JP2013072705A - Detection method of discontinuity surface on rock bed slope and detection device of the same - Google Patents

Detection method of discontinuity surface on rock bed slope and detection device of the same Download PDF

Info

Publication number
JP2013072705A
JP2013072705A JP2011211073A JP2011211073A JP2013072705A JP 2013072705 A JP2013072705 A JP 2013072705A JP 2011211073 A JP2011211073 A JP 2011211073A JP 2011211073 A JP2011211073 A JP 2011211073A JP 2013072705 A JP2013072705 A JP 2013072705A
Authority
JP
Japan
Prior art keywords
slope
strike
rock
inclination
rock slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011211073A
Other languages
Japanese (ja)
Inventor
Masahiro Katayama
政弘 片山
Shigetaka Ishihama
茂崇 石濱
Hitoshi Tezuka
仁 手塚
Koichi Aoki
宏一 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2011211073A priority Critical patent/JP2013072705A/en
Publication of JP2013072705A publication Critical patent/JP2013072705A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently and safely detecting a discontinuity surface of a rock bed slope such as a steep precipice, and its device.SOLUTION: Three-dimensional coordinate data of the rock bed slope is collected using a three-dimensional laser measurement device, a TIN model of the rock bed slope indicated by a triangular network with a selected sample point as a vertex is prepared from the three-dimensional coordinate data, and then a strike/inclination of surfaces indicated by respective triangles in the TIN model of the rock bed slope are calculated. After obtaining a distribution state of the calculated strike/inclination of the surfaces indicated by the respective triangles, from the distribution state of the strike/inclination, the discontinuity surface having the strike/inclination different from the strike/inclination of a slope having the same gradient as the average gradient of the rock bed slope is detected on the rock bed slope.

Description

本発明は、岩盤斜面の安定性を評価する方法と、岩盤斜面における不連続面を検出する装置とに関するものである。   The present invention relates to a method for evaluating the stability of a rock slope and a device for detecting a discontinuous surface on the rock slope.

従来、急崖を形成する岩盤斜面では、落石や岩盤すべり状の変状が生じる可能性がある場合、岩盤斜面を安定化するため、亀裂にモルタル等の固化剤を注入したり斜面にアンカーを打ち込むなどして岩盤斜面を補強した後にのり面を形成するようにしていた。
急崖を形成する岩盤斜面は、連続する開口節理を含む様々な方向の亀裂が組み合わさった複雑な形状を呈している場合が多いことから、従来は、岩盤の状態をより精密に把握するため、クリノメータと呼ばれる計測器を用いて岩盤斜面における断層や亀裂などの面構造(不連続面)を測定していた。
クリノメータは、傾斜計(振り子)とコンパス(磁石)と水準器とを備えたもので、計測する面に直接当てたり、計測する面に平行になるように置かれた図板に当てる(見通し法)などして、計測する面の方位角と最大傾斜角とを読み取ることで測定面の走向・傾斜を測定する(例えば、特許文献1参照)。
In the past, rock slopes that form steep cliffs, when rock fall or rock slip deformation may occur, in order to stabilize the rock slope, solidifying agents such as mortar are injected into the cracks and anchors are attached to the slope. A slope was formed after the rock slope was reinforced by driving in.
The slope of a rock mass that forms a steep cliff often has a complicated shape that is a combination of cracks in various directions including continuous open joints. The surface structure (discontinuous surface) such as faults and cracks on rock slopes was measured using a measuring instrument called a clinometer.
The clinometer is equipped with an inclinometer (pendulum), a compass (magnet), and a level, and is applied directly to the surface to be measured, or applied to a board placed parallel to the surface to be measured (line-of-sight method). ) And the like, and the azimuth angle and the maximum inclination angle of the surface to be measured are read to measure the strike / inclination of the measurement surface (see, for example, Patent Document 1).

