JPH1137753A - Apparatus and method for measuring geologically discontinuous surface - Google Patents

Apparatus and method for measuring geologically discontinuous surface

Info

Publication number
JPH1137753A
JPH1137753A JP20544397A JP20544397A JPH1137753A JP H1137753 A JPH1137753 A JP H1137753A JP 20544397 A JP20544397 A JP 20544397A JP 20544397 A JP20544397 A JP 20544397A JP H1137753 A JPH1137753 A JP H1137753A
Authority
JP
Japan
Prior art keywords
measuring
discontinuous surface
data
azimuth
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20544397A
Other languages
Japanese (ja)
Inventor
Takao Hirokawa
隆男 廣川
Toshiaki Aoki
俊朗 青木
Tomio Fujikawa
富夫 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Priority to JP20544397A priority Critical patent/JPH1137753A/en
Publication of JPH1137753A publication Critical patent/JPH1137753A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily and accurately measure a geologically discontinuous surface even by a person having no expertise, by moving a measuring instrument along a geologically discontinuous surface, measuring its time-sequential bearing and inclination, measuring a position of the instrument, an measuring roughness of the surface from the bearing, inclination and position data. SOLUTION: A displacement meter 60 is fixed onto a scanning line, connected to an initialized measuring unit 10, and set to a starting point. Then, the unit 10 is moved on the line to continuously measure to obtain aging bearing and inclination data of a geological discontinuous surface on the line and to obtain aging positional data of the unit 10 by the meter 60. After this operation is executed on all the scanning line, the aging bearing and indignation data of the discontinuous surface measured by the nit 10 are input to a memory in a controller 20 at a predetermined sampling time. And, aging positional data signal of the unit 10 measured by the meter 60 is digitized, and input to the memory. A three-dimensional shape of the discontinuous surface is obtained from these data.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は断層面や節理面等の不連
続面の方位と傾斜の連続測定並びに不連続面の粗さを把
握できる地質不連続面の測定装置及び測定方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for continuously measuring the orientation and inclination of a discontinuous plane such as a fault plane or a joint plane and measuring the roughness of the discontinuous plane.

【0002】[0002]

【従来の技術】地下発電所や地下貯槽等の建設に際し
て、長大岩盤構造物の安定性確保には、岩盤内に存在す
る断層や節理等の地質不連続面を正確に評価すること
と、この評価に基づいた適切な対応工を施すことが重要
である。不連続面の調査及び評価をするうえで、不連続
面の方向性(傾斜方位、傾斜等)や粗さ(不連続面の表
面形状)に関する項目が重要である。
2. Description of the Related Art When constructing an underground power plant or underground storage tank, etc., in order to secure the stability of a long rock mass structure, it is necessary to accurately evaluate geological discontinuities such as faults and joints existing in the rock mass. It is important to take appropriate measures based on the evaluation. In investigating and evaluating a discontinuous surface, items related to the directionality (tilt direction, inclination, etc.) and roughness (surface shape of the discontinuous surface) of the discontinuous surface are important.

【0003】これらの調査手法としては、画像処理技術
を応用した方法が研究されつつあるが、磁石と重りと水
準器とを装備した「クリノメータ」と呼ばれる計測器を
使用し、以下の要領で測定している。
[0003] As these investigation methods, methods applying image processing technology are being studied. However, using a measuring device called a "clinometer" equipped with a magnet, a weight and a level, measurement is performed in the following manner. doing.

【0004】(a)クリノメータの長辺を不連続面と水
平面との交線(走向)方向に当て、磁針と走向の成す角
度を判読する。
(A) The long side of the clinometer is applied to the direction of intersection (strike) between the discontinuous surface and the horizontal plane, and the angle formed between the magnetic needle and the strike is read.

【0005】(b)クリノメータの長辺を最大傾斜方向
(走向と直角方向)に合わせ、重りと水平方向の成す角
度を判読する。
(B) The long side of the clinometer is aligned with the maximum inclination direction (the direction perpendicular to the running direction), and the angle between the weight and the horizontal direction is read.

【0006】(c)上記の(a)(b)を岩盤表面の多
数のポイントで走向と傾斜を計測し、 これらの記
録情報各ポイントにおける計測値を平均化することで、
全体の 節理群の卓越方向や卓越数を把握してい
る。
(C) The above (a) and (b) are measured by measuring strike and dip at a number of points on the rock surface, and averaging the measured values at each of these recorded information points.
They know the direction and number of joints that are dominant.

【0007】また粗さ(不連続面の表面形状)の度合い
については、現場にて観察者が現場の不連続面と、不連
続面の粗さを段階的に表した複数の粗さのモデル図とを
見比べて評価する手法が主流を占めている。
As for the degree of roughness (surface shape of the discontinuous surface), the observer at the site has a discontinuous surface at the site and a plurality of roughness models which represent the roughness of the discontinuous surface stepwise. The mainstream is the method of evaluating by comparing with the figure.

【0008】[0008]

【発明が解決しようとする課題】[Problems to be solved by the invention]

(1)前記したクリノメータを用いた測定方法にあって
は次のような課題がある。<イ> クリノメータの使用
にあたっては専門知識を必要とするため、誰でも自由に
計測できるものではない。 <ロ> 通常1地点で数百回程度測定する。しかしなが
ら1ポイントの測定に2〜3分程度の時間を要するた
め、計測に多くの時間と労力を要する。 <ハ> クリノメータに内蔵された磁石の性能は磁場の
乱れた場所或いは重機や配管等の金属製機材の存在によ
って影響されるため測定値に対する信頼性が低い。<ニ
> 測定は面上の点で行われるため、大きく波打つ不連
続面においては、測定点により測定結果が異なり、全体
像を正確に把握することが困難である。 <ホ> 重力センサや磁気センサを内蔵し、不連続面の
方位・傾斜(走向・傾斜)情報を電気的信号として出力
できる電子式のクリノメータも種々提案されている。し
かしながら、この種のクリノメータにあっても、前記<
ハ>,<ニ>と同様の問題がある。
(1) There are the following problems in the measuring method using the above-mentioned clinometer. <A> Since the use of clinometers requires specialized knowledge, not everyone can measure freely. <B> Usually, measurement is performed several hundred times at one point. However, since it takes about two to three minutes to measure one point, much time and effort are required for the measurement. <C> Since the performance of the magnet built in the clinometer is affected by the location of the magnetic field being disturbed or the presence of metal equipment such as heavy equipment and piping, the reliability of the measured values is low. <D> Since the measurement is performed at a point on the surface, the measurement result differs depending on the measurement point on a discontinuous surface having large waves, and it is difficult to accurately grasp the entire image. <E> Various electronic clinometers incorporating a gravity sensor or a magnetic sensor and capable of outputting azimuth / inclination (strike / inclination) information of a discontinuous surface as an electric signal have been proposed. However, even in this type of clinometer, the aforementioned <
There are problems similar to c> and <d>.

【0009】(2)また不連続面の粗さの度合いを評価
する方法にあっては、次のような課題がある。 <イ> 見比べには専門知識を有する地質技術者が必要
で、誰でも簡単に行えるものではない。 <ロ> 専門知識を有する者であっても、粗さの度合い
の判断結果が主観に影響されやすく、正確さの点で不安
が残る。
(2) The method for evaluating the degree of roughness of a discontinuous surface has the following problems. <B> A geological engineer with specialized knowledge is required for comparison, and it is not easy for anyone to perform. <B> Even a person who has specialized knowledge tends to be subjectively influenced by the judgment result of the degree of roughness, and remains uneasy in terms of accuracy.

