JPH09329438A - Measuring method and device for geological discontinuous plane - Google Patents

Measuring method and device for geological discontinuous plane

Info

Publication number
JPH09329438A
JPH09329438A JP8168179A JP16817996A JPH09329438A JP H09329438 A JPH09329438 A JP H09329438A JP 8168179 A JP8168179 A JP 8168179A JP 16817996 A JP16817996 A JP 16817996A JP H09329438 A JPH09329438 A JP H09329438A
Authority
JP
Japan
Prior art keywords
azimuth
measuring
sensor
discontinuous surface
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8168179A
Other languages
Japanese (ja)
Inventor
Tomio Fujikawa
富夫 藤川
Toshiaki Aoki
俊朗 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Priority to JP8168179A priority Critical patent/JPH09329438A/en
Publication of JPH09329438A publication Critical patent/JPH09329438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method and device for a geological discontinuous plane, with which even an unskiled operator can measure easily and accurately the azimuth, inclination, and roughness of the discontinuous plane. SOLUTION: A measuring device concerned includes a measuring part 10 which is fitted with a gyroscopic sensor 12 to sense the angular velocity and an acceleration sensor 13 to sense the gravitational direction and the acceleration. The azimuths of these sensors 12, 13 in the measuring part 10 are set initially by reference to any arbitrary azimuth. The measuring part 10 is moved continuously in compliance with the surface shape of a discontinuous plane as object to be measured, and the azimuth and inclination of the discontinuous plane in the positions at which the sensors 12, 13 are moved with time lapse are subjected to a computational processing made with a control part 20, and thereby the means of the azimuth and inclination are determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野】本発明は断層面や節理面等の不連
続面の方位と傾斜の連続測定並びに不連続面の粗さ(凹
凸状態)を把握できる、地質不連続面の測定方法及び測
定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a method for measuring a geological discontinuity surface capable of continuously measuring the azimuth and inclination of a discontinuity surface such as a fault plane or joint surface and grasping the roughness (roughness) of the discontinuity surface Regarding the device.

【0002】[0002]

【従来の技術】地下発電所や地下貯槽等の建設に際し
て、長大岩盤構造物の安定性確保には、岩盤内に存在す
る断層や節理等の地質不連続面を正確に評価すること
と、この評価に基づいた適切な対応工を施すことが重要
である。不連続面の調査及び評価をするうえで、不連続
面の方向性(傾斜方位、傾斜等)や粗さに関する項目が
重要であある。
2. Description of the Related Art When constructing an underground power plant or an underground storage tank, in order to ensure the stability of long rock structures, it is necessary to accurately evaluate the geological discontinuities such as faults and joints in the rock. It is important to take appropriate countermeasures based on the evaluation. When investigating and evaluating discontinuities, items related to the directionality (tilt azimuth, inclination, etc.) and roughness of discontinuities are important.

【0003】これらの調査手法としては、画像処理技術
を応用した方法が研究されつつあるが、磁石と重りと水
準器とを装備した「クリノメータ」と呼ばれる計測器を
使用し、以下の要領で測定している。 (a)クリノメータの長辺を不連続面と水平面との交線
(走向)方向に当て、磁針と走向の成す角度を判読す
る。 (b)クリノメータの長辺を最大傾斜方向(走向と直角
方向)に合わせ、重りと水平方向の成す角度を判読す
る。 (c)上記の(a)(b)を岩盤表面の多数のポイント
で走向と傾斜を計測し、 これらの記録情報各ポイ
ントにおける計測値を平均化することで、全体の
節理群の卓越方向や卓越数を把握している。
As these investigation methods, methods applying image processing technology are being studied, but a measuring instrument called a "clinometer" equipped with a magnet, a weight, and a level is used and measured in the following manner. are doing. (A) The long side of the clinometer is applied to the direction of the line of intersection (strike) between the discontinuous plane and the horizontal plane, and the angle between the magnetic needle and the strike is read. (B) Align the long side of the clinometer with the maximum inclination direction (the direction perpendicular to the strike direction) and read the angle between the weight and the horizontal direction. (C) In (a) and (b) above, the strikes and inclinations were measured at many points on the rock surface, and the measured values at these recorded information points were averaged,
Knowing the predominant direction and number of joint groups.

【0004】また粗さの度合いについては、現場にて観
察者が現場の不連続面と、不連続面の粗さを段階的に表
した複数の粗さのモデル図とを見比べて評価する手法が
主流を占めている。
Further, the degree of roughness is evaluated by an observer at the site by comparing the discontinuous surface of the site with a plurality of roughness model diagrams showing the roughness of the discontinuous surface stepwise. Is the mainstream.

【0005】[0005]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

(1)前記したクリノメータを用いた測定方法にあって
は次のような課題がある。<イ> クリノメータの使用
にあたっては専門知識を必要とするため、誰でも自由に
計測できるものではない。 <ロ> 通常1地点で数百回程度測定する。しかしなが
ら1ポイントの測定に2〜3分程度の時間を要するた
め、計測に多くの時間と労力を要する。 <ハ> クリノメータに内蔵された磁石の性能は磁場の
乱れた場所或いは重機や配管等の金属製機材の存在によ
って影響されるため、測定値に対する信頼性が低い。 <ニ> 測定は面上の点で行われるため、大きく波打つ
不連続面においては、測定点により測定結果が異なり、
全体像を正確に把握することが困難である。 <ホ> 重力センサや磁気センサを内蔵し、不連続面の
方位・傾斜(走向・傾斜)情報を電気的信号として出力
できる電子式のクリノメータも種々提案されている。
しかしながら、この種のクリノメータにあっても、前記
<ハ>,<ニ>と同様の問題がある。
(1) The measuring method using the clinometer described above has the following problems. <A> No one can freely measure the clinometer because it requires specialized knowledge. <B> Normally, measure several hundred times at one point. However, since it takes about 2 to 3 minutes to measure one point, much time and labor are required for the measurement. <C> Since the performance of the magnet built into the clinometer is affected by the place where the magnetic field is disturbed or the presence of metal equipment such as heavy machinery and piping, the reliability of measured values is low. <D> Since the measurement is performed at points on the surface, the measurement results will differ depending on the measurement point on the discontinuous surface with a large undulation.
It is difficult to grasp the whole picture accurately. <E> Various electronic clinometers that incorporate a gravity sensor or a magnetic sensor and can output the azimuth / tilt (striking / tilting) information of a discontinuous surface as an electric signal have been proposed.
However, even this type of clinometer has the same problems as those of <C> and <D>.