実開平6−16817号公報Japanese Utility Model Publication No. 6-16817

しかしながら、クリノメータを用いて走向・傾斜を測定する方法では、計測すべき面を選定したり、その不連続面の連続方向を見極めたりする必要があるため、専門的な知識が必要であった。また、補強すべき岩盤斜面の面積が大きい割には、計測する面の数が限られるだけでなく、岩盤斜面が急崖である場合には、作業者が崖に登って測定する必要があることから、安全上問題があった。
また、クリノメータを直接岩盤に当てないで計測する見通し法を用いることも考えられるが、急崖などの斜面では見通し法を行える場所が限定されるだけでなく、図板の置き方に個人差が出るなど精度が悪かった。
However, in the method of measuring the strike / inclination using a clinometer, it is necessary to select a surface to be measured or to determine the continuous direction of the discontinuous surface, and thus specialized knowledge is required. In addition to the large area of the rock slope to be reinforced, not only the number of surfaces to be measured is limited, but if the rock slope is a steep cliff, it is necessary for the operator to climb the cliff and measure it. Therefore, there was a safety problem.
In addition, it is conceivable to use a line-of-sight method in which the clinometer is not directly applied to the rock, but on slopes such as steep cliffs, not only is the place where the line-of-sight method can be applied limited, but there are individual differences in the way the plates are placed. The accuracy was bad.

本発明は、従来の問題点に鑑みてなされたもので、急崖などの岩盤斜面の不連続面を効率よくかつ安全に検出する方法とその装置を提供することを目的とする。   The present invention has been made in view of conventional problems, and an object of the present invention is to provide a method and an apparatus for efficiently and safely detecting a discontinuous surface of a rock slope such as a steep cliff.

本発明は、岩盤が露出している斜面(以下、岩盤斜面という)の精密な形状や不連続面の走向・傾斜を検出する方法であって、3次元レーザ計測器(3次元レーザスキャナともいう)を用いて岩盤が露出している岩盤斜面の3次元座標データを採取するステップと、前記岩盤斜面を前記3次元座標データから選定されたサンプル点を頂点とする三角形網で表した岩盤斜面のTINモデル(Triangulated Irregular Network)を作成するステップと、前記TINモデルの各三角形の表わす面の走向・傾斜を算出するステップと、前記三角形の表わす面の走向・傾斜の分布を求めるステップと、前記分布状態から、前記岩盤斜面に、当該岩盤斜面の平均的な勾配と同じ勾配を有する斜面の走向・傾斜と異なる走向・傾斜を有する不連続面を検出するステップと有することを特徴とする。
このように、岩盤斜面の3次元座標データを用いて岩盤斜面を構成する面の走向・傾斜の分布状態から不連続面を検出するようにすれば、岩盤斜面の安定性を精度よくかつ迅速に評価することができる。
また、遠方から非接触にて岩盤斜面の走向・傾斜を計測するため、クリノメータによる計測に比較して、作業の安全性が著しく向上する。
The present invention is a method for detecting a precise shape of a slope where a rock mass is exposed (hereinafter referred to as a rock slope) and a strike / slope of a discontinuous surface, and is a three-dimensional laser measuring instrument (also called a three-dimensional laser scanner). ) To collect the three-dimensional coordinate data of the rock slope where the rock is exposed, and the rock slope representing the rock slope by a triangular network with the sample points selected from the three-dimensional coordinate data as vertices Creating a TIN model (Triangulated Irregular Network); calculating a strike / inclination of a surface represented by each triangle of the TIN model; obtaining a strike / inclination distribution of the surface represented by the triangle; and the distribution Detecting a discontinuous surface having a strike / slope different from the strike / slope of the slope having the same slope as the average slope of the rock slope from the state Characterized in that it has.
In this way, if the discontinuous surface is detected from the distribution of the strike and slope of the surface that constitutes the rock slope using the three-dimensional coordinate data of the rock slope, the stability of the rock slope can be improved accurately and quickly. Can be evaluated.
In addition, since the strike and inclination of the rock slope is measured from a distance without contact, the work safety is significantly improved compared to the measurement by the clinometer.