【0010】本発明は以上の問題点を解決するためにな
されたもので、その課題とするところは、不連続面の方
位・傾斜及び粗さについて、専門知識のない者であって
も容易にかつ正確に測定できる、地質不連続面の測定シ
ステムを提供することにある。さらに本発明の他の課題
は、少ないサンプリング数で以て迅速に測定できる、地
質不連続面の測定システムを提供することにある。さら
に本発明の他の課題は、キーブロック解析等の不連続解
析をより高度に行うためのデータを提供できる、地質不
連続面の測定装置及び測定方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to make it easy for even a person having no special knowledge about the azimuth, inclination and roughness of a discontinuous surface. It is an object of the present invention to provide a system for measuring geological discontinuities that can be measured accurately. Still another object of the present invention is to provide a measurement system for a geological discontinuity, which can be quickly measured with a small number of samplings. Still another object of the present invention is to provide a measuring device and a measuring method of a geological discontinuity surface, which can provide data for performing a higher degree of discontinuity analysis such as key block analysis.

【0011】[0011]

【課題を解決するための手段】本発明は、上記課題を解
決するための手段として、地質の不連続面上に沿わせて
移動させ、不連続面の経時的な方位及び傾斜を計測する
測定器と、前記測定器の位置を計測する変位計と、前記
変位計で測定された前記測定器の位置デ−タをデジタル
変換し、前記測定器の制御部へ出力するためのインタ−
フェイスとよりなり、前記測定器は、測定対象の不連続
面の表面に沿って移動させる計測部と、前記計測部と電
気的に接続し、計測デ−タを演算処理する制御部とから
なり、さらに前記計測部は角速度を検出するジャイロセ
ンサと、重力方向と加速度を検出する加速度センサとを
具備することを特徴とする、地質不連続面の測定装置を
提供する。
According to the present invention, as a means for solving the above-mentioned problems, a measurement is performed by moving the surface along a discontinuous surface of geology and measuring the azimuth and inclination of the discontinuous surface over time. , A displacement meter for measuring the position of the measuring device, and an interface for digitally converting the position data of the measuring device measured by the displacement meter and outputting the data to a control unit of the measuring device.
The measuring device includes a measuring unit that moves along the surface of the discontinuous surface to be measured, and a control unit that is electrically connected to the measuring unit and performs arithmetic processing on measurement data. Further, the measuring unit includes a gyro sensor for detecting an angular velocity, and an acceleration sensor for detecting a gravitational direction and an acceleration.

【0012】また、測定器を地質の不連続面上に沿わせ
て移動させ、不連続面の経時的な方位及び傾斜を計測す
ると共に、変位計により前記測定器の位置を計測し、こ
れらの方位デ−タ、傾斜デ−タ、位置デ−タより不連続
面の粗さを測定することを特徴とした、地質不連続面の
測定方法を提供する。
Further, the measuring device is moved along the discontinuous surface of the geology to measure the azimuth and inclination of the discontinuous surface over time, and the position of the measuring device is measured by a displacement meter. Provided is a method of measuring a geological discontinuity, characterized by measuring the roughness of a discontinuity from orientation data, inclination data, and position data.

【0013】また、地質の不連続面上に平行でない2組
の走査線群を格子状に設定し、測定器を各走査線上に沿
わせて移動させ、不連続面の経時的な方位及び傾斜を計
測すると共に、変位計により前記測定器の位置を計測
し、これらの方位デ−タ、傾斜デ−タ、位置デ−タより
各走査線断面の2次元形状を求め、これらの各走査線で
の2次元形状を組み合わせて不連続面の3次元形状を数
値化あるいはグラフ化して求めることを特徴とした、地
質不連続面の測定方法を提供する。
In addition, two sets of scanning lines that are not parallel to the discontinuous surface of the geology are set in a grid pattern, and the measuring instrument is moved along each scanning line, and the azimuth and inclination of the discontinuous surface with time. , The position of the measuring device is measured by a displacement meter, the two-dimensional shape of each scanning line cross section is obtained from the azimuth data, the inclination data, and the position data. A method for measuring a geological discontinuity surface, characterized in that the three-dimensional shape of the discontinuity surface is obtained by numerically or graphically obtaining the three-dimensional shape of the discontinuity surface by combining the two-dimensional shapes of the above.

【0014】さらに、地質の不連続面上に平行でない2
組の走査線群を格子状に設定し、測定器を各走査線上に
沿わせて移動させ、不連続面の経時的な方位及び傾斜を
計測すると共に、変位計により前記測定器の位置を計測
し、これらの方位デ−タ、傾斜デ−タ、位置デ−タより
各走査線断面の2次元形状を求め、これらの各走査線で
の2次元形状を組み合わせて不連続面の3次元形状を数
値化あるいはグラフ化して求め、さらにこの不連続面の
3次元形状の平均方向の面に垂直であって、任意方向の
断面内の不連続面の2次元形状を数値化あるいはグラフ
化して求めることを特徴とした、地質不連続面の測定方
法を提供する。
Furthermore, it is not parallel on the discontinuous surface of the geology.
A set of scanning lines is set in a grid, the measuring device is moved along each scanning line, the azimuth and inclination of the discontinuous surface with time are measured, and the position of the measuring device is measured by a displacement meter. Then, the two-dimensional shape of each scanning line cross section is obtained from the azimuth data, the inclination data, and the position data, and the two-dimensional shape of each scanning line is combined to form the three-dimensional shape of the discontinuous surface. Is numerically or graphed, and the two-dimensional shape of the discontinuous surface perpendicular to the average direction of the three-dimensional shape of the discontinuous surface and in the cross section in an arbitrary direction is numerically or graphed. A method for measuring a geological discontinuity is provided.

【0015】[0015]

【発明の実施の形態1】以下図面を参照しながら本発明
の実施の形態について説明する。 <イ>装置全体の構成 図1に装置の全体図を示す。測定装置は不連続面上を走
査する計測部10と、計測部10から分離した制御部2
0と、計測部10の経時の位置デ−タを測定する変位計
60と、インタ−フェイス70とを基本の構成要素とす
る。計測部10と制御部20、制御部20とインタ−フ
ェイス70、インタ−フェイス70と変位計60との間
は、通信コ−ドまたはコードレス形式によって信号の伝
達を行えるよう構成されている。以下に各部について説
明する。
Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. <A> Overall Configuration of Apparatus FIG. 1 shows an overall view of the apparatus. The measuring device includes a measuring unit 10 that scans a discontinuous surface and a control unit 2 that is separated from the measuring unit 10.
0, a displacement gauge 60 for measuring the position data of the measuring unit 10 over time, and an interface 70 are basic components. The measurement unit 10 and the control unit 20, the control unit 20 and the interface 70, and the interface 70 and the displacement meter 60 are configured to transmit signals by a communication code or a cordless format. Hereinafter, each part will be described.

【0016】<ロ>計測部 図2に計測部10と制御部20の構成図を示す。計測部
10は本体11内にジャイロセンサ12と、加速度セン
サ13とを内蔵し、本体11の底面又は側面が測定面と
なる。また制御部20内には、計測部10および制御部
20に給電する作動電源14を内蔵し、計測部10へは
コード40を通じて給電できるようになっている。また
計測部10と制御部20に夫々個別に作動電源を設けて
もよいことは勿論である。
<B> Measuring Unit FIG. 2 shows a configuration diagram of the measuring unit 10 and the control unit 20. The measuring unit 10 has a gyro sensor 12 and an acceleration sensor 13 built in a main body 11, and a bottom surface or a side surface of the main body 11 is a measurement surface. The control unit 20 has a built-in operation power supply 14 for supplying power to the measuring unit 10 and the control unit 20, and power can be supplied to the measuring unit 10 through a cord 40. It is a matter of course that the measuring section 10 and the control section 20 may be individually provided with operating power supplies.

