mixed with the positive electrode active material is 10 It is required to be more than 10% by weight, and when the charge and discharge cycle is performed, the resistance increases, the conductivity cannot be maintained, and the capacity decreases, which is not practical.

【0008】本発明は、上記点に鑑みなされたものであ
って、高容量で充放電サイクル性能に優れた実用性のあ
る非水電解液二次電池を提供することを目的とする。
The present invention has been made in view of the above points, and an object thereof is to provide a practical non-aqueous electrolyte secondary battery having a high capacity and excellent charge / discharge cycle performance.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明においては、正極活物質を、電解二酸化マン
ガンより得られたLixMnOyに異種遷移金属を添加
する構成としたことを特徴とする非水電解液二次電池を
提供する。
In order to achieve the above object, the present invention is characterized in that the positive electrode active material is constituted by adding a different transition metal to LixMnOy obtained from electrolytic manganese dioxide. A water electrolyte secondary battery is provided.

【0010】上記構成によれば、正極活物質が電解二酸
化マンガンより得られたLixMnOyを主構成成分と
しているので、正極をシート状に加圧成型した場合であ
っても、密度を高くすることができ、高容量の非水電解
液二次電池を得ることができる。また、正極活物質に異
種遷移金属が含有されているので、導電性を良くするこ
とができ、充放電サイクル性能を長期間維持することが
できる。
According to the above structure, since the positive electrode active material has LixMnOy obtained from electrolytic manganese dioxide as a main constituent, it is possible to increase the density even when the positive electrode is pressure-molded into a sheet. Thus, a high capacity non-aqueous electrolyte secondary battery can be obtained. Further, since the positive electrode active material contains a different transition metal, the conductivity can be improved and the charge / discharge cycle performance can be maintained for a long period of time.

【0011】[0011]

【発明の実施の形態】好ましい実施の形態においては、
前記異種遷移金属の含有量を、前記LixMnOyに対
して遷移金属/マンガンを0.003〜0.015とし
たことを特徴とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a preferred embodiment,
The content of the different transition metal is 0.003 to 0.015 of transition metal / manganese with respect to the LixMnOy.

【0012】また、好ましい実施の形態においては、前
記異種遷移金属を、Ni、Co、Feのうちのいずれか
としたことを特徴とする。
Further, in a preferred embodiment, the different transition metal is any one of Ni, Co and Fe.

【0013】さらに、好ましい実施の形態においては、
前記電解二酸化マンガンより得られたLixMnOy
は、比表面積が0.5〜2m2を有する電解二酸化マン
ガンより得られたLiMn24、LiMn23であるこ
とを特徴とする。
Further, in a preferred embodiment,
LixMnOy obtained from the electrolytic manganese dioxide
Are LiMn 2 O 4 and LiMn 2 O 3 obtained from electrolytic manganese dioxide having a specific surface area of 0.5 to 2 m 2 .

【0014】[0014]

【実施例】図1は、本発明に係る非水電解液二次電池の
実施の一例を示す全体構造図である。この電池1は、コ
イン型の非水電解液二次電池である。この電池1は、電
池缶2に正極3を入れ、その上にセパレータ4を載せ、
非水電解液を注液した後、内側に負極5を備えた電池蓋
6を被せ、電池蓋6と電池缶2との間の隙間にガスケッ
ト7を入れ、かしめて封口した構成のものである。前記
正極3は、正極集電体8上に正極合剤9を充填し、加圧
成型したものである。なお、この例の電池は、コイン型
電池であるが、円筒状渦巻式電池、平板状角型電池、イ
ンサイドアウト型円筒電池等、何れの電池にも適用可能
である。また、大型電池にも適用可能である。
EXAMPLE FIG. 1 is an overall structural view showing an example of implementation of a non-aqueous electrolyte secondary battery according to the present invention. This battery 1 is a coin type non-aqueous electrolyte secondary battery. In this battery 1, a positive electrode 3 is put in a battery can 2 and a separator 4 is placed on the positive electrode 3.
After injecting the non-aqueous electrolytic solution, a battery lid 6 having a negative electrode 5 inside is covered, a gasket 7 is inserted in a gap between the battery lid 6 and the battery can 2, and the caulking is performed to seal. . The positive electrode 3 is obtained by filling the positive electrode current collector 8 with the positive electrode mixture 9 and pressurizing. The battery of this example is a coin battery, but can be applied to any battery such as a cylindrical spiral battery, a flat plate rectangular battery, and an inside-out cylindrical battery. It can also be applied to large batteries.