また、本願発明は、前記各三角形の表わす面をシュミットネットを用いてステレオ投影し、前記各三角形の表わす面の走向・傾斜の分布を求めることを特徴とする。
このように、不連続面の走向・傾斜の分布状態を統計的手法を用いて求めるようにすれば、専門的な知識や技術、経験を有していなくても、不連続面を検出できるので、岩盤斜面の性状を容易に把握することができる。
また、本願発明は、前記不連続面の頻度が所定値以下である時に、当該岩盤斜面が安定していると判定するステップを設けたことを特徴とする。
これにより、岩盤斜面の安定性を精度よく評価することができる。
また、本願発明は、前記岩盤斜面にオーバーバング部があった場合には、前記オーバーバング部を掘削除去した後に、前記オーバーバング部の除去された部分の走向・傾斜の分布を再測定することを特徴とする。
これにより、岩盤斜面の安定性評価の信頼性を更に向上させることができる。
また、本願発明は、前記TINモデルに代えてDEMを用いたことを特徴とする。
DEM(Digital Elevation Model)を用いた場合には、データ数が多いため計算時間はかかるものの、TINモデルの場合と同等以上の精度で、掘削面と走向・傾斜が異なる不連続面を抽出することができる。
Further, the invention of the present application is characterized in that the surface represented by each triangle is stereo-projected using a Schmitt net, and the strike / slope distribution of the surface represented by each triangle is obtained.
In this way, discontinuous surfaces can be detected even if you do not have specialized knowledge, technology, or experience by using a statistical method to determine the distribution of the strike / slope of discontinuous surfaces. The property of the rock slope can be easily grasped.
The invention of the present application is characterized in that a step of determining that the rock slope is stable when the frequency of the discontinuous surface is a predetermined value or less is provided.
Thereby, the stability of the rock slope can be accurately evaluated.
In the present invention, in the case where the rock slope has an overbang portion, after the overbang portion is excavated and removed, the strike / slope distribution of the removed portion of the overbang portion is remeasured. It is characterized by.
Thereby, the reliability of the stability evaluation of the rock slope can be further improved.
The present invention is characterized in that a DEM is used instead of the TIN model.
When DEM (Digital Elevation Model) is used, it takes a lot of time to calculate because of the large number of data, but to extract discontinuous surfaces with different strike and inclination from the excavation surface with the same or better accuracy than the TIN model. Can do.

また、本願発明は、岩盤斜面における不連続面を検出する装置であって、岩盤が露出している岩盤斜面の3次元座標データを採取する3次元データ採取手段と、前記岩盤斜面を前記3次元座標データから選定されたサンプル点を頂点とする三角形網で表したTINモデルを作成するTINモデル作成手段と、前記TINモデルの各三角形の頂点の3次元座標を用いて各三角形の表わす面の走向・傾斜を算出する走向・傾斜算出手段と、シュミットネットを用いたステレオ投影を用いて各三角形の表わす面の走向・傾斜の分布を求める走向・傾斜分布解析手段と、前記各三角形の表わす面の走向・傾斜の分布から前記岩盤斜面の平均的な勾配と同じ勾配を有する斜面の走向・傾斜と異なる走向・傾斜を有する不連続面を検出する不連続面検出手段とを備えたことを特徴とする。
このような構成を採ることにより、岩盤斜面での計測作業を行うことなく、岩盤斜面の不連続面を精度良く検出できる不連続面の検出装置を得ることができる。
The present invention is an apparatus for detecting a discontinuous surface on a rock slope, and includes a three-dimensional data collection means for collecting three-dimensional coordinate data of a rock slope where the rock is exposed, and the three-dimensional data collection means. TIN model creating means for creating a TIN model represented by a triangular network having apexes selected from coordinate data as vertices, and the direction of the surface represented by each triangle using the three-dimensional coordinates of the vertices of each triangle of the TIN model A strike / tilt calculation means for calculating inclination, a strike / tilt distribution analyzing means for obtaining a strike / tilt distribution of the surface represented by each triangle using stereo projection using a Schmitt net, and a surface represented by the triangle. A discontinuous surface detecting hand for detecting a discontinuous surface having a strike / inclination different from the strike / inclination of the slope having the same gradient as the average slope of the rock slope from the strike / inclination distribution Characterized by comprising and.
By adopting such a configuration, it is possible to obtain a discontinuous surface detection device capable of accurately detecting a discontinuous surface of a rock slope without performing measurement work on the rock slope.

なお、前記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。   The summary of the invention does not list all necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.

本発明の実施の形態に係る岩盤斜面の安定性評価装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the stability evaluation apparatus of the rock slope which concerns on embodiment of this invention. 岩盤斜面の3次元座標データを採取する方法を示す図である。It is a figure which shows the method of extract | collecting the three-dimensional coordinate data of a rock slope. 本発明による岩盤斜面の不連続面の検出方法を示すフローチャートである。It is a flowchart which shows the detection method of the discontinuous surface of the rock slope by this invention. 岩盤斜面のTINモデル(3次元モデル)の一例を示す図である。It is a figure which shows an example of the TIN model (three-dimensional model) of a rock slope. オーバーバング部の一例を示す模式図である。It is a schematic diagram which shows an example of an overbang part. シュミットネットによるデータ処理の一例を示す図である。It is a figure which shows an example of the data processing by a Schmitt net. 不連続面の検出方法の他の例を示す図である。It is a figure which shows the other example of the detection method of a discontinuous surface.