【0017】ジャイロセンサ12は角速度を検出するた
めのセンサで、後述する相対座標系(x,y,z)の各
軸回りの角速度に比例した感応電圧を出力する。特にジ
ャイロセンサ12を採用したのは、計測部10を移動し
ながら連続的に角速度を計測するためである。ジャイロ
センサ12としては、例えば振動ジャイロセンサや光フ
ァイバジャイロセンサ等の角速度を検出できる公知の各
種センサを使用することができる。
The gyro sensor 12 is a sensor for detecting an angular velocity, and outputs a sensitive voltage proportional to an angular velocity about each axis of a relative coordinate system (x, y, z) described later. In particular, the gyro sensor 12 is employed to measure the angular velocity continuously while moving the measuring unit 10. As the gyro sensor 12, various known sensors that can detect angular velocity, such as a vibration gyro sensor and an optical fiber gyro sensor, can be used.

【0018】加速度センサ13は重力方向と加速度の検
出を目的とする公知の三軸型のセンサで、相対座標系の
x,y,zの各軸方向の加速度に比例した感応電圧を出
力する。計測部10の角速度の情報は、前記したジャイ
ロセンサ12と加速度センサ13の2つのセンサで以て
求める。
The acceleration sensor 13 is a known three-axis sensor for detecting the direction of gravity and acceleration, and outputs a sensitive voltage proportional to the acceleration in each of the x, y, and z axes of the relative coordinate system. The information on the angular velocity of the measuring unit 10 is obtained by the two sensors, the gyro sensor 12 and the acceleration sensor 13 described above.

【0019】<ハ>制御部 制御部20は少なくとも前記各センサ12,13の検知
信号を基に、計測部10の移動軌跡における経時的な回
転角(方位角及び傾斜角)を算出する演算処理手段を具
備している。図3示した制御部20について説明する
と、制御部20は本体21内にA/D変換器22と、C
PU等の演算装置23と、制御装置24と、記憶装置2
5と、表示装置26と、外部入出力装置27とを内蔵し
た、作業者が携帯可能なように1ユニットに組み立てら
れている。
<C> Control Unit The control unit 20 calculates a temporal rotation angle (azimuth angle and inclination angle) of the movement locus of the measurement unit 10 based on at least the detection signals of the sensors 12 and 13. Means. The control unit 20 shown in FIG. 3 will be described. The control unit 20 includes an A / D converter 22 and a C
A computing device 23 such as a PU, a control device 24, and a storage device 2
5, a display device 26, and an external input / output device 27, and are assembled into one unit so as to be portable by an operator.

【0020】A/D変換器22は計測部10内の各セン
サ12,13で測定されたアナログ信号をデジタル信号
に変換する。演算装置23はA/D変換器22を通じて
入力した各信号を数学的に演算して、移動する計測部1
0の軌跡における経時的な回転角(方位角及び傾斜角)
を算出し、制御装置24に入力する。演算装置23から
出力される情報は次の通りである。 θij:不連続面iのj番目の方位角 φij:不連続面iのj番目の傾斜角 Vxij ,Vyij ,Vzij :不連続面iのj番目の測定
時における局所座標系の各軸方向の計測部移動速度
The A / D converter 22 converts an analog signal measured by each of the sensors 12 and 13 in the measuring section 10 into a digital signal. The arithmetic unit 23 mathematically calculates each signal input through the A / D converter 22 and moves the moving measuring unit 1.
Rotational angle (azimuth and tilt angle) over time in locus 0
Is calculated and input to the control device 24. The information output from the arithmetic unit 23 is as follows. θij: j-th azimuth angle of discontinuous surface i φij: j-th inclination angle of discontinuous surface i Vxij, Vyij, Vzij: Measurement in each axis direction of the local coordinate system at the j-th measurement of discontinuous surface i Part moving speed

【0021】制御装置24は、測定データを直接的又は
間接的に制御する場合に、測定者の判断に応じて作動や
非作動を切り替えできるようになっている。また制御装
置24には、後述する方位基準台30により基準となる
方位情報が入力される。制御装置24から記憶装置25
へ入力される情報及び記憶装置25から外部入出力装置
27へ入力される情報は、前記した〜の他に次の2
つの情報が追加される。 θi:不連続面iの平均方
位角 φi:不連続面iの平均傾斜角
When directly or indirectly controlling the measurement data, the control device 24 can switch between operation and non-operation according to the judgment of the measurer. Further, the control device 24 receives direction information serving as a reference from a direction reference table 30 described later. From the control device 24 to the storage device 25
And the information input from the storage device 25 to the external input / output device 27 are the following
Two pieces of information are added. θi: average azimuth angle of discontinuous surface i φi: average inclination angle of discontinuous surface i

【0022】表示装置26は作業者に計測部10による
不連続面の連続測定作業が正常に行われているか否かを
確認的に表示するためのもので、表示データとしては例
えば不連続面の平均方位角や平均傾斜角等を表示するこ
とが可能である。外部入出力装置27は外部の電子機器
(汎用コンピュータなど)との接続とデータ交換が可能
で、不連続面の平均方位角と平均傾斜を演算処理する
と共に、計測部10が移動する不連続面における、方
位・傾斜を連続的に計測して不連続面の粗さ(不連続面
の表面形状)の程度を把握する。尚、上記した2つの処
理は外部の電子機器を使用せず、制御部20の高性能化
させた演算装置23で演算処理してもよいことは勿論で
ある。
The display device 26 is for confirming to the operator whether or not the continuous measurement operation of the discontinuous surface by the measuring unit 10 is normally performed. It is possible to display an average azimuth angle, an average inclination angle, and the like. The external input / output device 27 is capable of connecting to external electronic devices (such as a general-purpose computer) and exchanging data. , The orientation and inclination are continuously measured to determine the degree of roughness of the discontinuous surface (surface shape of the discontinuous surface). Note that the above two processes may of course be performed by the arithmetic unit 23 having a higher performance of the control unit 20 without using an external electronic device.

【0023】一方、インタ−フェイス70からは、変位
計60で測定された計測部10の位置デ−タが入力さ
れ、計測部10で測定された回転角(方位角及び傾斜
角)デ−タと同調される。
On the other hand, the position data of the measuring unit 10 measured by the displacement meter 60 is input from the interface 70, and the rotation angle (azimuth angle and tilt angle) measured by the measuring unit 10 is obtained. Synchronized with.

【0024】<ニ>インタ−フェイス インタ−フェイス70は、変位計60から入力された信
号を基に、計測部10の位置を算出し、その結果を制御
部20に転送する装置である。この装置は、図示しない
が、変位計60からの出力信号を取り込むための入力装
置、入力された信号を位置デ−タ(デジタル)に変換す
る演算装置、算出された位置デ−タ(デジタル)を制御
部20へ出力するための外部出力装置、変位計60への
電源供給およびインタ−フェイス70自体に電源供給を
行うためのバッテリ−から構成される。
<D> Interface The interface 70 is a device that calculates the position of the measuring unit 10 based on a signal input from the displacement meter 60 and transfers the result to the control unit 20. Although not shown, this device is an input device for taking in an output signal from the displacement meter 60, an arithmetic device for converting the input signal into position data (digital), and a calculated position data (digital). And an external output device for outputting power to the control unit 20, a battery for supplying power to the displacement meter 60, and supplying power to the interface 70 itself.