【0006】(2)また不連続面の粗さの度合いを評価
する方法にあっては、次のような課題がある。 <イ> 見比べには専門知識を有する地質技術者が必要
で、誰でも簡単に行えるものではない。 <ロ> 専門知識を有する者であっても、粗さの度合い
の判断結果が主観に影響されやすく、正確さの点で不安
が残る。
(2) Further, the method for evaluating the degree of roughness of the discontinuous surface has the following problems. <a> A geotechnical engineer with specialized knowledge is required for comparison, and it is not easy for anyone to do. <B> Even a person who has specialized knowledge is likely to be anxious about the accuracy because the judgment result of the degree of roughness is easily influenced by subjectivity.

【0007】本発明は以上の問題点を解決するためにな
されたもので、その課題とするところは、不連続面の方
位・傾斜及び粗さについて、専門知識のない者であって
も容易にかつ正確に測定できる、地質不連続面の測定方
法及び測定装置を提供することにある。さらに本発明の
他の課題は、少ないサンプリング数で以て迅速に測定で
きる、地質不連続面の測定方法及び測定装置を提供する
ことにある。さらに本発明の他の課題は、キーブロック
解析等の不連続解析をより高度に行うためのデータを提
供できる、地質不連続面の測定方法及び測定装置を提供
することにある。
The present invention has been made in order to solve the above problems, and the problem is that even a person who does not have specialized knowledge about the azimuth / tilt and roughness of a discontinuous surface can easily do so. It is an object of the present invention to provide a measuring method and a measuring device for a geological discontinuity that can be measured accurately. Still another object of the present invention is to provide a measuring method and a measuring device for a geological discontinuity surface, which enables rapid measurement with a small number of samplings. Still another object of the present invention is to provide a measuring method and a measuring device for a geological discontinuity surface, which can provide data for performing discontinuity analysis such as key block analysis to a higher degree.

【0008】[0008]

【課題を解決するための手段】請求項1に係る本発明
は、地質不連続面の測定方法であって、角速度を検出す
るジャイロセンサ及び重力方向と加速度を検出する加速
度センサの方位を任意の方位に初期設定し、前記両セン
サを一体で、測定対象の不連続面の表面に沿わせて連続
的に移動させつつ、前記センサの経時的な移動位置にお
ける不連続面の方位角と傾斜角を連続的に算出した後、
前記方位角と傾斜角を平均化して不連続面の平均方位角
と平均傾斜角を算出することを特徴とする、地質不連続
面の測定方法である。請求項2に係る本発明は、地質不
連続面の測定方法であって、角速度を検出するジャイロ
センサ及び重力方向と加速度を検出する加速度センサの
方位を任意の方位に初期設定し、前記両センサを一体
で、測定対象の不連続面の表面に沿わせて連続的に移動
させつつ、前記センサの経時的な移動位置における不連
続面の方位角と傾斜角を計測して不連続面の粗さの程度
を算出することを特徴とする、地質不連続面の測定方法
である。請求項3に係る本発明は、地質不連続面の測定
方法であって、角速度を検出するジャイロセンサ及び重
力方向と加速度を検出する加速度センサの方位を任意の
方位に初期設定し、前記両センサを一体で、測定対象の
不連続面の表面に沿わせて連続的に移動させつつ、前記
センサの経時的な移動位置における不連続面の方位角と
傾斜角を連続的に算出した後、前記方位角と傾斜角を平
均化して不連続面の平均方位角と平均傾斜角を算出する
と共に、前記センサの経時的な移動位置における不連続
面の方位角と傾斜角を計測して不連続面の粗さの程度を
算出することを特徴とする、地質不連続面の測定方法で
ある。請求項4に係る本発明は、測定対象の不連続面の
表面に沿って移動させる計測部と、前記計測部と電気的
に接続し、計測データを演算処理する制御部とからな
り、前記計測部は角速度を検出するジャイロセンサと、
重力方向と加速度を検出する加速度センサとを具備する
ことを特徴とする、地質不連続面の測定装置である。請
求項5に係る本発明は、請求項4において、前記制御部
は計測部の各センサの検出信号を基に、計測部の移動軌
跡における経時的な角速度を算出する演算処理手段を具
備することを特徴とする、地質不連続面の測定装置であ
る。請求項6に係る本発明は、請求項4または請求項5
において、前記制御部は各センサのアナログ信号をデジ
タル信号に変換する変換器と、変換器を通じて入力した
各センサの検出信号を基に、計測部の移動軌跡における
経時的な角速度を算出する演算装置と、演算装置で演算
した不連続面の平均方位角と平均傾斜角を表示する表示
手段を具備することを特徴とする、地質不連続面の測定
装置である。請求項7に係る本発明は、請求項4〜6の
いずれかにおいて、計測部の計測面に着脱自在に防護体
を設けたことを特徴とする、地質不連続面の測定装置で
ある。
According to a first aspect of the present invention, there is provided a method for measuring a geological discontinuity surface, wherein a gyro sensor for detecting an angular velocity and an azimuth of an acceleration sensor for detecting a gravitational direction and acceleration are set to arbitrary directions. An azimuth angle and an inclination angle of the discontinuous surface at the time-dependent movement position of the sensor while initially setting the azimuth and continuously moving the both sensors integrally along the surface of the discontinuous surface of the measurement target. After continuously calculating
A method for measuring a geological discontinuity surface, characterized by averaging the azimuth angle and the inclination angle to calculate an average azimuth angle and an average inclination angle of the discontinuity surface. The present invention according to claim 2 is a method for measuring a geologically discontinuous surface, wherein the azimuth of a gyro sensor that detects an angular velocity and an acceleration sensor that detects a gravitational direction and acceleration is initialized to an arbitrary azimuth. , While continuously moving along the surface of the discontinuity surface to be measured, while measuring the azimuth angle and tilt angle of the discontinuity surface at the moving position of the sensor over time, the roughness of the discontinuity surface is measured. It is a method of measuring a geological discontinuity, which is characterized by calculating the degree of depth. The present invention according to claim 3 is a method for measuring a geological discontinuity surface, wherein azimuths of a gyro sensor that detects an angular velocity and an acceleration sensor that detects a gravitational direction and acceleration are initially set to arbitrary azimuths, and both sensors are set. Integrally, while continuously moving along the surface of the discontinuous surface of the measurement object, after continuously calculating the azimuth and tilt angle of the discontinuous surface at the moving position of the sensor, The azimuth angle and the inclination angle are averaged to calculate the average azimuth angle and the average inclination angle of the discontinuous surface, and the discontinuity surface is measured by measuring the azimuth angle and the inclination angle of the discontinuous surface at the moving position of the sensor with time. It is a method of measuring a geological discontinuity, which is characterized by calculating the degree of roughness. The present invention according to claim 4 comprises a measurement unit that moves along the surface of the discontinuous surface of the measurement target, and a control unit that is electrically connected to the measurement unit and arithmetically processes the measurement data. The part is a gyro sensor that detects angular velocity,
An apparatus for measuring a geological discontinuity, which comprises an acceleration sensor for detecting the direction of gravity and an acceleration. According to a fifth aspect of the present invention, in the fourth aspect, the control section includes arithmetic processing means for calculating a temporal angular velocity in a movement locus of the measuring section based on a detection signal of each sensor of the measuring section. Is a measuring device for a geological discontinuity. The present invention according to claim 6 is claim 4 or claim 5.
In the above, the control unit calculates a temporal angular velocity in a movement locus of the measuring unit based on a converter that converts an analog signal of each sensor into a digital signal and a detection signal of each sensor input through the converter. And a display means for displaying the average azimuth angle and the average inclination angle of the discontinuity surface calculated by the arithmetic device, and a measuring device for the geological discontinuity surface. The present invention according to claim 7 is the measuring device for a geological discontinuity surface according to any one of claims 4 to 6, characterized in that a protective body is detachably attached to the measurement surface of the measurement unit.