以下、実施の形態を通じて本発明を詳説するが、以下の実施の形態は特許請求の範囲に係る発明を限定するものでなく、また、実施の形態の中で説明される特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described in detail through embodiments, but the following embodiments do not limit the invention according to the claims, and all combinations of features described in the embodiments are included. It is not necessarily essential for the solution of the invention.

図1は、本実施の形態に係る岩盤斜面の安定性評価装置(以下、安定化評価装置という)10を示す図で、安定化評価装置10は、3次元データ採取手段としての3次元レーザスキャナ11と、TINモデル作成手段12と、走向・傾斜算出手段13と、走向・傾斜分布解析手段14と、不連続面検出手段15と、安定性判定手段16と、表示手段17とを備える。不連続面の検出装置10の演算部10AであるTINモデル作成手段12〜安定性判定手段16の各手段は、例えば、コンピュータのソフトウエアにより構成される。
なお、3次元レーザスキャナ11とTINモデル作成手段12〜不連続面検出手段15の各手段は、岩盤斜面の不連続面を検出する不連続面の検出装置を構成する。不連続面の検出装置は表示手段17を備えてもよい。
3次元レーザスキャナ11は、計測対象物にレーザ光を照射して計測対象物とセンサ間をレーザ光が往復する時間を計測することで計測対象物との間の距離を計測する距離センサ11aと、距離センサ11aを上下方向及び水平方向に移動させるセンサ移動手段11bと、距離センサ11aで計測された距離情報とセンサ移動手段11bからの距離センサ11aの移動方向情報とから計測対象物の3次元座標を算出する3次元座標算出手段11cとを備えている。3次元レーザスキャナ11は、図2に示すように、山体20の岩盤斜面21全体を見渡せる位置に設置されて、岩盤斜面21全体の3次元情報を採取する。本例では、3次元レーザスキャナ11とパーソナルコンピュータとを接続し、計測現場にて不連続面を検出するとともに、ディスプレイなどの表示手段17に岩盤斜面21の面構造を表示して作業員に視認させるようにしている。
TINモデル作成手段12は、3次元レーザスキャナ11で採取された岩盤斜面21の3次元情報からTINモデルを作成する。
FIG. 1 is a diagram showing a rock slope stability evaluation apparatus (hereinafter referred to as a stabilization evaluation apparatus) 10 according to the present embodiment. The stabilization evaluation apparatus 10 is a three-dimensional laser scanner as a three-dimensional data collection means. 11, a TIN model creation unit 12, a strike / tilt calculation unit 13, a strike / tilt distribution analysis unit 14, a discontinuous surface detection unit 15, a stability determination unit 16, and a display unit 17. Each unit of the TIN model creation unit 12 to the stability determination unit 16 which is the calculation unit 10A of the discontinuous surface detection device 10 is configured by, for example, software of a computer.
Each of the three-dimensional laser scanner 11 and the TIN model creating means 12 to the discontinuous surface detecting means 15 constitutes a discontinuous surface detecting device for detecting a discontinuous surface of the rock slope. The discontinuous surface detection device may include display means 17.
The three-dimensional laser scanner 11 is a distance sensor 11a that measures the distance between the measurement object by irradiating the measurement object with laser light and measuring the time that the laser light reciprocates between the measurement object and the sensor. The three-dimensional object to be measured from the sensor moving means 11b for moving the distance sensor 11a in the vertical and horizontal directions, the distance information measured by the distance sensor 11a, and the moving direction information of the distance sensor 11a from the sensor moving means 11b. 3D coordinate calculation means 11c for calculating coordinates. As shown in FIG. 2, the three-dimensional laser scanner 11 is installed at a position overlooking the entire rock slope 21 of the mountain body 20 and collects three-dimensional information of the entire rock slope 21. In this example, the three-dimensional laser scanner 11 and a personal computer are connected to detect a discontinuous surface at the measurement site, and the surface structure of the rock slope 21 is displayed on the display means 17 such as a display so as to be visually recognized by an operator. I try to let them.
The TIN model creating means 12 creates a TIN model from the three-dimensional information of the rock slope 21 collected by the three-dimensional laser scanner 11.