【0025】<ホ>方位基準台 図2に示すように方位基準台30は板状の台本体31に
方位計32を設けて構成される。台本体31には、計測
部10の計測面を収容可能な凹部33が形成され、この
凹部33の一部の側面を方位基準面34として形成して
いる。方位基準面34は、計測部10を押し当てて、計
測部10内の計器(ジャイロセンサ12、加速度センサ
13)の基準方位を設定するための基準面となる面で、
例えば方位計32の中心線35と平行な側面或いは、こ
の中心線35と直交する側面、若しくはこれらの複数の
側面で構成される。
<E> Orientation Reference Base As shown in FIG. 2, the azimuth reference base 30 is constituted by providing an azimuth meter 32 on a plate-like base body 31. The base body 31 is formed with a recess 33 capable of accommodating the measurement surface of the measurement unit 10, and a part of the side surface of the recess 33 is formed as an azimuth reference plane 34. The azimuth reference plane 34 is a plane that serves as a reference plane for pressing the measurement unit 10 and setting a reference azimuth of an instrument (gyro sensor 12 and acceleration sensor 13) in the measurement unit 10.
For example, the compass 32 includes a side surface parallel to the center line 35, a side surface orthogonal to the center line 35, or a plurality of these side surfaces.

【0026】<ヘ>変位計 変位計60は計測部10の経時の位置を計測するための
ものである。接触型(ワイヤ−式エンコ−ダやポテンシ
ョンメ−タ)又は非接触型(光波、音波、電磁波等を利
用した変位計)などの公知の計器を用いることができ、
計測部10の移動距離に比例した信号(例えば、エンコ
−ダならパルス波)をインタ−フェイス70に出力す
る。なお、計測部10にロ−ラ−型の変位計を一体に内
蔵してもよい。
<F> Displacement meter The displacement meter 60 is for measuring the position of the measuring unit 10 over time. Known instruments such as a contact type (wire-type encoder or potentiometer) or a non-contact type (displacement gauge using light waves, sound waves, electromagnetic waves, etc.) can be used,
A signal proportional to the moving distance of the measuring unit 10 (for example, a pulse wave in the case of an encoder) is output to the interface 70. Note that a roller type displacement gauge may be built in the measuring unit 10 integrally.

【0027】[0027]

【作用】つぎに測定装置を用いた不連続面の方位と傾斜
の連続測定方法並びに不連続面の粗さ(不連続面の表面
形状)の把握方法について説明する。
Next, a method for continuously measuring the direction and inclination of a discontinuous surface using a measuring device and a method for grasping the roughness of the discontinuous surface (surface shape of the discontinuous surface) will be described.

【0028】[方位と傾斜の連続測定] <イ>初期設定(図2、4) 測定前に磁場の影響のない所で、方位基準台30の方位
基準面34が特定の磁極(例えばN極)と平行になるよ
うに方位計32で合わせて静置しておく。計測部10内
には軸回りの角速度を検出するジャイロセンサ12と、
軸方向の加速度を検出する加速度センサ13が3つの軸
方向に夫々1つずつ組み込まれている。これらのセンサ
は磁場の影響を受けない特徴を有している。そして、方
位基準台30を用い、以下の操作で計測部10の基準方
位を初期設定する。
[Continuous Measurement of Azimuth and Tilt] <A> Initial Setting (FIGS. 2 and 4) Before the measurement, the azimuth reference plane 34 of the azimuth reference base 30 has a specific magnetic pole (for example, N pole) in a place where there is no influence of the magnetic field. ) And set by the compass 32 so as to be in parallel with each other. A gyro sensor 12 for detecting an angular velocity around an axis in the measuring unit 10;
Acceleration sensors 13 for detecting accelerations in the axial direction are respectively incorporated in three axial directions. These sensors have the characteristic that they are not affected by a magnetic field. Then, the reference azimuth of the measuring unit 10 is initially set by the following operation using the azimuth reference stand 30.

【0029】計測部10の下部側面を方位基準台30の
方位基準面34に軽く押し当て、相対座標系(x,y,
z)のy軸を磁北座標系(X,Y,Z)(磁北向きをX
軸、鉛直上向きをZ軸)のX軸方向に一致させ、この相
対座標系(x,y,z)を基準座標系(X´,Y´,Z
´)として初期設定する。このとき加速度センサ13の
データを用いて、磁北座標系(X,Y,Z)と基準座標
系(X´,Y´,Z´)の方位(回転)関係を求め、記
憶しておく。
The lower side surface of the measuring unit 10 is lightly pressed against the azimuth reference plane 34 of the azimuth reference base 30 to obtain a relative coordinate system (x, y,
z) is the magnetic north coordinate system (X, Y, Z) (the magnetic north direction is X
Axis, the vertical upward direction coincides with the X-axis direction of the Z-axis), and this relative coordinate system (x, y, z) is referred to as a reference coordinate system (X ′, Y ′, Z).
′). At this time, the azimuth (rotation) relationship between the magnetic north coordinate system (X, Y, Z) and the reference coordinate system (X ′, Y ′, Z ′) is obtained and stored using the data of the acceleration sensor 13.

【0030】<ロ>測定部の移動(図3、5、6) 以上の初期設定を完了したら図6に示すように、測定部
10を岩盤の不連続面に接面させながら、その凹凸に沿
って移動する。計測原理について説明すると、計測部1
0のある時点での計測部10の傾きに対応した相対座標
系(x,y,z)が基準座標系(X´,Y´,Z´)に
対して何度回転したかを、ジャイロセンサ12と加速度
センサ13の計測データ信号から求め、相対座標系
(x,y,z)と基準座標系(X´,Y´,Z´)の方
位(回転)関係を決定する。この際、急激な角速度の変
化にはジャイロセンサ12を用いて検出し、緩やかな角
速度の変化には加速度センサ13を用いて検出する。
<B> Movement of the measuring unit (FIGS. 3, 5, and 6) When the above initial settings are completed, as shown in FIG. 6, the measuring unit 10 is brought into contact with the discontinuous surface of the rock, Move along. The measuring principle will be described.
A gyro sensor determines how many times the relative coordinate system (x, y, z) corresponding to the inclination of the measuring unit 10 at a certain point of 0 has rotated with respect to the reference coordinate system (X ′, Y ′, Z ′). The azimuth (rotation) relationship between the relative coordinate system (x, y, z) and the reference coordinate system (X ′, Y ′, Z ′) is determined from the measurement data signals of the acceleration sensor 13 and the reference coordinate system 12. At this time, a rapid change in angular velocity is detected using the gyro sensor 12, and a gradual change in angular velocity is detected using the acceleration sensor 13.

【0031】すなわち、ジャイロセンサ12を用いて検
出する場合は、ジャイロセンサ12から検出される角速
度値ωから回転角を求める。また加速度センサ13を用
いて検出する場合は、加速度センサ13の向きと重力方
向の成す角度βを求め、このβを微分して角速度値に直
した後に、回転角を求める。また基準座標系(X´,Y
´,Z´)から相対座標系(x,y,z)への移動距離
を、加速度センサ13からの加速度出力値を時間に関し
て積分して求める。
That is, when detection is performed using the gyro sensor 12, the rotation angle is obtained from the angular velocity value ω detected from the gyro sensor 12. When the detection is performed by using the acceleration sensor 13, an angle β between the direction of the acceleration sensor 13 and the direction of gravity is obtained, the β is differentiated and converted into an angular velocity value, and then the rotation angle is obtained. Further, the reference coordinate system (X ′, Y
(', Z') to the relative coordinate system (x, y, z) is obtained by integrating the acceleration output value from the acceleration sensor 13 with respect to time.