【0009】[0009]

【発明の実施の形態1】以下図面を参照しながら本発明
の実施の形態について説明する。
Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

【0010】<イ>装置全体の構成 図2に装置の全体斜視図を示す。測定装置は不連続面上
を走査する計測部10と、計測部10から分離した制御
部20と、計測部10の磁極を初期設定する基準方位台
30とを基本の構成要素とする。計測部10との間はコ
ード40又はコードレス形式によって計測部10の計測
信号を制御部20へ入力できるようになっている。以下
に各部について説明する。
<B> Configuration of the entire device FIG. 2 is a perspective view of the entire device. The measuring device has a measurement unit 10 that scans a discontinuous surface, a control unit 20 that is separated from the measurement unit 10, and a reference orientation base 30 that initializes the magnetic poles of the measurement unit 10 as basic components. A measurement signal of the measuring unit 10 can be input to the control unit 20 by a cord 40 or a cordless format with the measuring unit 10. Hereinafter, each part will be described.

【0011】<ロ>計測部 図1に計測部10と制御部20の構成図を示す。計測部
10は本体11内にジャイロセンサ12と、加速度セン
サ13とを内蔵し、本体11の底面又は側面が測定面と
なる。また制御部20内には、計測部10および制御部
20に給電する作動電源14を内蔵し、計測部10へは
コード40を通じて給電できるようになっている。また
計測部10と制御部20に夫々個別に作動電源を設けて
もよいことは勿論である。ジャイロセンサ12は角速度
を検出するためのセンサで、後述する相対座標系(x,
y,z)の各軸回りの回転速度に比例した感応電圧を出
力する。特にジャイロセンサ12を採用したのは、計測
部10を移動しながら連続的に角速度を計測するためで
ある。ジャイロセンサ12としては、例えば振動ジャイ
ロセンサや光ファイバジャイロセンサ等の角速度を検出
できる公知の各種センサを使用することができる。加速
度センサ13は重力方向と加速度の検出を目的とする公
知の三軸型のセンサで、相対座標系のx,y,zの各軸
方向の加速度に比例した感応電圧を出力する。計測部1
0の角速度の情報は、前記したジャイロセンサ12と加
速度センサ13の2つのセンサで以て求める。
<B> Measuring Unit FIG. 1 shows a block diagram of the measuring unit 10 and the control unit 20. The measuring unit 10 includes a gyro sensor 12 and an acceleration sensor 13 in a main body 11, and the bottom surface or side surface of the main body 11 serves as a measurement surface. Further, the control unit 20 has a built-in operation power supply 14 for supplying power to the measuring unit 10 and the control unit 20, and can supply power to the measuring unit 10 through a cord 40. Further, it goes without saying that the measuring unit 10 and the control unit 20 may be individually provided with operating power sources. The gyro sensor 12 is a sensor for detecting an angular velocity, and is a relative coordinate system (x,
Outputs a sensitive voltage proportional to the rotation speed around each axis (y, z). In particular, the gyro sensor 12 is adopted because the angular velocity is continuously measured while moving the measuring unit 10. As the gyro sensor 12, various known sensors such as a vibration gyro sensor and an optical fiber gyro sensor that can detect angular velocity can be used. The acceleration sensor 13 is a known triaxial sensor for detecting the direction of gravity and acceleration, and outputs a sensitive voltage proportional to the acceleration in each of the x, y, and z directions of the relative coordinate system. Measurement unit 1
The information of the angular velocity of 0 is obtained by the two sensors, the gyro sensor 12 and the acceleration sensor 13 described above.