【0015】本発明の特徴は、前記正極合剤中の正極活
物質を、電解二酸化マンガンより得られたLixMnO
yに異種遷移金属を添加する構成としたことである。こ
の電解二酸化マンガンより得られたLixMnOyは、
比表面積が0.5〜2m2を有する電解二酸化マンガン
より得られたLiMn24、LiMn23であることが
好ましい。しかし、電解二酸化マンガンの他に、二酸化
マンガン、3酸化2マンガン、4酸化3マンガン等、高
充填性を有する材料であれば、使用可能である。 ま
た、異種遷移金属としてはNi、Co、Feのうちのい
ずれかとするのが好ましく、その含有量を、前記電解二
酸化マンガンに対して0.003〜0.015とするの
が好ましい。異種遷移金属を含有させる方法としては、
溶液から粒子に沈積し、再熱処理する方法の他に、化学
的な蒸着置換法(CVD)や無電解メッキ法、吸着法等
を用いることもできる。負極材料としてはリチウム金
属、リチウム合金、リチウムがドープ・脱ドープ可能な
炭素材料等が使用可能である。
The feature of the present invention is that the positive electrode active material in the positive electrode mixture is LixMnO obtained by electrolytic manganese dioxide.
That is, a different transition metal is added to y. LixMnOy obtained from this electrolytic manganese dioxide is
LiMn 2 O 4 and LiMn 2 O 3 obtained from electrolytic manganese dioxide having a specific surface area of 0.5 to 2 m 2 are preferable. However, in addition to electrolytic manganese dioxide, any material having a high filling property such as manganese dioxide, manganese dioxide, 2 manganese oxide, and 3 manganese oxide can be used. The different transition metal is preferably any one of Ni, Co, and Fe, and the content thereof is preferably 0.003 to 0.015 with respect to the electrolytic manganese dioxide. As a method of containing a different transition metal,
In addition to a method of depositing particles from a solution and re-heat treatment, a chemical vapor deposition replacement method (CVD), an electroless plating method, an adsorption method, or the like can be used. As the negative electrode material, lithium metal, lithium alloy, carbon material capable of being doped or dedoped with lithium, and the like can be used.

【0016】電解液は、有機溶媒の単独もしくは混合溶
媒に電解質を0.5〜1.5モル/L(リットル)溶解
させた液である。この有機溶媒としては、炭酸プロピレ
ン、炭酸エチレン、炭酸ブチレン、γブチロラクトン、
炭酸ジメチル、炭酸エチルメチル、酢酸エステル化合
物、プロピオン酸エステル化合物、ジ酢酸エステル化合
物、ジメトキシエタン、ジエトキシエタン、ジメトキシ
プロパン、ジエトキシプロパン、テトラヒドロフラン、
ジオキソラン等の単独もしくは混合溶媒を用いる。ま
た、電解質としては、過塩素酸リチウム、トリフルオロ
メタンスルホン酸リチウム、4フッ化硼酸リチウム、6
フッ化燐酸リチウム、6フッ化砒酸リチウム等を用い
る。
The electrolytic solution is a solution prepared by dissolving 0.5 to 1.5 mol / L (liter) of an electrolyte in an organic solvent alone or in a mixed solvent. As the organic solvent, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone,
Dimethyl carbonate, ethyl methyl carbonate, acetic acid ester compound, propionic acid ester compound, diacetic acid ester compound, dimethoxyethane, diethoxyethane, dimethoxypropane, diethoxypropane, tetrahydrofuran,
A single solvent or a mixed solvent such as dioxolane is used. Further, as the electrolyte, lithium perchlorate, lithium trifluoromethanesulfonate, lithium tetrafluoroborate, 6
Lithium fluorophosphate, lithium hexafluoroarsenate, or the like is used.

【0017】次に非水電解液二次電池を図1のコイン型
電池とし、正極合剤中の正極活物質を、電解二酸化マン
ガンより得られたLiMn24に異種遷移金属であるN
i、Co、Feのうちのいずれかを添加する構成とし、
負極材料をリチウムがドープ・脱ドープ可能な炭素材料
とし場合の電池性能試験について説明する。
Next, the non-aqueous electrolyte secondary battery was used as the coin battery of FIG. 1, and the positive electrode active material in the positive electrode mixture was LiMn 2 O 4 obtained from electrolytic manganese dioxide and N which was a different transition metal.
i, Co, or Fe is added,
A battery performance test when the negative electrode material is a carbon material that can be doped and dedoped with lithium will be described.