【0032】<ハ>算出 以上の基準座標系(X´,Y´,Z´)と磁北座標系
(X,Y,Z)との関係、および基準座標系(X´,Y
´,Z´)と相対座標系(x,y,z)との関係から、
相対座標系と磁北座標系の方位(回転)関係が求めら
れ、測定面(相対座標系のxy平面)の方位・傾斜が算
出される。
<C> Calculation The relationship between the above-described reference coordinate system (X ', Y', Z ') and the magnetic north coordinate system (X, Y, Z), and the reference coordinate system (X', Y
', Z') and the relative coordinate system (x, y, z),
The azimuth (rotation) relationship between the relative coordinate system and the magnetic north coordinate system is obtained, and the azimuth and inclination of the measurement plane (xy plane of the relative coordinate system) are calculated.

【0033】<ニ>卓越面の評価 図7に示すように点で方向をとらえる従来形式にあって
は、一定長さ以上の不連続面のすべてを計測対象とし、
多数の地点を静止したまま計測する必要があった。した
がって、ステレオ投影図に見られるように不連続面群の
集中度合から分かるように、卓越面を評価するには多数
の測点から情報を収集する必要があった。これに対し
て、計測部10を移動し、平均的方向をとらえる本発明
では図8に示すようにサンプリング数が少なくとも、従
来と同等以上の精度で卓越面を評価することができる。
<D> Evaluation of dominant surface As shown in FIG. 7, in the conventional type in which the direction is captured by a point, all discontinuous surfaces having a certain length or more are measured.
Many points had to be measured while still. Therefore, as can be seen from the degree of concentration of the discontinuous plane group as seen in the stereo projection, it was necessary to collect information from a large number of measurement points in order to evaluate the dominant plane. On the other hand, according to the present invention in which the measuring unit 10 is moved and the average direction is captured, as shown in FIG. 8, the predominant surface can be evaluated with at least the same number of sampling numbers as the conventional one.

【0034】[不連続面表面の3次元形状の測定方法]
図9に示すように、前準備として不連続面表面に平行で
ない2組の走査線群を設定する。1組の走査線の方向を
X軸方向とし、もう1組の走査線の方向をY軸方向とす
る。以下、次の手順で行う。
[Method of Measuring Three-Dimensional Shape of Discontinuous Surface]
As shown in FIG. 9, two groups of scanning lines that are not parallel to the surface of the discontinuous surface are set as preparation. The direction of one set of scanning lines is defined as the X-axis direction, and the direction of the other set of scanning lines is defined as the Y-axis direction. Hereinafter, the following procedure is performed.

【0035】 1つの走査線を選び、図9に示すよう
に変位計60(ワイヤ−式変位計を用いる場合)を走査
線の延長上に固定する。
One scanning line is selected, and the displacement meter 60 (when a wire-type displacement meter is used) is fixed on the extension of the scanning line as shown in FIG.

【0036】 計測部10を前述のように方位初期設
定した後、変位計60のワイヤ−61の端部を計測部1
0に接続し、計測部10を走査線の出発点にセットす
る。
After the azimuth of the measuring unit 10 is initialized as described above, the end of the wire 61 of the displacement meter 60 is connected to the measuring unit 1.
0, and sets the measuring unit 10 to the starting point of the scanning line.

【0037】 計測部10を走査線上で移動させ、連
続測定することにより、前述したように走査線上での経
時的な不連続面の方位と傾斜のデ−タが得られ、加え
て、 変位計60により計測部10の経時的な位置デ
−タを得ることができる。
By moving the measuring unit 10 on the scanning line and performing continuous measurement, data on the azimuth and inclination of the discontinuous surface over time on the scanning line can be obtained as described above. With 60, the position data of the measuring unit 10 over time can be obtained.

【0038】 以上の操作を全走査線上で行う。図9
の場合は10cm間隔で走査線を設定した場合であるが、
施工目的や条件等に合わせて走査線間の間隔は任意に設
定する。また、変位計60を各走査線の延長上の基準点
に正確に配置するためには、図9に示すようなセット治
具80を用いるとよい。このセット治具80には、アン
グル材等に所定の間隔で仕切板81を接合したものなど
が考えられる。
The above operation is performed on all scanning lines. FIG.
Is the case where scanning lines are set at 10 cm intervals,
The interval between scanning lines is set arbitrarily according to the construction purpose and conditions. Further, in order to accurately dispose the displacement gauge 60 at a reference point on the extension of each scanning line, it is preferable to use a set jig 80 as shown in FIG. The setting jig 80 may be a jig in which a partition plate 81 is joined to an angle material or the like at predetermined intervals.

【0039】 計測部10で計測された経時的な不連
続面の方位と傾斜のデ−タは、一定のサンプリングタイ
ムで制御部20内の記憶装置25に取り込まれる。ま
た、 変位計60で計測された計測部10の経時的な
位置デ−タ信号は、インタ− フェイス70内で演算
処理されてデジタル化され、不連続面の方位と傾斜の
デ−タと同調されて制御部20内の記憶装置25に取
り込まれる。従って、 これらのデ−タにより、図9
に示すように、不連続面表面の3次元形状を得 るこ
とができる。
The data of the azimuth and inclination of the discontinuous surface over time measured by the measuring unit 10 are taken into the storage device 25 in the control unit 20 at a fixed sampling time. Further, a time-dependent position data signal of the measuring unit 10 measured by the displacement meter 60 is processed and digitized in the interface 70, and the azimuth and inclination of the discontinuous surface are calculated.
The data is synchronized with the data and is taken into the storage device 25 in the control unit 20. Therefore, based on these data, FIG.
As shown in (3), a three-dimensional shape of the surface of the discontinuous surface can be obtained.

【0040】[2次元形状の算出方法]図10に示す走
査線断面内(例えばA−A断面)の不連続面の2次元形
状を、図11に示すような近似形状として求める。前述
の走査線上の連続測定により、図11に示すように、変
位計60から走査線上の計測部10の位置デ−タ(LI
(I=1〜N))を、また測定部10からその位置での
不連続面の方位と傾斜デ−タ及び計測部10のX軸回り
の回転角デ−タ(θI(I=1〜N))を経時的に取得
する。回転角デ−タθI(I=1〜N)はI番目の測定
時におけるy軸方向と測定開始時におけるy軸方向との
交差角である。位置デ−タ、不連続面の方位、傾斜デ−
タおよび回転角デ−タは同調して取得されたデ−タであ
る。
[Method of Calculating Two-Dimensional Shape] The two-dimensional shape of the discontinuous surface in the scanning line section (for example, AA section) shown in FIG. 10 is obtained as an approximate shape as shown in FIG. By the continuous measurement on the scanning line, as shown in FIG. 11, the position data (LI)
(I = 1 to N)) and the azimuth and inclination data of the discontinuous surface at that position from the measuring unit 10 and the rotation angle data of the measuring unit 10 around the X axis (θI (I = 1 to N)). N)) over time. The rotation angle data θI (I = 1 to N) is the intersection angle between the y-axis direction at the time of the I-th measurement and the y-axis direction at the start of the measurement. Position data, orientation of discontinuous plane, tilt data
The data and the rotation angle data are data acquired in synchronization.