走向・傾斜算出手段13は、三角形の頂点の3次元座標のデータを用いて、当該三角形の作る面の方位角(計測する面面と水平面との交線の方向を傾斜方向を基準として測定した方向;走向)と最大傾斜角(計測する面と水平面との成す角;傾斜)とを算出して当該三角形の面の走向・傾斜を算出する。
走向・傾斜分布解析手段14は、シュミットネットを用いたステレオ投影により各三角形の面の走向・傾斜を極投影して各三角形の面の走向・傾斜の分布を求める。
不連続面検出手段15は、前記極投影された各三角形の表わす面の分布から岩盤斜面21の平均的な勾配と同じ勾配を有する斜面の走向・傾斜とは異なる走向・傾斜を有する面である不連続面を検出する。
このように、3次元レーザスキャナ11とTINモデル作成手段12〜不連続面検出手段15の各手段により、岩盤斜面21の不連続面を検出する不連続面の検出装置を構成することができる。
安定性判定手段16は、三角形の面の走向・傾斜の分布状態から求められる不連続面の頻度が予め設定された所定値を超える否かを判定し、全ての不連続面の頻度が所定値以下である時に当該岩盤斜面21が安定していると判定する。
表示手段17は、各三角形の表わす面の走向・傾斜の分布を頻度毎に色分けして表示した画面をディスプレイに表示する。
The strike / tilt calculation means 13 uses the data of the three-dimensional coordinates of the vertices of the triangle to measure the azimuth angle of the surface created by the triangle (the direction of the line of intersection between the surface to be measured and the horizontal plane with reference to the inclination direction). The direction and the strike) and the maximum inclination angle (the angle between the surface to be measured and the horizontal plane; the inclination) are calculated to calculate the strike and inclination of the triangular surface.
The strike / tilt distribution analysis means 14 polarly projects the strike / inclination of each triangular surface by stereo projection using a Schmitt net to obtain the strike / tilt distribution of each triangular surface.
The discontinuous surface detecting means 15 is a surface having a strike / inclination different from the strike / inclination of the slope having the same gradient as the average slope of the rock slope 21 from the distribution of the surfaces represented by the triangularly projected triangles. Detect discontinuous surfaces.
As described above, the discontinuous surface detecting device for detecting the discontinuous surface of the rock slope 21 can be configured by the three-dimensional laser scanner 11 and each of the TIN model creating unit 12 to the discontinuous surface detecting unit 15.
The stability determination means 16 determines whether or not the frequency of the discontinuous surface obtained from the distribution state of the strike / tilt of the triangular surface exceeds a predetermined value, and the frequency of all the discontinuous surfaces is a predetermined value. It is determined that the rock slope 21 is stable when:
The display means 17 displays on the display a screen in which the strike / slope distribution of the surface represented by each triangle is color-coded for each frequency.

次に、本発明による岩盤斜面の安定性評価方法について、図3のフローチャートを参照して説明する。なお、本例で計測する岩盤斜面21は伐採等により樹木等が除去されて岩盤が露出している急崖の岩盤斜面である。
まず、図2に示すように、3次元レーザスキャナ11を、岩盤斜面21全体を見渡せる位置に設置して岩盤斜面21の3次元座標データを採取する(ステップS10)。
本例では、3次元レーザスキャナ11として、測定距離が3m〜800m、垂直・水平スキャニング角が±20°、サンプルレートが2000ポイント/秒、測定精度が±3mm(計測距離100m時)である長距離型レーザスキャナを用いた。
3次元レーザスキャナ11は、設置位置が測定点に近いほど分解能は高くなるが、垂直方向及び水平方向のスキャニング角度が機器により限られているので、設置位置を岩盤斜面21の近くにする場合には、複数箇所で岩盤斜面21の3次元座標データを採取し、これらを合成して岩盤斜面21全体の3次元座標データを求める。
Next, a rock slope stability evaluation method according to the present invention will be described with reference to the flowchart of FIG. The rock slope 21 measured in this example is a steep rock slope where trees are removed by cutting or the like and the rock is exposed.
First, as shown in FIG. 2, the three-dimensional laser scanner 11 is installed at a position where the entire rock slope 21 can be seen, and the three-dimensional coordinate data of the rock slope 21 is collected (step S10).
In this example, the three-dimensional laser scanner 11 has a measurement distance of 3 m to 800 m, a vertical / horizontal scanning angle of ± 20 °, a sample rate of 2000 points / second, and a measurement accuracy of ± 3 mm (when the measurement distance is 100 m). A distance type laser scanner was used.
The three-dimensional laser scanner 11 has a higher resolution as the installation position is closer to the measurement point. However, since the scanning angle in the vertical direction and the horizontal direction is limited by the equipment, the installation position is close to the rock slope 21. Collects the three-dimensional coordinate data of the rock slope 21 at a plurality of locations and synthesizes them to obtain the three-dimensional coordinate data of the entire rock slope 21.