【0018】〈実施例1〉まず、電解二酸化マンガンと
炭酸リチウムをMn:Liの原子比で1:0.5となる
ように計量し、乳鉢を用いて混合し、加圧成型し、さら
に乳鉢で粗く砕く。次にアルミナ製坩堝に入れ、電気炉
を用いて、酸素雰囲気下350℃で2時間、750℃で
16時間熱処理後、室温まで冷却してLiMn24を作
製する。このLiMn24は、X線回折測定でスピネル
型LiMn24に一致するピークを有するものであっ
た。この化合物の粒子径分布をレーザー式測定器で測定
すると、50%累積径で約35μmであった。 なお、
このLiMn24をそのまま正極活物質として使用する
場合を比較例1とした。
Example 1 First, electrolytic manganese dioxide and lithium carbonate were weighed so that the atomic ratio of Mn: Li was 1: 0.5, mixed using a mortar, pressure-molded, and further mortar. Crush roughly with. Next, it is placed in an alumina crucible and heat-treated in an oxygen furnace in an oxygen atmosphere at 350 ° C. for 2 hours and 750 ° C. for 16 hours, and then cooled to room temperature to prepare LiMn 2 O 4 . This LiMn 2 O 4 had a peak corresponding to spinel type LiMn 2 O 4 in X-ray diffraction measurement. When the particle size distribution of this compound was measured with a laser measuring instrument, the 50% cumulative size was about 35 μm. In addition,
Comparative Example 1 was a case where this LiMn 2 O 4 was used as it was as a positive electrode active material.

【0019】次に、硝酸ニッケルを0.005モル/L
濃度になるように水に溶解させ、500ml作製した。
これに前記LiMn24を29g秤量し、ニッケル溶液
中に投入する。この水溶液をスターラーを用いて攪拌さ
せながら、5%LiOH水溶液を徐々に加えて、溶液の
PHを9.0に調整した。この状態で1時間攪拌を続け
る。次にこの混合液を、ガラスフィルターを用いて瀘過
し、瀘過した固形部分を取り出し、真空乾燥機で減圧下
100℃で12時間乾燥させた。得られた固形物は、さ
らに500〜700℃で10時間加熱処理し、残存して
いる水酸基を除去した。このようにして実施例1の正極
活物質Ni−LiMn24を得る。
Next, nickel nitrate is added in an amount of 0.005 mol / L.
It was dissolved in water to a concentration so that 500 ml was prepared.
29 g of the LiMn 2 O 4 is weighed and put into a nickel solution. While stirring this aqueous solution using a stirrer, a 5% LiOH aqueous solution was gradually added to adjust the pH of the solution to 9.0. In this state, stirring is continued for 1 hour. Next, this mixed liquid was filtered using a glass filter, the filtered solid portion was taken out, and dried at 100 ° C. for 12 hours under reduced pressure with a vacuum dryer. The obtained solid substance was further heat-treated at 500 to 700 ° C. for 10 hours to remove the residual hydroxyl group. In this manner we obtain a positive electrode active material Ni-LiMn 2 O 4 of Example 1.

【0020】〈実施例2〉実施例1と同様の工程で、硝
酸ニッケルを0.015モル/L濃度になるように水に
溶解させ、500ml作製し、LiMn24を29gを
処理し、真空、乾燥して実施例2の正極活物質Ni−L
iMn24を得る。
Example 2 In the same steps as in Example 1, nickel nitrate was dissolved in water to a concentration of 0.015 mol / L to prepare 500 ml, and 29 g of LiMn 2 O 4 was treated. It is vacuumed and dried, and the positive electrode active material Ni-L of Example 2 is used.
iMn 2 O 4 is obtained.

【0021】〈実施例3〉実施例1と同様の工程で、硝
酸ニッケルを0.003モル/L濃度になるように水に
溶解させ、500ml作製し、LiMn24を29gを
処理し、真空、乾燥して実施例3の正極活物質Ni−L
iMn24を得る。
<Example 3> In the same process as in Example 1, nickel nitrate was dissolved in water to a concentration of 0.003 mol / L to prepare 500 ml, and 29 g of LiMn 2 O 4 was treated, The positive electrode active material Ni-L of Example 3 after vacuum drying.
iMn 2 O 4 is obtained.