【0012】<ハ>制御部 制御部20は少なくとも前記各センサ12,13の検知
信号を基に、計測部10の移動軌跡における経時的な角
速度(方位角及び傾斜角)を算出する演算処理手段を具
備している。図1示した制御部20について説明する
と、制御部20は本体21内にA/D変換器22と、C
PU等の演算装置23と、制御装置24と、記憶装置2
5と、表示装置26と、外部入出力装置27とを内蔵し
た、作業者が携帯可能なように1ユニットに組み立てら
れている。A/D変換器22は計測部10内の各センサ
12,13で測定されたアナログ信号をデジタル信号に
変換する。演算装置23はA/D変換器22を通じて入
力した各信号を数学的に演算して、移動する計測部10
の軌跡における経時的な角速度(方位角及び傾斜角)を
算出し、制御装置24に入力する。演算装置23から出
力される情報は次の通りである。 θij:不連続面iのj番目の方位角 φij:不連続面iのj番目の傾斜角 Vxij ,Vyij ,Vzij :不連続面iのj番目の測定
時における局所座標系の各軸方向の計測部移動速度
<C> Control Unit The control unit 20 calculates the angular velocity (azimuth angle and tilt angle) over time in the movement trajectory of the measuring unit 10 based on at least the detection signals of the sensors 12 and 13. It is equipped with. Explaining the control unit 20 shown in FIG. 1, the control unit 20 includes an A / D converter 22 and a C
A computing device 23 such as a PU, a control device 24, and a storage device 2
5, the display device 26, and the external input / output device 27 are built in one unit so as to be portable by an operator. The A / D converter 22 converts an analog signal measured by each sensor 12, 13 in the measuring unit 10 into a digital signal. The arithmetic unit 23 mathematically arithmetically operates each signal input through the A / D converter 22, and moves the measuring unit 10
The angular velocity (azimuth angle and tilt angle) with time on the locus of is calculated and input to the control device 24. The information output from the arithmetic unit 23 is as follows. θij: j-th azimuth angle of discontinuous surface i φij: j-th tilt angle of discontinuous surface i Vxij, Vyij, Vzij: measurement in each axial direction of the local coordinate system at the j-th measurement of discontinuous surface i Part moving speed

【0013】制御装置24は、測定データを直接的又は
間接的に制御する場合に、測定者の判断に応じて作動や
非作動を切り替えできるようになっている。また制御装
置24には、後述する方位基準台30により基準となる
方位情報が入力される。制御装置24から記憶装置25
へ入力される情報及び記憶装置25から外部入出力装置
27へ入力される情報は、前記した〜の他につぎの
2つの情報が追加される。 θi:不連続面iの平均方位角 φi:不連続面iの平均傾斜角
The control device 24 can switch the operation or non-operation depending on the judgment of the measurer when directly or indirectly controlling the measurement data. Further, the azimuth reference table 30 described later inputs the azimuth information serving as a reference to the control device 24. Control device 24 to storage device 25
The following two pieces of information are added to the information input to the external input / output device 27 from the storage device 25 and the information input to the external input / output device 27. θi: average azimuth of discontinuous surface i φi: average inclination angle of discontinuous surface i

【0014】表示装置26は作業者に計測部10による
不連続面の連続測定作業が正常に行われているか否かを
確認的に表示するためのもので、表示データとしては例
えば不連続面の平均方位角や平均傾斜角等を表示するこ
とが可能である。外部入出力装置27は外部の電子機器
(汎用コンピュータなど)との接続とデータ交換が可能
で、不連続面の平均方位角と平均傾斜を演算処理する
と共に、計測部10が移動する不連続面における、方
位・傾斜を連続的に計測して不連続面の粗さ(凹凸状
態)の程度を把握する。尚、上記した2つの処理は外部
の電子機器を使用せず、制御部20の高性能化させた演
算装置23で演算処理してもよいことは勿論である。
The display device 26 is for confirming and displaying to the operator whether or not the continuous measurement work of the discontinuous surface by the measuring unit 10 is normally performed. The display data is, for example, the discontinuous surface. It is possible to display the average azimuth angle, the average inclination angle, and the like. The external input / output device 27 can be connected to an external electronic device (such as a general-purpose computer) and can exchange data, calculates the average azimuth angle and the average inclination of the discontinuous surface, and moves the measuring unit 10 to the discontinuous surface. In order to grasp the degree of roughness (roughness) of the discontinuous surface by continuously measuring the azimuth and inclination. It is needless to say that the above-mentioned two processes may be performed by the arithmetic unit 23 having a high performance of the control unit 20 without using an external electronic device.

【0015】<ニ>方位基準台 図2に示すように方位基準台30は板状の台本体31に
方位計32を設けて構成される。台本体31には、計測
部10の計測面を収容可能な凹部33が形成され、この
凹部33の一部の側面を方位基準面34として形成して
いる。方位基準面34は、計測部10を押し当てて、計
測部10内の計器(ジャイロセンサ12、加速度センサ
13)の基準方位を設定するための基準面となる面で、
例えば方位計32の中心線35と平行な側面或いは、こ
の中心線35と直交する側面、若しくはこれらの複数の
側面で構成される。
<D> Azimuth Reference Base As shown in FIG. 2, the azimuth reference base 30 comprises a plate-shaped base body 31 and an azimuth meter 32. A recess 33 capable of accommodating the measurement surface of the measurement unit 10 is formed in the base body 31, and a part of the side surface of the recess 33 is formed as an azimuth reference plane 34. The azimuth reference plane 34 is a plane that serves as a reference plane for pressing the measurement unit 10 and setting the reference azimuth of the measuring instruments (gyro sensor 12, acceleration sensor 13) in the measurement unit 10.
For example, the side surface parallel to the center line 35 of the azimuth meter 32, the side surface orthogonal to the center line 35, or a plurality of these side surfaces.

【0016】[0016]

【作用】つぎに測定装置を用いた不連続面の方位と傾
斜の連続測定方法並びに不連続面の粗さ(凹凸状態)
の把握方法について説明する。
[Operation] Next, a method for continuously measuring the azimuth and inclination of a discontinuous surface using a measuring device and the roughness of the discontinuous surface (irregularity state)
The method of understanding is explained.