【0041】 各走査線の連続測定より得られる不連
続面の平均方位、平均傾斜を算術平均して、不連続面の
平均方向の面をH面とする(図10)。
The average orientation and average inclination of the discontinuous surface obtained from the continuous measurement of each scanning line are arithmetically averaged, and the surface in the average direction of the discontinuous surface is defined as an H surface (FIG. 10).

【0042】 H面に垂直で走査線を含む面をV面と
する。このV面内において、図11に示すようにη、ξ
座標系をとる。η軸はV面とH面の交線方向に、ξ線は
η軸と直交する方向にとる。αは計測開始時の計測部1
0のy軸とη軸のなす角であり、これはV面と計測開始
時の不連続面の方向から算出される。
A plane perpendicular to the H plane and including the scanning lines is defined as a V plane. In this V plane, as shown in FIG.
Take a coordinate system. The η axis is in the direction of the intersection of the V plane and the H plane, and the ξ line is in the direction orthogonal to the η axis. α is the measurement unit 1 at the start of measurement
The angle between the y-axis and the η-axis at 0, which is calculated from the direction of the V plane and the discontinuous plane at the start of measurement.

【0043】 そして、I番目の測定点での座標値
を、図12に示す式を用いて算出することができる。
Then, the coordinate value at the I-th measurement point can be calculated using the equation shown in FIG.

【0044】[不連続面表面の3次元形状の算出方法]
走査線上の2次元形状を基に、不連続面の3次元形状を
求める。以下の手順で行う。
[Method of calculating three-dimensional shape of discontinuous surface]
A three-dimensional shape of the discontinuous surface is obtained based on the two-dimensional shape on the scanning line. Perform the following procedure.

【0045】 図13に示すように、不連続面の平均
方向の面上にX、Y平面をとる。その面に垂直方向にZ
軸をとる。
As shown in FIG. 13, the X and Y planes are set on the surface in the average direction of the discontinuous surfaces. Z perpendicular to that plane
Take the axis.

【0046】 Y軸上の走査線の2次元形状を基準と
して、X軸方向走査線の2次元形状より、不連続面の座
標値(X、Y、Z)を算出する(Y軸上の不連続面の形
状は基準となるため、3回程度走査線を測定して形状を
決定する)。
Based on the two-dimensional shape of the scanning line on the Y axis, the coordinate value (X, Y, Z) of the discontinuous surface is calculated from the two-dimensional shape of the scanning line in the X-axis direction (the Since the shape of the continuous surface is a reference, the shape is determined by measuring the scanning lines about three times).

【0047】 X軸上の走査線の2次元形状を基準と
して、Y軸方向走査線の2次元形状より、不連続面の座
標値(X、Y、Z)を算出する(X軸上の不連続面の形
状は基準となるため、3回程度走査線を測定して形状を
決定する)。
With reference to the two-dimensional shape of the scanning line on the X axis, the coordinate value (X, Y, Z) of the discontinuous plane is calculated from the two-dimensional shape of the scanning line in the Y-axis direction. Since the shape of the continuous surface is a reference, the shape is determined by measuring the scanning lines about three times).

【0048】 走査線の各格子点において、X方向の
走査線から算出された座標値とY方向の走査線から算出
された座標値は完全には一致しないので、平均処理して
座標値を補正する。
At each grid point of the scanning line, the coordinate value calculated from the scanning line in the X direction does not completely match the coordinate value calculated from the scanning line in the Y direction. I do.

【0049】[指定方向断面内の2次元形状の算出方
法]図14に示すように、指定方向内断面B−Bの2次
元形状を捉える。すなわち、3次元形状から指定方向断
面内の2次元形状を近似的に求める。以下、その算出方
法の一例を示す。
[Method of Calculating Two-Dimensional Shape in Cross Section in Specified Direction] As shown in FIG. 14, the two-dimensional shape of cross section BB in the specified direction is captured. That is, the two-dimensional shape in the section in the designated direction is approximately determined from the three-dimensional shape. Hereinafter, an example of the calculation method will be described.

【0050】 指定方向断面をM面とし、不連続面の
平均方向の面(H面)に垂直とする。
A section in the specified direction is defined as an M plane, and is perpendicular to a plane (H plane) in the average direction of the discontinuous planes.

【0051】 M面が交差するX、Y平面内の格子を
選択し、その格子内に図15に示すように局所座標系
(ξ、η座標系)をとる。なお、格子点は8点とし、そ
れらの座標値(X、Y、Z)(k=1〜8)は3
次元形状の算出時に得られた座標値(X、Y、Z)より
与えられる。
A grid in the X and Y planes where the M plane intersects is selected, and a local coordinate system (ξ, η coordinate system) is set in the grid as shown in FIG. The number of grid points is eight, and their coordinate values (X k , Y k , Z k ) (k = 1 to 8) are 3
It is given from coordinate values (X, Y, Z) obtained at the time of calculating the dimensional shape.

【0052】 格子面とM面の交線を例えば1cm毎に
分割し、各分割点のX、Y座標を求め、そ れらを局
所座標系のξ、η座標に変換する。
The intersection line between the lattice plane and the M plane is divided into, for example, every 1 cm, the X and Y coordinates of each division point are obtained, and these are converted into the ξ and η coordinates of the local coordinate system.

【0053】 格子内の座標値(X、Y、Z
(I=1〜N)は、格子内の局所座標値(ξ、η
(I=1〜N)、格子点座標値X、Y、Z)(k
=1〜8)及び節点毎に与えられる2次の補間関数g
(k=1〜8)より、 図16に示す式で与えられ
る。
Coordinate values (X I , Y I , Z I ) in the grid
(I = 1 to N) are local coordinate values (内I , η I ) in the grid.
(I = 1 to N), grid point coordinate values X k , Y k , Z k ) (k
= 1 to 8) and a quadratic interpolation function g k given for each node
From (k = 1 to 8), it is given by the equation shown in FIG.

【0054】[0054]

【発明の実施の形態2】前記実施の形態は、方位基準台
30を計測部10の方位の初期設定の際に使用する場合
について説明したが、計測作業を終了した後に、初期設
定時と同位置に静置した方位基準台30に計測部10を
再セットして、方位を確認するようにしても良い。再セ
ットにより方位にずれを生じていた場合は、その方位角
のずれに基づき記憶する計測値を容易に補正することが
できる。
[Embodiment 2] In the above embodiment, the case where the azimuth reference table 30 is used for initial setting of the azimuth of the measuring unit 10 has been described. The azimuth may be confirmed by resetting the measurement unit 10 on the azimuth reference stand 30 that is settled at the position. If the azimuth has shifted due to the resetting, the stored measurement value can be easily corrected based on the azimuth shift.

【0055】[0055]

【発明の実施の形態3】計測部10の初期設定は、方位
基準台30に限定されるものではなく、例えば測量機器
を用いて地表等に表示した方位基準線に計測部10の側
面を合わせて初期設定してもよい。
Third Embodiment The initial setting of the measuring unit 10 is not limited to the azimuth reference table 30. For example, the side of the measuring unit 10 is aligned with the azimuth reference line displayed on the ground surface using a surveying instrument. May be initialized.

【0056】[0056]

【発明の実施の形態4】図17に示すように計測部10
を使用中の摩耗や損傷から守るため、その計測面に板状
の防護体50で被覆してもよい。防護体50は防護機能
を果たすことの他に、計測部10の計測面に対して大小
寸法の異なる防護体50を付け替えることで、断層面や
節理等の地質不連続面の起伏の大小に応じて高精度の計
測が可能になる。
[Fourth Embodiment] As shown in FIG.
The measurement surface may be covered with a plate-like protective body 50 in order to protect the device from wear and damage during use. In addition to performing the protective function, the protective body 50 replaces the protective body 50 having a different size with respect to the measurement surface of the measuring unit 10 so that the surface of the geological discontinuity such as a fault surface or a joint can be changed depending on the degree of undulation. And high-precision measurement becomes possible.