【0022】〈比較例2〉実施例1と同様の工程で、硝
酸ニッケルを0.02モル/L濃度になるように水に溶
解させ、500ml作製し、LiMn24を29gを処
理し、真空、乾燥して比較例2の正極活物質Ni−Li
Mn24を得る。
Comparative Example 2 In the same process as in Example 1, nickel nitrate was dissolved in water to a concentration of 0.02 mol / L to prepare 500 ml, and 29 g of LiMn 2 O 4 was treated. It is vacuumed and dried, and the positive electrode active material of Comparative Example 2 is Ni-Li.
Mn 2 O 4 is obtained.

【0023】〈実施例4〉まず、硝酸コバルトを0.0
05モル/L濃度になるように水に溶解させ、500m
l作製した。これに実施例1と同様に作製したLiMn
24を29g秤量し、コバルト溶液中に投入する。この
水溶液をスターラーを用いて攪拌させながら、5%Li
OH水溶液を徐々に加えて、溶液のPHを9.0に調整
した。この状態で約1時間攪拌を続ける。次にこの混合
液を、ガラスフィルターを用いて瀘過し、瀘過した固形
部分を取り出し、真空乾燥機で減圧下100℃で12時
間乾燥させた。得られた固形物は、さらに500〜70
0℃で10時間加熱処理し、残存している水酸基を除去
した。このようにして実施例4の正極活物質Ni−Li
Mn24を得る。
Example 4 First, cobalt nitrate was added to 0.0
Dissolve in water to a concentration of 05 mol / L, 500m
1 was prepared. LiMn produced in the same manner as in Example 1
29 g of 2 O 4 is weighed and put into a cobalt solution. While stirring this aqueous solution using a stirrer, 5% Li
The pH of the solution was adjusted to 9.0 by slowly adding an OH aqueous solution. In this state, stirring is continued for about 1 hour. Next, this mixed liquid was filtered using a glass filter, the filtered solid portion was taken out, and dried at 100 ° C. for 12 hours under reduced pressure with a vacuum dryer. The obtained solid is further 500 to 70.
Heat treatment was performed at 0 ° C. for 10 hours to remove the residual hydroxyl group. Thus, the positive electrode active material Ni-Li of Example 4 was prepared.
Mn 2 O 4 is obtained.

【0024】〈実施例5〉まず、硝酸鉄を0.005モ
ル/L濃度になるように水に溶解させ、500ml作製
した。これに実施例1と同様に作製したLiMn24
29g秤量し、鉄の溶液中に投入する。この水溶液をス
ターラーを用いて攪拌させながら、5%LiOH水溶液
を徐々に加えて、溶液のPHを9.0に調整した。この
状態で約1時間攪拌を続ける。次にこの混合液を、ガラ
スフィルターを用いて瀘過し、瀘過した固形部分を取り
出し、真空乾燥機で減圧下100℃で12時間乾燥させ
た。得られた固形物は、さらに500〜700℃で10
時間加熱処理し、残存している水酸基を除去した。この
ようにして実施例5の正極活物質Ni−LiMn24
得る。
Example 5 First, iron nitrate was dissolved in water to a concentration of 0.005 mol / L to prepare 500 ml. 29 g of LiMn 2 O 4 produced in the same manner as in Example 1 is weighed and charged into the iron solution. While stirring this aqueous solution using a stirrer, a 5% LiOH aqueous solution was gradually added to adjust the pH of the solution to 9.0. In this state, stirring is continued for about 1 hour. Next, this mixed liquid was filtered using a glass filter, the filtered solid portion was taken out, and dried at 100 ° C. for 12 hours under reduced pressure with a vacuum dryer. The obtained solid is 10 at 500 to 700 ° C.
Heat treatment was carried out for a period of time to remove the residual hydroxyl group. In this manner we obtain a positive electrode active material Ni-LiMn 2 O 4 of Example 5.

【0025】表1は、以上実施例1〜5、比較例1〜2
の正極活物質を表にしたものである。
Table 1 shows Examples 1 to 5 and Comparative Examples 1 to 2 above.
2 is a table showing the positive electrode active material.