【0017】[方位と傾斜の連続測定] <イ>初期設定(図2,3) 測定前に磁場の影響のない所で、方位基準台30の方位
基準面34が特定の磁極(例えばN極)と平行になるよ
うに方位計32で合わせて静置しておく。計測部10内
には軸回りの角速度を検出するジャイロセンサ12と、
軸方向の加速度を検出する加速度センサ13が3つの軸
方向に夫々1つずつ組み込まれている。これらのセンサ
は磁場の影響を受けない特徴を有している。そして、方
位基準台30を用い、以下の操作で計測部10の基準方
位を初期設定する。計測部10の下部側面を方位基準台
30の方位基準面34に軽く押し当て、相対座標系
(x,y,z)のy軸を磁北座標系(X,Y,Z)(磁
北向きをX軸、鉛直上向きをZ軸)のX軸方向に一致さ
せ、この相対座標系(x,y,z)を基準座標系(X
´,Y´,Z´)として初期設定する。このとき加速度
センサ13のデータを用いて、磁北座標系(X,Y,
Z)と基準座標系(X´,Y´,Z´)の方位(回転)
関係を求め、記憶しておく。
[Continuous measurement of azimuth and inclination] <B> Initial setting (Figs. 2 and 3) Before measurement, the azimuth reference plane 34 of the azimuth reference platform 30 has a specific magnetic pole (for example, N pole) in a place where there is no influence of the magnetic field. ), And set it still with the compass 32. A gyro sensor 12 for detecting an angular velocity around the axis is provided in the measuring unit 10,
Acceleration sensors 13 for detecting axial acceleration are incorporated in each of the three axial directions. These sensors have the characteristic that they are not affected by the magnetic field. Then, using the azimuth reference stand 30, the reference azimuth of the measurement unit 10 is initialized by the following operation. The lower side surface of the measuring unit 10 is lightly pressed against the azimuth reference plane 34 of the azimuth reference stand 30, and the y-axis of the relative coordinate system (x, y, z) is set to the magnetic north coordinate system (X, Y, Z) (magnetic north is X. Align the axis and vertically upward with the X-axis direction of the Z-axis, and use this relative coordinate system (x, y, z) as the reference coordinate system (X
Initially set as', Y ', Z'). At this time, using the data of the acceleration sensor 13, the magnetic north coordinate system (X, Y,
Z) and the azimuth (rotation) of the reference coordinate system (X ', Y', Z ')
Find and remember the relationship.

【0018】<ロ>測定部の移動(図1,4,5) 以上の初期設定を完了したら図4に示すように、測定部
10を岩盤の不連続面に接面させながら、その凹凸に沿
って移動する。計測原理について説明すると、計測部1
0のある時点での計測部10の傾きに対応した相対座標
系(x,y,z)が基準座標系(X´,Y´,Z´)に
対して何度回転したかを、ジャイロセンサ12と加速度
センサ13の計測データ信号から求め、相対座標系
(x,y,z)と基準座標系(X´,Y´,Z´)の方
位(回転)関係を決定する。この際、急激な角速度の変
化にはジャイロセンサ12を用いて検出し、緩やかな角
速度の変化には加速度センサ13を用いて検出する。す
なわち、ジャイロセンサ12を用いて検出する場合は、
ジャイロセンサ12から検出される角速度値ωから角速
度を求める。また加速度センサ13を用いて検出する場
合は、加速度センサ13の向きと重力方向の成す角度β
を求め、このβを微分して角速度値に直した後に、角速
度を求める。また基準座標系(X´,Y´,Z´)から
相対座標系(x,y,z)への移動距離を、加速度セン
サ13からの加速度出力値を時間に関して積分して求め
る。
<B> Movement of measuring section (Figs. 1, 4, 5) After the above initial settings are completed, as shown in Fig. 4, the measuring section 10 is brought into contact with the discontinuous surface of the bedrock, and the unevenness is formed. Move along. To explain the measurement principle, the measurement unit 1
A gyro sensor is used to determine how many times the relative coordinate system (x, y, z) corresponding to the inclination of the measuring unit 10 at 0 is rotated with respect to the reference coordinate system (X ', Y', Z '). The relationship between the relative coordinate system (x, y, z) and the reference coordinate system (X ', Y', Z ') is determined from the measured data signals of the acceleration sensor 13 and the acceleration sensor 13. At this time, a rapid change in the angular velocity is detected by using the gyro sensor 12, and a gradual change in the angular velocity is detected by using the acceleration sensor 13. That is, when detecting using the gyro sensor 12,
The angular velocity is obtained from the angular velocity value ω detected by the gyro sensor 12. When the acceleration sensor 13 is used for detection, the angle β between the direction of the acceleration sensor 13 and the direction of gravity β
Is obtained, and this β is differentiated to obtain an angular velocity value, and then the angular velocity is obtained. Further, the moving distance from the reference coordinate system (X ', Y', Z ') to the relative coordinate system (x, y, z) is obtained by integrating the acceleration output value from the acceleration sensor 13 with respect to time.

【0019】<ハ>算出 以上の基準座標系(X´,Y´,Z´)と磁北座標系
(X,Y,Z)との関係、および基準座標系(X´,Y
´,Z´)と相対座標系(x,y,z)との関係から、
相対座標系と磁北座標系の方位(回転)関係が求めら
れ、測定面(相対座標系のxy平面)の方位・傾斜が算
出される。
<C> Calculation The relationship between the reference coordinate system (X ', Y', Z ') and the magnetic north coordinate system (X, Y, Z) and the reference coordinate system (X', Y).
′, Z ′) and the relative coordinate system (x, y, z),
The azimuth (rotation) relationship between the relative coordinate system and the magnetic north coordinate system is obtained, and the azimuth / tilt of the measurement surface (xy plane of the relative coordinate system) is calculated.

【0020】<ニ>卓越面の評価 図6に示すように点で方向をとらえる従来形式にあって
は、一定長さ以上の不連続面のすべてを計測対象とし、
多数の地点を静止したまま計測する必要があった。した
がって、ステレオ投影図に見られるように不連続面群の
集中度合から分かるように、卓越面を評価するには多数
の測点から情報を収集する必要があった。これに対し
て、計測部10を移動し、平均的方向をとらえる本発明
では図7に示すようにサンプリング数が少なくとも、従
来と同等以上の精度で卓越面を評価することができる。
<D> Evaluation of superior surface In the conventional system in which the direction is grasped by points as shown in FIG. 6, all discontinuous surfaces having a certain length or more are to be measured,
It was necessary to measure many points while still. Therefore, as can be seen from the degree of concentration of the discontinuous surface group as seen in the stereo projection, it was necessary to collect information from a large number of measurement points in order to evaluate the superior surface. On the other hand, in the present invention in which the measuring unit 10 is moved and the average direction is captured, as shown in FIG. 7, it is possible to evaluate the prominent surface with an accuracy of at least the number of samplings which is equal to or higher than the conventional one.