ステップS11では、3次元レーザスキャナ11で採取された岩盤斜面21の3次元座標データから岩盤斜面のTINモデルを作成する(ステップS11)。
岩盤斜面のTINモデルは、図4に示すように、計測対象物である岩盤斜面21を、岩盤斜面21の3次元座標データから選定されたサンプル点Pm,Pn,Plを頂点とする多数の三角形Tkから成る三角形網で表した3次元モデルで、変化に富んだ箇所のサンプル点の数を多くし起伏の緩やかな箇所のサンプル点の数を少なくできるので、少ないサンプル点で計測対象物の3次元形状を表現できるという利点を有する。
また、この岩盤斜面のTINモデルを用いれば、岩盤斜面21に、図5(a),(b)に示すようなオーバーバング部22があるか否かを判定できるとともに、その具体的な形状を把握することができる。具体的には、前記3次元座標データから得られる岩盤斜面21の平面図(等高線図)と、仮想光源などを用いて三角形の面に影を付けるなどのレンダリングを施した岩盤斜面21のTINモデルとからオーバーバング部22があるか否を判定する。オーバーバング部22は全体に不安定な形状で、かつ、亀裂が開口している場合が多いので崩落の危険度が高い。したがって、オーバーバング部22があった場合には、岩盤斜面21の補強を行う前にオーバーバング部22を掘削して除去することが好ましい。
In step S11, a TIN model of the rock slope is created from the three-dimensional coordinate data of the rock slope 21 collected by the three-dimensional laser scanner 11 (step S11).
As shown in FIG. 4, the TIN model of a rock slope has a rock slope 21 as an object to be measured, with sample points P m , P n and P l selected from the three-dimensional coordinate data of the rock slope 21 as vertices. A three-dimensional model represented by a triangle network consisting of a large number of triangles T k, which can increase the number of sample points in a variety of locations and reduce the number of sample points in a gently undulating location. This has the advantage that the three-dimensional shape of the object can be expressed.
Further, by using the TIN model of the rock slope, it can be determined whether or not the rock slope 21 has an overbang portion 22 as shown in FIGS. 5 (a) and 5 (b). I can grasp it. Specifically, a plan view (contour map) of the rock slope 21 obtained from the three-dimensional coordinate data, and a TIN model of the rock slope 21 subjected to rendering such as shadowing a triangular surface using a virtual light source or the like. From this, it is determined whether or not there is an overbang unit 22. The overbang portion 22 has an unstable shape as a whole and has a high risk of collapsing because there are many cases where cracks are opened. Therefore, when there is an overbang portion 22, it is preferable to excavate and remove the overbang portion 22 before reinforcing the rock slope 21.