【0026】[0026]

【表1】 [Table 1]

【0027】この表1の正極活物質を用い、コイン型電
池で充放電試験を行った。この場合のコイン型試験電池
の寸法は、直径が20mm、高さが2.5mmである。
このコイン型試験電池は次のように作製した。まず、電
池蓋に負極として厚さ1.6mmのリチウム金属を直径
17mmに打ち抜きプレス機を用いて加圧密着させた。
次に、電池缶に、それぞれの正極合剤を集電体であるア
ルミニウムネットとともに加圧プレス装置で直径15m
mに成型した正極を入れる。この場合、それぞれの正極
合剤は、それぞれの正極活物質を90重量部と導電材で
あるグラファイト7重量部と結着剤であるポリフッ化ビ
ニリデン3重量部を混合して作製される。次に、正極の
上にポリプロピレン製セパレータ(セルガード#250
2)を載置し、プロピレンカーボネート:ジエチルカー
ボネート=1:1の混合有機溶媒に電解質としてLiP
6を1モル/L溶解させた非水電解液を注液し、前記
電池蓋を被せ、ガスケットとともにかしめて封口してそ
れぞれのコイン型試験電池を作製した。
Using the positive electrode active material shown in Table 1, a charge / discharge test was conducted on a coin type battery. The coin type test battery in this case has a diameter of 20 mm and a height of 2.5 mm.
This coin type test battery was manufactured as follows. First, as a negative electrode, lithium metal having a thickness of 1.6 mm was punched into a diameter of 17 mm and pressed against the battery lid using a press machine.
Next, each positive electrode mixture was put into a battery can together with an aluminum net as a current collector in a pressure press device with a diameter of 15 m.
Put the positive electrode molded into m. In this case, each positive electrode mixture is prepared by mixing 90 parts by weight of each positive electrode active material, 7 parts by weight of graphite which is a conductive material, and 3 parts by weight of polyvinylidene fluoride which is a binder. Next, on the positive electrode, a polypropylene separator (Celguard # 250
2) is placed, and LiP is used as an electrolyte in a mixed organic solvent of propylene carbonate: diethyl carbonate = 1: 1.
A non-aqueous electrolyte solution in which 1 mol / L of F 6 was dissolved was poured, covered with the battery lid, caulked with a gasket, and sealed to manufacture each coin-type test battery.

【0028】このようにして作製した電池を表2に示
す。
The batteries thus produced are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】この表2に示す電池を用いて次のような試
験を行った。
The following tests were carried out using the batteries shown in Table 2.

【0031】まず、電流0.5mA/cm2、上限電圧
4.2Vで12時間充電後、電流0.5mA/cm2
3.0Vまで放電させた。次に、電流1mA/cm2
上限電圧4.2Vで5.5時間充電し、電流1mA/c
2で3.0Vまで放電させるサイクルを5回繰返し行
った。それぞれの電池は2つずつ用意され、前記のよう
に充放電サイクルを5回繰り返した後、1つの電池は、
放電負荷性能試験として、電流1mA/cm2、上限電
圧4.2Vで5.5時間充電し、電流0.5〜5mA/
cm2で3.0Vまで放電させる試験をそれぞれサイク
ルを5回繰返し行った。また、もう1つの電池は、充放
電サイクル試験として、電流1mA/cm2、上限電圧
4.2Vで5.5時間充電し、電流1mA/cm2
3.0Vまで放電させるサイクル試験を繰り返し行っ
た。
First, the battery was charged at a current of 0.5 mA / cm 2 and an upper limit voltage of 4.2 V for 12 hours, and then discharged at a current of 0.5 mA / cm 2 to 3.0 V. Next, the current is 1 mA / cm 2 ,
Charged at the upper limit voltage of 4.2V for 5.5 hours, current 1mA / c
The cycle of discharging to 3.0 V at m 2 was repeated 5 times. Two batteries are prepared for each battery, and after repeating the charge / discharge cycle 5 times as described above, one battery is
As a discharge load performance test, the battery was charged at a current of 1 mA / cm 2 and an upper limit voltage of 4.2 V for 5.5 hours, and a current of 0.5 to 5 mA /
The test of discharging to 3.0 V in cm 2 was repeated 5 times. As another charge / discharge cycle test, the other battery was repeatedly charged with a current of 1 mA / cm 2 and an upper limit voltage of 4.2 V for 5.5 hours and then discharged to 3.0 V at a current of 1 mA / cm 2 repeatedly. .

【0032】図2は、放電負荷性能試験の結果を示し、
図3は、充放電サイクル試験の結果を示す。
FIG. 2 shows the results of the discharge load performance test,
FIG. 3 shows the result of the charge / discharge cycle test.