【0021】[不連続面の粗さの把握]図8に示すよう
に計測部10に固定された相対座標系(x,y,z)の
y方向に計測部10を不連続面の凹凸に沿って移動させ
る。このとき移動中の各軸回りの角速度と各軸方向の速
度が経時的に求められる。これらのデータを基に不連続
面表面の凹凸が以下のようにして求めることができる。
すなわち、計測部10のジャイロセンサ12と加速度セ
ンサ13から得られる情報を基に、図9に示すようにi
番目の計測時のy軸方向変位速度をVy,i,とし、i
番目の時間△tの間のy軸方向移動距離をVy,i*△
tとし、i+1番目の測定時におけるy軸方向と、計測
開始時におけるy軸方向との交差角(計測開始時からi
+1番目の測定時までの間のx軸回りの角速度度量)を
θx,i+1として、不連続面の表面形状の近似形状を
数値化或いはグラフ化して求めることができる。尚、図
9におけるηは不連続面上を移動する計測部10の移動
方向(相対座標系のy軸方向)によって定められる仮の
固定座標軸であり、またξは相対座標系のyz平面内に
あり、仮の固定座標軸ηと直交する座標軸を意味するも
のである。
[Ascertaining the roughness of the discontinuous surface] As shown in FIG. 8, the measuring unit 10 is made uneven in the discontinuous surface in the y direction of the relative coordinate system (x, y, z) fixed to the measuring unit 10. Move along. At this time, the angular velocity around each axis during movement and the velocity in each axis direction are obtained over time. Based on these data, the irregularities on the surface of the discontinuous surface can be obtained as follows.
That is, based on the information obtained from the gyro sensor 12 and the acceleration sensor 13 of the measuring unit 10, as shown in FIG.
The displacement velocity in the y-axis direction at the time of the second measurement is Vy, i, and i
The moving distance in the y-axis direction during the th time Δt is Vy, i * Δ
Let t be the crossing angle between the y-axis direction at the i + 1-th measurement and the y-axis direction at the start of measurement (i
The approximate shape of the surface shape of the discontinuous surface can be obtained by digitizing or graphing, with θx, i + 1 being the angular velocity around the x axis up to the + 1st measurement time. Note that η in FIG. 9 is a temporary fixed coordinate axis determined by the moving direction of the measuring unit 10 moving on the discontinuous surface (y-axis direction of the relative coordinate system), and ξ is in the yz plane of the relative coordinate system. Yes, it means a coordinate axis orthogonal to the temporary fixed coordinate axis η.

【0022】[0022]

【発明の実施の形態2】前記実施の形態は、方位基準台
30を計測部10の方位の初期設定の際に使用する場合
について説明したが、計測作業を終了した後に、初期設
定時と同位置に静置した方位基準台30に計測部10を
再セットして、方位を確認するようにしても良い。再セ
ットにより方位にずれを生じていた場合は、その方位角
のずれに基づき記憶する計測値を容易に補正することが
できる。
Second Embodiment In the above-described embodiment, the case where the azimuth reference stand 30 is used for initial setting of the azimuth of the measuring unit 10 has been described. The direction may be confirmed by resetting the measuring unit 10 on the azimuth reference stand 30 that is stationary at the position. When the azimuth is misaligned due to the resetting, the stored measurement value can be easily corrected based on the azimuth misalignment.

【0023】[0023]

【発明の実施の形態3】計測部10の初期設定は、方位
基準台30に限定されるものではなく、例えば測量機器
を用いて地表等に表示した方位基準線に計測部10の側
面を合わせて初期設定してもよい。
Third Embodiment The initial setting of the measuring unit 10 is not limited to the azimuth reference stand 30, and the side face of the measuring unit 10 is aligned with the azimuth reference line displayed on the ground surface using a surveying instrument, for example. May be initialized.

【0024】[0024]

【発明の実施の形態4】図10に示すように計測部10
を使用中の摩耗や損傷から守るため、その計測面に板状
の防護体50で被覆してもよい。防護体50は防護機能
を果たすことの他に、計測部10の計測面に対して大小
寸法の異なる防護体50を付け替えることで、断層面や
節理等の地質不連続面の起伏の大小に応じて高精度の計
測が可能になる。
Fourth Embodiment of the Invention As shown in FIG.
In order to prevent abrasion and damage during use, the measurement surface may be covered with a plate-like protective body 50. In addition to performing the protective function of the protective body 50, by replacing the protective body 50 of different size with respect to the measurement surface of the measuring unit 10, it is possible to respond to the magnitude of the unevenness of the geological discontinuity surface such as a fault plane or joint. This enables highly accurate measurement.

【0025】[0025]

【発明の実施の形態5】本発明は断層面や節理等の地質
不連続面の測定用とを例に説明したが、その他に岩盤の
剪断試験における破壊後の岩盤表面粗さの測定に利用す
ることもできる。 また本発明は地質以外の不連続面を
測定対象として適用できることは勿論である。
Fifth Embodiment of the Invention Although the present invention has been described by way of example for the measurement of geological discontinuities such as fault planes and joints, it is also used for the measurement of rock surface roughness after fracture in the rock shear test. You can also do it. Further, it is needless to say that the present invention can be applied to a discontinuous surface other than geology as a measurement target.

【0026】[0026]

【発明の効果】本発明は以上説明したようになるから次
のような効果を得ることができる。 <イ> クリノメータによる計測技術にあっては、基準
となる方位が磁北のみに限定されていたが、本発明で
は、任意の方位を基準とすることができる。 <ロ> 計測部の方位初期設定操作が極めて簡単かつ短
時間に行うことができる。<ハ> 計測部を不連続面に
沿わせて移動するだけで、不連続面の方位角と傾斜角及
び粗さの度合いを迅速かつ正確に測定することができ
る。 <ニ> 不連続面の方位・傾斜角及び粗さの度合いを地
質学的な専門知識を持たない者でも、精度良く測定でき
る。 <ホ> 測定現場が磁場の乱れた現場であっても、磁場
の乱れの影響を受けずに不連続面の方位角と傾斜角を計
測できる。 <ヘ> 凹凸のある不連続面に沿って連続的に計測した
データから、不連続面の平均的な方位と平均的な傾斜角
を求めることができる。 <ト> 不連続面の粗さの度合いを、肉眼に因らず機械
的に計測するので、原位置において客観的、定量的に評
価することができる。 <チ> 不連続面の節理等の卓越方向を従来より少ない
サンプリング数で精度よく把握することができる。
Since the present invention is as described above, the following effects can be obtained. <B> In the clinometer measurement technique, the reference azimuth is limited to magnetic north, but in the present invention, any azimuth can be used as the reference. <B> It is possible to perform the azimuth initial setting operation of the measuring unit extremely easily and in a short time. <C> Only by moving the measurement unit along the discontinuous surface, the azimuth angle, the inclination angle, and the degree of roughness of the discontinuous surface can be measured quickly and accurately. <D> It is possible to accurately measure the azimuth / tilt angle and the degree of roughness of a discontinuous surface even by a person who does not have specialized knowledge in geology. <E> Even if the measurement site is one where the magnetic field is disturbed, the azimuth angle and tilt angle of the discontinuous plane can be measured without being affected by the disturbance of the magnetic field. <F> The average azimuth and average inclination angle of the discontinuous surface can be obtained from the data continuously measured along the uneven discontinuous surface. <G> Since the degree of roughness of the discontinuous surface is mechanically measured irrespective of the naked eye, it can be objectively and quantitatively evaluated at the original position. <H> It is possible to accurately grasp the predominant direction such as jointing of discontinuous surfaces with a smaller number of samplings than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る測定装置の構成図FIG. 1 is a block diagram of a measuring device according to the present invention.