【0057】[0057]

【発明の実施の形態5】本発明は断層面や節理等の地質
不連続面の測定用とを例に説明したが、その他に岩盤の
剪断試験における破壊後の岩盤表面粗さの測定に利用す
ることもできる。また本発明は地質以外の不連続面を測
定対象として適用できることは勿論である。
[Fifth Embodiment] The present invention has been described by taking as an example the measurement of geological discontinuities such as fault planes and joints. However, the present invention is also used for measurement of rock surface roughness after fracture in a rock shear test. You can also. In addition, it goes without saying that the present invention can be applied to a discontinuous surface other than geology as a measurement target.

【0058】[0058]

【発明の効果】本発明は以上説明したようになるから次
のような効果を得ることができる。 <イ>クリノメータによる計測技術にあっては、基準と
なる方位が磁北のみに限定されていたが、本発明では、
任意の方位を基準とすることができる。
As described above, the present invention has the following effects. <A> In the measurement technology using a clinometer, the reference direction is limited to only magnetic north, but in the present invention,
Any orientation can be used as a reference.

【0059】<ロ>計測部の方位初期設定操作が極めて
簡単かつ短時間に行うことができる。
<B> The azimuth initial setting operation of the measuring unit can be performed very simply and in a short time.

【0060】<ハ>計測部を不連続面に沿わせて移動す
るだけで、不連続面の方位角と傾斜角及び粗さの度合い
を迅速かつ正確に測定することができる。
<C> The azimuth angle, the inclination angle, and the degree of roughness of the discontinuous surface can be measured quickly and accurately only by moving the measuring unit along the discontinuous surface.

【0061】<ニ>不連続面の方位・傾斜角及び粗さの
度合いを地質学的な専門知識を持たない者でも、精度良
く測定できる。
<D> The azimuth / inclination angle and the degree of roughness of the discontinuous surface can be measured with high accuracy even by those who do not have geological expertise.

【0062】<ホ>測定現場が磁場の乱れた現場であっ
ても、磁場の乱れの影響を受けずに不連続面の方位角と
傾斜角を計測できる。
<E> Even if the measurement site is a site where the magnetic field is disturbed, the azimuth and inclination of the discontinuous surface can be measured without being affected by the disturbance of the magnetic field.

【0063】<ヘ>凹凸のある不連続面に沿って連続的
に計測したデータから、不連続面の平均的な方位と平均
的な傾斜角を求めることができる。
<F> The average azimuth and average inclination angle of the discontinuous surface can be obtained from data continuously measured along the discontinuous surface having irregularities.

【0064】<ト>不連続面の粗さの度合いを、肉眼に
因らず機械的に計測するので、原位置において客観的、
定量的に評価することができる。
<G> Since the degree of roughness of the discontinuous surface is measured mechanically irrespective of the naked eye, it can be objectively measured at the original position.
It can be evaluated quantitatively.

【0065】<チ>不連続面の節理等の卓越方向を従来
より少ないサンプリング数で精度よく把握することがで
きる。
<H> The dominant direction, such as joints on discontinuous surfaces, can be grasped accurately with a smaller number of samplings than in the past.

【0066】<リ>任意方向の不連続面の粗さを測定す
ることができ、その粗さを基に任意方向のせん断強度特
性を推定できる。
<R> The roughness of the discontinuous surface in any direction can be measured, and the shear strength characteristics in any direction can be estimated based on the roughness.

【0067】<ヌ>不連続面のせん断強度特性(Cやφ
peak)をより正確に推定することにより、信頼性のある
安定解析を行える。
<N> Shear strength characteristics of discontinuous surfaces (C and φ
By estimating peak) more accurately, a reliable stability analysis can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る測定装置の全体の構成図FIG. 1 is an overall configuration diagram of a measuring device according to the present invention.

【図2】 計測部、制御部、基準方位台の説明図FIG. 2 is an explanatory diagram of a measurement unit, a control unit, and a reference azimuth table.

【図3】 計測部、制御部の説明図FIG. 3 is an explanatory diagram of a measurement unit and a control unit.

【図4】 測定原理の説明図で、初期設定時における計
測部の各軸方向の関係を示すモデル図
FIG. 4 is an explanatory diagram of a measurement principle, and is a model diagram showing a relationship of each axis direction of a measurement unit at an initial setting.

【図5】 測定原理の説明図で、制御部移動時における
計測部の各軸方向の関係を示すモデル図
FIG. 5 is an explanatory diagram of a measurement principle, and is a model diagram showing a relationship between each axis direction of the measurement unit when the control unit is moved.

【図6】 制御部を不連続面に沿って移動させる測定状
態の説明図
FIG. 6 is an explanatory diagram of a measurement state in which a control unit is moved along a discontinuous surface.

【図7】 本発明が前提とする多数の測点から情報を収
集する従来技術による不連続面群の分布と集中度合いを
示すステレオ投影図
FIG. 7 is a stereo projection diagram showing a distribution and a concentration degree of a discontinuous surface group according to a conventional technique for collecting information from a large number of measurement points based on the present invention.

【図8】 計測部を移動させ、平均的方向をとらえる本
発明による不連続面群の分布と集中度合いを示すステレ
オ投影図
FIG. 8 is a stereo projection diagram showing the distribution and concentration degree of the discontinuous surface group according to the present invention in which the measuring unit is moved to capture the average direction.

【図9】 不連続面表面の3次元形状の測定方法の説明
FIG. 9 is an explanatory diagram of a method for measuring a three-dimensional shape of a discontinuous surface.

【図10】 不連続面の平均方向の面(H面)と走査線
断面(V面)の関係を示す説明図
FIG. 10 is an explanatory diagram showing a relationship between a plane (H plane) in the average direction of the discontinuous plane and a scanning line cross section (V plane).

【図11】 走査線断面内の不連続面表面の2次元形状
を示す説明図
FIG. 11 is an explanatory diagram showing a two-dimensional shape of a discontinuous surface in a scanning line cross section;

【図12】 I番目の測定点での座標値の算出式を示す
説明図
FIG. 12 is an explanatory diagram showing a formula for calculating a coordinate value at an I-th measurement point.

【図13】 不連続面表面の3次元形状を示す説明図FIG. 13 is an explanatory diagram showing a three-dimensional shape of a discontinuous surface.

【図14】 指定方向断面(B−B)を示す説明図FIG. 14 is an explanatory diagram showing a cross section (BB) in a specified direction.

【図15】 指定方向断面内の2次元形状近似を示す説
明図
FIG. 15 is an explanatory diagram showing a two-dimensional shape approximation in a cross section in a specified direction.

【図16】 格子内の座標値の算出式を示す説明図FIG. 16 is an explanatory diagram showing a calculation formula of coordinate values in a grid.