【0033】図2および図3から明らかなように、電解
二酸化マンガンより得られたLiMn24に異種の遷移
金属であるNi、Co、Feのうちのいずれかを適量添
加した正極活物質を用いた非水電解液二次電池は、Li
Mn24だけの正極活物質を用いた非水電解液二次電
池、またはLiMn24にNi、Co、Feのうちのい
ずれかを適量でなく添加した正極活物質を用いた非水電
解液二次電池に比べて、放電負荷性能および充放電サイ
クル性能(高容量を維持する性能)に優れていることが
わかる。この理由として、スピネル型LiMn24の酸
化物としての性質は、リチウムが移動する際の抵抗体と
しての性状を呈するが、異種遷移金属を適量添加するこ
とで、LiMn24の表面にニッケル酸リチウム、コバ
ルト酸リチウム等に類似した化合物が形成され、性状が
大きく改善できるものと推定される。また、Ni、C
o、Feは、マンガン化合物に比べて、導電性の点で極
めて効果的なものである。
As is apparent from FIGS. 2 and 3, a positive electrode active material obtained by adding an appropriate amount of any one of different transition metals Ni, Co and Fe to LiMn 2 O 4 obtained from electrolytic manganese dioxide was used. The non-aqueous electrolyte secondary battery used was Li
Non-aqueous electrolyte secondary battery using a positive electrode active material containing only Mn 2 O 4 or non-aqueous electrolyte using a positive electrode active material obtained by adding LiMn 2 O 4 to Ni, Co or Fe in an inappropriate amount. It can be seen that the discharge load performance and the charge / discharge cycle performance (performance for maintaining a high capacity) are superior to the electrolytic solution secondary battery. The reason for this is that the spinel-type LiMn 2 O 4 has the property as an oxide that it functions as a resistor when lithium moves, but by adding an appropriate amount of a different kind of transition metal, the surface of LiMn 2 O 4 can be added. It is presumed that a compound similar to lithium nickelate, lithium cobaltate, etc. is formed and the properties can be greatly improved. Also, Ni, C
O and Fe are extremely effective in terms of conductivity as compared with manganese compounds.

【0034】また、電解二酸化マンガンより得られたL
iMn24に異種の遷移金属であるNi、Co、Feの
うちのいずれかを適量添加する本発明の技術を用いるこ
とで、充放電サイクルに伴う正極活物質そのものの変質
やその表面の劣化を効果的に抑制できるものと推定され
る。とりわけスピネル型マンガン化合物は、トンネル構
造であるため、リチウムの移動において、結晶構造が抵
抗層となりやすく、それが構造劣化の一因と考えられて
いる。
L obtained from electrolytic manganese dioxide
By using the technique of the present invention in which iMn 2 O 4 is added with an appropriate amount of any one of different kinds of transition metals, Ni, Co, and Fe, alteration of the positive electrode active material itself due to charge / discharge cycles and deterioration of the surface thereof. It is estimated that this can be effectively suppressed. In particular, since the spinel type manganese compound has a tunnel structure, it is considered that the crystal structure easily serves as a resistance layer when lithium is transferred, which is one of the causes of structural deterioration.

【0035】遷移金属化合物による処理を行った後、再
熱処理温度が高過ぎると、残存している水酸基の除去の
他に、表面付近で遷移金属の酸化物層化が進み、絶縁層
化しやすい。したがって、再熱処理温度を初めの熱処理
温度よりも100〜200℃程度低温にして処理するこ
とにより、効果的に添加元素の酸化とリチウム化合物化
を進めることが可能となると考えられる。
If the reheat treatment temperature is too high after the treatment with the transition metal compound, in addition to the removal of the remaining hydroxyl groups, the transition metal oxide layer is promoted near the surface to easily form an insulating layer. Therefore, it is considered that the oxidation of the additional element and the conversion to the lithium compound can be effectively promoted by treating the reheat treatment temperature at a temperature lower by 100 to 200 ° C. than the initial heat treatment temperature.

【0036】遷移金属を多量に処理すると、容量の低下
が起こり、リチウムのドープ・脱ドープ面の抵抗低減効
果が相殺され、また、処理が少ないと、性能は期待でき
ず、未処理と同様になってしまう。したがって、前述し
たように、遷移金属を適切な量だけ処理する必要があ
る。
When a large amount of the transition metal is treated, the capacity is lowered and the effect of reducing the resistance of the doped / dedoped surface of lithium is offset, and if the amount of the treatment is too small, the performance cannot be expected and the untreated surface is the same. turn into. Therefore, as described above, it is necessary to treat the transition metal in an appropriate amount.