【図2】 測定装置の全体斜視図FIG. 2 is an overall perspective view of a measuring device

【図3】 測定原理の説明図で、初期設定時における計
測部の各軸方向の関係を示すモデル図
FIG. 3 is an explanatory diagram of the measurement principle, and is a model diagram showing the relationship of the measurement unit in each axis direction at the time of initial setting.

【図4】 制御部を不連続面に沿って移動させる測定状
態の説明図
FIG. 4 is an explanatory diagram of a measurement state in which the control unit is moved along the discontinuous surface.

【図5】 測定原理の説明図で、制御部移動時における
計測部の各軸方向の関係を示すモデル図
FIG. 5 is an explanatory diagram of the measurement principle, and is a model diagram showing the relationship of the measurement unit in each axial direction when the control unit moves.

【図6】 本発明が前提とする多数の測点から情報を収
集する従来技術による不連続面群の分布と集中度合いを
示すステレオ投影図
FIG. 6 is a stereo projection diagram showing a distribution and a concentration degree of a discontinuous surface group according to the related art which collects information from a large number of measurement points on which the present invention is based.

【図7】 計測部を移動させ、平均的方向をとらえる本
発明による不連続面群の分布と集中度合いを示すステレ
オ投影図
FIG. 7 is a stereo projection diagram showing the distribution and concentration degree of the discontinuous surface group according to the present invention in which the measuring unit is moved to capture the average direction.

【図8】 計測部を不連続面上のY軸方向に移動させた
ときの表面形状の求め方を示すモデル図
FIG. 8 is a model diagram showing how to obtain the surface shape when the measuring unit is moved in the Y-axis direction on the discontinuous surface.

【図9】 不連続面表面の近似を示すモデル図FIG. 9 is a model diagram showing approximation of a discontinuous surface.

【図10】 計測部に防護体を設けた他の実施の形態の
部分断面図
FIG. 10 is a partial cross-sectional view of another embodiment in which a protective member is provided on the measuring unit.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 地質不連続面の測定方法であって、 角速度を検出するジャイロセンサ及び重力方向と加速度
を検出する加速度センサの方位を任意の方位に初期設定
し、 前記両センサを一体で、測定対象の不連続面の表面に沿
わせて連続的に移動させつつ、 前記センサの経時的な移動位置における不連続面の方位
角と傾斜角を連続的に算出した後、 前記方位角と傾斜角を平均化して不連続面の平均方位角
と平均傾斜角を算出することを特徴とする、 地質不連続面の測定方法。
1. A method for measuring a geological discontinuity, wherein the azimuth of a gyro sensor for detecting an angular velocity and an acceleration sensor for detecting a gravitational direction and acceleration is initially set to an arbitrary azimuth, and the both sensors are integrated, While continuously moving along the surface of the discontinuous surface to be measured, after continuously calculating the azimuth angle and the tilt angle of the discontinuous surface at the moving position of the sensor, the azimuth angle and the tilt angle A method for measuring a geological discontinuity surface, which comprises averaging angles to calculate an average azimuth angle and an average inclination angle of the discontinuity surface.
【請求項2】 地質不連続面の測定方法であって、 角速度を検出するジャイロセンサ及び重力方向と加速度
を検出する加速度センサの方位を任意の方位に初期設定
し、 前記両センサを一体で、測定対象の不連続面の表面に沿
わせて連続的に移動させつつ、 前記センサの経時的な移動位置における不連続面の方位
角と傾斜角を計測して不連続面の粗さの程度を算出する
ことを特徴とする、 地質不連続面の測定方法。
2. A method for measuring a geological discontinuity surface, wherein the azimuth of a gyro sensor for detecting an angular velocity and an acceleration sensor for detecting a gravitational direction and acceleration is initially set to an arbitrary azimuth, and the both sensors are integrated, While continuously moving along the surface of the discontinuous surface to be measured, the azimuth and tilt angle of the discontinuous surface at the time-dependent movement position of the sensor are measured to determine the degree of roughness of the discontinuous surface. A method of measuring geological discontinuities, characterized by calculating.
【請求項3】 地質不連続面の測定方法であって、 角速度を検出するジャイロセンサ及び重力方向と加速度
を検出する加速度センサの方位を任意の方位に初期設定
し、 前記両センサを一体で、測定対象の不連続面の表面に沿
わせて連続的に移動させつつ、 前記センサの経時的な移動位置における不連続面の方位
角と傾斜角を連続的に算出した後、 前記方位角と傾斜角を平均化して不連続面の平均方位角
と平均傾斜角を算出すると共に、 前記センサの経時的な移動位置における不連続面の方位
角と傾斜角を計測して不連続面の粗さの程度を算出する
ことを特徴とする、 地質不連続面の測定方法。
3. A method for measuring a geological discontinuity, wherein the azimuth of a gyro sensor for detecting an angular velocity and an acceleration sensor for detecting a gravitational direction and acceleration is initially set to an arbitrary azimuth, and both sensors are integrated, While continuously moving along the surface of the discontinuous surface to be measured, after continuously calculating the azimuth angle and the tilt angle of the discontinuous surface at the moving position of the sensor, the azimuth angle and the tilt angle The angles are averaged to calculate the average azimuth angle and the average inclination angle of the discontinuous surface, and the azimuth angle and the inclination angle of the discontinuous surface at the moving position of the sensor are measured to obtain the roughness of the discontinuous surface. A method of measuring geological discontinuities, characterized by calculating the degree.
【請求項4】 測定対象の不連続面の表面に沿って移動
させる計測部と、 前記計測部と電気的に接続し、計測データを演算処理す
る制御部とからなり、 前記計測部は角速度を検出するジャイロセンサと、 重力方向と加速度を検出する加速度センサとを具備する
ことを特徴とする、 地質不連続面の測定装置。
4. A measurement unit that moves along the surface of a discontinuous surface to be measured, and a control unit that is electrically connected to the measurement unit and arithmetically processes the measurement data. A geological discontinuity measuring device comprising a gyro sensor for detecting and an acceleration sensor for detecting the direction of gravity and acceleration.
【請求項5】 請求項4において、前記制御部は計測部
の各センサの検出信号を基に、計測部の移動軌跡におけ
る経時的な角速度を算出する演算処理手段を具備するこ
とを特徴とする、地質不連続面の測定装置。
5. The control unit according to claim 4, further comprising arithmetic processing means for calculating an angular velocity over time in a movement locus of the measuring unit, based on detection signals of the sensors of the measuring unit. , Measuring device for geological discontinuity.
【請求項6】 請求項4または請求項5において、前記
制御部は各センサのアナログ信号をデジタル信号に変換
する変換器と、変換器を通じて入力した各センサの検出
信号を基に、計測部の移動軌跡における経時的な角速度
を算出する演算装置と、演算装置で演算した不連続面の
平均方位角と平均傾斜角を表示する表示手段を具備する
ことを特徴とする、地質不連続面の測定装置。
6. The measuring unit according to claim 4 or 5, wherein the control unit converts the analog signal of each sensor into a digital signal, and the detection signal of each sensor based on the detection signal of each sensor input through the converter. Measurement of a geological discontinuity surface, comprising a computing device for calculating an angular velocity over time in a movement trajectory, and a display means for displaying an average azimuth angle and an average inclination angle of the discontinuity surface computed by the computing device. apparatus.
【請求項7】 請求項4〜6のいずれかにおいて、計測
部の計測面に着脱自在に防護体を設けたことを特徴とす
る、地質不連続面の測定装置。
7. The measuring device for a geologically discontinuous surface according to claim 4, wherein a protective body is detachably attached to the measuring surface of the measuring unit.
JP8168179A 1996-06-07 1996-06-07 Measuring method and device for geological discontinuous plane Pending JPH09329438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8168179A JPH09329438A (en) 1996-06-07 1996-06-07 Measuring method and device for geological discontinuous plane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8168179A JPH09329438A (en) 1996-06-07 1996-06-07 Measuring method and device for geological discontinuous plane