【図17】 計測部に防護体を設けた他の実施の形態の
部分断面図
FIG. 17 is a partial cross-sectional view of another embodiment in which a protective body is provided in the measuring unit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 地質の不連続面上に沿わせて移動させ、
不連続面の経時的な方位及び傾斜を計測する測定器と、 前記測定器の位置を計測する変位計と、 前記変位計で測定された前記測定器の位置デ−タをデジ
タル変換し、前記測定器の制御部へ出力するためのイン
タ−フェイスとよりなり、 前記測定器は、測定対象の不連続面の表面に沿って移動
させる計測部と、 前記計測部と電気的に接続し、計測デ−タを演算処理す
る制御部とからなり、 さらに前記計測部は角速度を検出するジャイロセンサ
と、 重力方向と加速度を検出する加速度センサとを具備する
ことを特徴とする、 地質不連続面の測定装置。
1. moving along a discontinuous surface of geology,
A measuring device for measuring the azimuth and inclination of the discontinuous surface over time, a displacement meter for measuring the position of the measuring device, and digitally converting position data of the measuring device measured by the displacement meter, An interface for outputting to a control unit of the measurement device, wherein the measurement device is configured to move along a surface of the discontinuous surface of the measurement target, and electrically connected to the measurement unit to perform measurement. A control unit for calculating and processing data, wherein the measuring unit includes a gyro sensor for detecting an angular velocity and an acceleration sensor for detecting a direction of gravity and an acceleration. measuring device.
【請求項2】 測定器を地質の不連続面上に沿わせて移
動させ、不連続面の経時的な方位及び傾斜を計測すると
共に、 変位計により前記測定器の位置を計測し、 これらの方位デ−タ、傾斜デ−タ、位置デ−タより不連
続面の粗さを測定することを特徴とした、 地質不連続面の測定方法。
2. A measuring instrument is moved along a discontinuous surface of the geology to measure an azimuth and an inclination of the discontinuous surface with time, and a position of the measuring instrument is measured by a displacement meter. A method for measuring a surface of a geological discontinuity, comprising measuring roughness of a discontinuous surface from azimuth data, inclination data, and position data.
【請求項3】 地質の不連続面上に平行でない2組の走
査線群を格子状に設定し、 測定器を各走査線上に沿わせて移動させ、不連続面の経
時的な方位及び傾斜を計測すると共に、 変位計により前記測定器の位置を計測し、 これらの方位デ−タ、傾斜デ−タ、位置デ−タより各走
査線断面の2次元形状を求め、 これらの各走査線での2次元形状を組み合わせて不連続
面の3次元形状を数値化あるいはグラフ化して求めるこ
とを特徴とした、 地質不連続面の測定方法。
3. A set of two sets of scanning lines that are not parallel to a geological discontinuity are set in a grid pattern, and a measuring instrument is moved along each scanning line, and the azimuth and inclination of the discontinuity over time. And the position of the measuring device is measured by a displacement meter, and the two-dimensional shape of each scanning line cross section is obtained from the azimuth data, the inclination data, and the position data. A method for measuring a geological discontinuity surface, characterized in that the three-dimensional shape of the discontinuity surface is obtained by numerically or graphically obtaining the three-dimensional shape of the discontinuity surface by combining the two-dimensional shapes of the above.
【請求項4】 地質の不連続面上に平行でない2組の走
査線群を格子状に設定し、 測定器を各走査線上に沿わせて移動させ、不連続面の経
時的な方位及び傾斜を計測すると共に、 変位計により前記測定器の位置を計測し、 これらの方位デ−タ、傾斜デ−タ、位置デ−タより各走
査線断面の2次元形状を求め、 これらの各走査線での2次元形状を組み合わせて不連続
面の3次元形状を数値化あるいはグラフ化して求め、 さらにこの不連続面の3次元形状の平均方向の面に垂直
であって、任意方向の断面内の不連続面の2次元形状を
数値化あるいはグラフ化して求めることを特徴とした、 地質不連続面の測定方法。
4. A two-line scanning line group that is not parallel to a geological discontinuity is set in a grid pattern, a measuring instrument is moved along each scanning line, and the azimuth and inclination of the discontinuity over time. And the position of the measuring device is measured by a displacement meter, and the two-dimensional shape of each scanning line cross section is obtained from the azimuth data, the inclination data, and the position data. The three-dimensional shape of the discontinuous surface is quantified or graphed by combining the two-dimensional shapes obtained in Steps (1) and (2). A method for measuring a geologically discontinuous surface, characterized in that a two-dimensional shape of the discontinuous surface is obtained by digitizing or graphing.
JP20544397A 1997-07-15 1997-07-15 Apparatus and method for measuring geologically discontinuous surface Pending JPH1137753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20544397A JPH1137753A (en) 1997-07-15 1997-07-15 Apparatus and method for measuring geologically discontinuous surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20544397A JPH1137753A (en) 1997-07-15 1997-07-15 Apparatus and method for measuring geologically discontinuous surface

Publications (1)

Publication Number Publication Date
JPH1137753A true JPH1137753A (en) 1999-02-12

Family

ID=16506975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20544397A Pending JPH1137753A (en) 1997-07-15 1997-07-15 Apparatus and method for measuring geologically discontinuous surface

Country Status (1)

Country Link
JP (1) JPH1137753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533459A (en) * 2005-03-09 2008-08-21 コミッサリア タ レネルジー アトミーク Method and apparatus for obtaining geometric shapes
CN103033159A (en) * 2013-01-11 2013-04-10 重庆大学 Superficial layer geological displacement monitoring and early-warning system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533459A (en) * 2005-03-09 2008-08-21 コミッサリア タ レネルジー アトミーク Method and apparatus for obtaining geometric shapes
CN103033159A (en) * 2013-01-11 2013-04-10 重庆大学 Superficial layer geological displacement monitoring and early-warning system and method

Similar Documents

Publication Publication Date Title
Hansson et al. Validity and reliability of triaxial accelerometers for inclinometry in posture analysis
Frosio et al. Autocalibration of MEMS accelerometers
US9009000B2 (en) Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
JP2006506654A (en) Level, angle and distance measuring device
US7774951B2 (en) Sensing device with whisker elements
Sabato et al. Development of a camera localization system for three-dimensional digital image correlation camera triangulation
CN112771385B (en) Method for determining the spatial configuration of a plurality of transducers relative to a target object
RU2602736C1 (en) Method and device for calibration of inertial measurement modules
WO2013007044A1 (en) Method, device, and system for detecting vibration of arm rest of engineering machinery and engineering machinery
KR101602485B1 (en) A stick ruler for the detection structures
JP5086225B2 (en) Calibration apparatus, method and program for magnetic direction sensor
Chmelina et al. A 3-d laser scanning system and scan data processing method for the monitoring of tunnel deformations
CA2114579C (en) Apparatus for detecting and measuring movements in geological formations and other massive structures
JP5386698B2 (en) Indoor position detector
JPH09243725A (en) Method of measuring magnetic distribution, magnetic distribution measuring device, and magnetic detector plate
TWM538518U (en) Simplified road flatness inspection device
JPH1137753A (en) Apparatus and method for measuring geologically discontinuous surface
JPH09318352A (en) Apparatus and method for measuring hollow displacement in tunnel
Pochi et al. PM—Power and machinery: laboratory evaluation of linear and angular potentiometers for measuring spray boom movements
JPH09329438A (en) Measuring method and device for geological discontinuous plane
JP3394979B2 (en) Method and apparatus for measuring joint angle
US20220193919A1 (en) 3d position and orientation calculation and robotic application structure using inertial measuring unit (imu) and string-encoder positions sensors
CN115014256A (en) Space displacement meter and hole displacement measuring method
JPH0933250A (en) Method and apparatus for measuring discontinuous plane of geology
KR101394634B1 (en) Method for measuring length of large structure using stereo vision and turn angle and apparatus for the same

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20031215

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20040506

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050928

A131 Notification of reasons for refusal

Effective date: 20051011

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060221

Free format text: JAPANESE INTERMEDIATE CODE: A02