【0037】正極活物質は、必ず電解二酸化マンガンか
ら製造する必要はなく、オキシ水酸化マンガン、硝酸マ
ンガン、炭酸マンガンを用い、これらのマンガン酸化物
から製造してもよく、これらの材料からも同様の効果が
期待できる。これらの材料を用いるときは、150μm
以上の大きな粒子を除去すると効果的である。
The positive electrode active material does not necessarily have to be produced from electrolytic manganese dioxide, and may be produced from manganese oxides thereof by using manganese oxyhydroxide, manganese nitrate, manganese carbonate, or the like. The effect of can be expected. 150 μm when using these materials
It is effective to remove the above large particles.

【0038】特に、電解二酸化マンガンを用いる場合に
は、価格的な点と、充填性が大幅に向上できる(高密度
にすることができる、ひいては高容量にすることができ
る)点においてメリットが大きい。具体的には、化学合
成した二酸化マンガンのタップ密度は1.8であるのに
対して、電解二酸化マンガンのタップ密度は2.1以上
が可能である。
In particular, when electrolytic manganese dioxide is used, there are great merits in terms of cost and significant improvement in filling property (high density, high capacity). . Specifically, the tap density of chemically synthesized manganese dioxide is 1.8, whereas the tap density of electrolytic manganese dioxide can be 2.1 or more.

【0039】[0039]

【発明の効果】以上説明したように、本発明において
は、正極活物質を、電解二酸化マンガンより得られたL
ixMnOyに異種遷移金属を添加する構成としたの
で、例えば電池の高性能化、小型化のため、正極をシー
ト状に加圧成型した場合であっても、密度を高くするこ
とができ、この正極活物質を用いることにより、高容量
の非水電解液二次電池を得ることができる。
As described above, in the present invention, the positive electrode active material is L obtained from electrolytic manganese dioxide.
Since a different transition metal is added to ixMnOy, the density can be increased even when the positive electrode is pressure-molded into a sheet for high performance and size reduction of the battery. A high capacity non-aqueous electrolyte secondary battery can be obtained by using the active material.

【0040】また、正極活物質に異種遷移金属が含有さ
れているので、導電性を良くすることができ、この正極
活物質を用いた非水電解液二次電池は、充放電サイクル
性能を長期間維持することができる。また、実施例に示
されるように、結着剤は5〜8%で十分性能発揮でき
る。
Since the positive electrode active material contains a different transition metal, the conductivity can be improved, and the non-aqueous electrolyte secondary battery using this positive electrode active material has a long charge / discharge cycle performance. Can be maintained for a period of time. Further, as shown in the examples, the performance of the binder can be sufficiently exhibited at 5 to 8%.

【0041】さらに、価格が高いリチウムイオン電池と
同様の性能の非水電解液二次電池を安価に提供すること
ができる。
Furthermore, a non-aqueous electrolyte secondary battery having the same performance as that of a high-priced lithium ion battery can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非水電解液二次電池の実施の一例
を示す全体構造図である。
FIG. 1 is an overall structural diagram showing an example of implementation of a non-aqueous electrolyte secondary battery according to the present invention.

【図2】非水電解液二次電池の放電負荷性能試験の結果
を示すグラフである。
FIG. 2 is a graph showing the results of a discharge load performance test of a non-aqueous electrolyte secondary battery.