Publications (1)

Publication Number Publication Date
JPH09329438A true JPH09329438A (en) 1997-12-22

Family

ID=15863260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8168179A Pending JPH09329438A (en) 1996-06-07 1996-06-07 Measuring method and device for geological discontinuous plane

Country Status (1)

Country Link
JP (1) JPH09329438A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530548A (en) * 2005-08-01 2008-08-07 トヨタ自動車株式会社 Sensor unit
US7768417B2 (en) 2006-06-16 2010-08-03 Samsung Electronics Co., Ltd. Moving apparatus, method, and medium for compensating position of the moving apparatus
CN109668541A (en) * 2018-12-21 2019-04-23 交通运输部公路科学研究所 A kind of monitoring method for toppling over type collapse hazard

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530548A (en) * 2005-08-01 2008-08-07 トヨタ自動車株式会社 Sensor unit
JP4659841B2 (en) * 2005-08-01 2011-03-30 トヨタ自動車株式会社 Sensor unit
US8001839B2 (en) 2005-08-01 2011-08-23 Toyota Jidosha Kabushiki Kaisha Sensor unit
US7768417B2 (en) 2006-06-16 2010-08-03 Samsung Electronics Co., Ltd. Moving apparatus, method, and medium for compensating position of the moving apparatus
CN109668541A (en) * 2018-12-21 2019-04-23 交通运输部公路科学研究所 A kind of monitoring method for toppling over type collapse hazard

Similar Documents

Publication Publication Date Title
Feng et al. Measuring fracture orientation at exposed rock faces by using a non-reflector total station
Frosio et al. Autocalibration of MEMS accelerometers
Hansson et al. Validity and reliability of triaxial accelerometers for inclinometry in posture analysis
US5440492A (en) Kinematically positioned data acquisition apparatus and method
JP2006506654A (en) Level, angle and distance measuring device
US6586937B2 (en) Magnetic signature detector for detection of magnetic buried targets
KR101602485B1 (en) A stick ruler for the detection structures
Sabato et al. Development of a camera localization system for three-dimensional digital image correlation camera triangulation
Chmelina et al. A 3-d laser scanning system and scan data processing method for the monitoring of tunnel deformations
US7386942B2 (en) Method and apparatus for mapping the trajectory in the subsurface of a borehole
CA2114579C (en) Apparatus for detecting and measuring movements in geological formations and other massive structures
JP2014531577A (en) Method for determining the inclination of tower structures
CN104748695B (en) Based on large-section underground cavern&#39;s early deformation monitoring method that section is finely measured
Alves et al. Camera-inertial sensor modelling and alignment for visual navigation
CN115540911A (en) Coal mining machine inertial navigation precision evaluation system and evaluation method, and mobile carrier
JP2013072705A (en) Detection method of discontinuity surface on rock bed slope and detection device of the same
CN107389316A (en) Testing device of display panel and display panel method of testing
KR20100024809A (en) Apparartus and method for measuring vibration
US5444916A (en) Electronic stereo clino-compass
CN113155060A (en) Object surface flatness detection method and detection equipment thereof
JPH09329438A (en) Measuring method and device for geological discontinuous plane
JPH09318352A (en) Apparatus and method for measuring hollow displacement in tunnel
CN207717976U (en) Laser locating apparatus
JPH1137753A (en) Apparatus and method for measuring geologically discontinuous surface
JPH0933250A (en) Method and apparatus for measuring discontinuous plane of geology

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524