【図3】非水電解液二次電池の充放電サイクル試験の結
果を示すグラフである。
FIG. 3 is a graph showing the results of a charge / discharge cycle test of a non-aqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1:非水電解液二次電池、2:電池缶、3:正極、4:
セパレータ、5:負極、6:電池蓋、7:ガスケット、
8:正極集電体、9:正極合剤
1: Non-aqueous electrolyte secondary battery, 2: Battery can, 3: Positive electrode, 4:
Separator, 5: negative electrode, 6: battery lid, 7: gasket,
8: Positive electrode current collector, 9: Positive electrode mixture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質を、電解二酸化マンガンより
得られたLixMnOyに異種遷移金属を添加する構成
としたことを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery, wherein the positive electrode active material has a structure in which a different transition metal is added to LixMnOy obtained from electrolytic manganese dioxide.
【請求項2】 前記異種遷移金属の含有量を、前記Li
xMnOyに対して遷移金属/マンガンを0.003〜
0.015としたことを特徴とする請求項1に記載の非
水電解液二次電池。
2. The content of the different transition metal is the Li
0.003 to 0.003 of transition metal / manganese with respect to xMnOy
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is 0.015.
【請求項3】 前記異種遷移金属を、Ni、Co、Fe
のうちのいずれかとしたことを特徴とする請求項1に記
載の非水電解液二次電池。
3. The different transition metal is Ni, Co, Fe.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is any one of the above.
【請求項4】 前記電解二酸化マンガンより得られたL
ixMnOyは、比表面積が0.5〜2m2を有する電
解二酸化マンガンより得られたLiMn24、LiMn
23であることを特徴とする請求項1に記載の非水電解
液二次電池。
4. L obtained from the electrolytic manganese dioxide
ixMnOy is LiMn 2 O 4 or LiMn obtained from electrolytic manganese dioxide having a specific surface area of 0.5 to 2 m 2.
The non-aqueous electrolyte secondary battery according to claim 1, which is 2 O 3 .
JP8166940A 1996-06-06 1996-06-06 Nonaqueous electrolyte secondary battery Pending JPH09330701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8166940A JPH09330701A (en) 1996-06-06 1996-06-06 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8166940A JPH09330701A (en) 1996-06-06 1996-06-06 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09330701A true JPH09330701A (en) 1997-12-22

Family

ID=15840468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8166940A Pending JPH09330701A (en) 1996-06-06 1996-06-06 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09330701A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090982A (en) * 1998-07-14 2000-03-31 Denso Corp Nonaqueous electrolyte secondary battery
JP2007123246A (en) * 2005-09-28 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2017041425A (en) * 2015-08-21 2017-02-23 株式会社日本触媒 Lithium ion secondary battery
JP2017041426A (en) * 2015-08-21 2017-02-23 株式会社日本触媒 Lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090982A (en) * 1998-07-14 2000-03-31 Denso Corp Nonaqueous electrolyte secondary battery
JP4662089B2 (en) * 1998-07-14 2011-03-30 株式会社デンソー Nonaqueous electrolyte secondary battery
JP2007123246A (en) * 2005-09-28 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2017041425A (en) * 2015-08-21 2017-02-23 株式会社日本触媒 Lithium ion secondary battery
JP2017041426A (en) * 2015-08-21 2017-02-23 株式会社日本触媒 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4064142B2 (en) Positive electrode for lithium secondary battery and method for producing the same
JP3582161B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP4060602B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
EP0938148B1 (en) Non-aqueous electrolyte secondary cell
JP4082214B2 (en) Nonaqueous electrolyte secondary battery and its positive electrode active material
KR100797099B1 (en) Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
KR100369445B1 (en) Coating materials and method of lithium manganese oxide for positive electr odes in the Lithium secondary batteries
JPH08213052A (en) Nonaqueous electrolyte secondary battery
JP2000082466A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
KR20020046658A (en) Method for Surface Treatment of Layered Structure Oxide for Positive Electrodes in the Lithium Secondary Batteries
EP0752728A2 (en) Negative electrode material for use in lithium secondary batteries, its manufacture, and lithium secondary batteries incorporating this material
US6274273B1 (en) Positive active material for rechargeable lithium battery and method of preparing same
US11677065B2 (en) Cathode active material of lithium secondary battery
WO2024124961A1 (en) Lithium-rich manganese-based positive electrode material, preparation method therefor, and use thereof
WO2001060749A1 (en) A method for preparing lithium manganese spinel complex oxide having improved electrochemical performance
JP4159640B2 (en) Anode active material for lithium ion battery and method for producing the same
WO2003069701A1 (en) Production methods for positive electrode active matter and non-aqueous electrolytic battery
CN116454261A (en) Lithium ion battery anode material and preparation method thereof
JPH09171813A (en) Nonaqueous electrolyte battery
JP3489771B2 (en) Lithium battery and method of manufacturing lithium battery
JPH10172564A (en) Active material, its manufacture, and lithium ion secondary battery using active material
KR101080619B1 (en) Negative electrode active material method of producing the same and nonaqueous electrolyte cell
JP2004175609A (en) Lithium cobaltate used for positive electrode of lithium ion battery, its manufacturing process and lithium ion battery
JP5819786B2 (en) Lithium cuprate positive electrode material, method for producing the positive electrode material, and lithium secondary battery containing the positive electrode material as a positive electrode active material
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it