次に、岩盤斜面のTINモデルを構成する各三角形の面について、三角形の頂点の3次元座標データから求めた三角形の面を示す式と水平面を示す式とから三角形の面と水平面の交線の方向と三角形の面と水平面との成す最大傾斜角とを算出して三角形の面の走向・傾斜を算出(ステップS12)した後、シュミットネットを用いたステレオ投影により極投影して各三角形の表わす面の走向・傾斜の分布を求める(ステップS13)。
シュミットネットを用いたステレオ投影は、地層面、節理面、断層面などの走向・傾斜を基準球面内の極(面の法線が基準球面と交わる点)とし、この極をrが最大傾斜角でθが方位角で極座標にステレオ投影するもので、これをTINモデルの各三角形の面に適用すれば、図6に示すような、各三角形の表わす面の走向・傾斜の分布を得ることができる。図6において、各三角形の表わす面の走向・傾斜は、面の出現頻度(%)により領域分けされている。
ステップS14では、シュミットネットを用いたステレオ投影を用いて求められた、岩盤斜面のTINモデルを構成する各三角形の面の走向・傾斜の分布状態から、仮想斜面の走向・傾斜とは異なる走向・傾斜を有する不連続面を検出する。
図6に示した投影図の左下部の領域Aに分布している三角形の面は、その走向・傾斜が仮想斜面の走向・傾斜に近い面である。一方、投影図の右下部の領域Bに分布している三角形の面は、仮想斜面と異なる方向の面構造をしている。また、投影図の上部の領域Cに分布している三角形の面は仮想斜面とは反対方向の面構造(オーバーハング)を有している。したがって、走向・傾斜の分布状態から、領域Bや領域Cのような斜面の方向と異なる走向・傾斜を有する不連続面を検出することができるとともに、不連続面がどのような頻度で出現するかを把握することができる。
最後に、シュミットネットの投影図(ここでは、下半球投影図)を用いて、前記領域Aとは異なる領域で、かつ、出現頻度が所定値を超える領域があるか否かを判定する(ステップS15)。
これにより、不連続面の走向・傾斜とその頻度を検出できるので、当該斜面が安定しているか否かを判定することができる。例えば、仮想斜面の走向・傾斜との差が予め設定され、所定値を超える走向・傾斜を有する面の頻度が所定値以下である時に、当該岩盤斜面21が安定していると判定する。
当該岩盤斜面21が安定していると判定された場合には、開口亀裂にモルタル等の固化剤を注入し、アンカー設置について岩盤斜面21の下部のみとするなどの補強をする。一方、岩盤斜面21が安定していないと判定された場合には、設置するアンカーの数を増やしたり打ち込み角度を変更するなどの補強を行って岩盤斜面21を安定化させる。
Next, for each triangular surface constituting the TIN model of the rock slope, the intersection of the triangular surface and the horizontal plane is calculated from the equation indicating the triangular surface obtained from the three-dimensional coordinate data of the vertex of the triangle and the equation indicating the horizontal plane. After calculating the direction and the maximum inclination angle formed by the triangular plane and the horizontal plane, the strike and inclination of the triangular plane is calculated (step S12), and then polar projection is performed by stereo projection using a Schmitt net to represent each triangle. The distribution of the strike / inclination of the surface is obtained (step S13).
In stereo projection using a Schmitt net, the strike and slope of the stratum, joint, and fault planes are defined as poles in the reference sphere (the point where the surface normal intersects the reference sphere), where r is the maximum tilt angle. In this case, θ is an azimuth angle and is stereo-projected to polar coordinates. If this is applied to the surface of each triangle of the TIN model, the strike and slope distribution of the surface represented by each triangle can be obtained as shown in FIG. it can. In FIG. 6, the strike / inclination of the surface represented by each triangle is divided into regions by the appearance frequency (%) of the surface.
In step S14, from the distribution state of the strike and slope of each triangular plane constituting the TIN model of the rock slope determined using stereo projection using a Schmitt net, the strike and slope different from the strike and slope of the virtual slope are obtained. A discontinuous surface having an inclination is detected.
The triangular surface distributed in the region A at the lower left of the projection shown in FIG. 6 is a surface whose strike / slope is close to the strike / slope of the virtual slope. On the other hand, the triangular surface distributed in the lower right region B of the projection view has a surface structure in a direction different from the virtual slope. In addition, the triangular surfaces distributed in the upper region C of the projection view have a surface structure (overhang) in the direction opposite to the virtual slope. Accordingly, it is possible to detect a discontinuous surface having a different direction / inclination from the direction of the slope, such as the region B or the region C, from the distribution state of the direction / inclination, and how often the discontinuous surface appears. I can understand.
Finally, using a Schmitt net projection (here, a lower hemisphere projection), it is determined whether or not there is a region that is different from the region A and has an appearance frequency exceeding a predetermined value (step). S15).
Thereby, since the strike / inclination and frequency of the discontinuous surface can be detected, it can be determined whether or not the inclined surface is stable. For example, it is determined that the rock slope 21 is stable when the difference between the strike and the slope of the virtual slope is set in advance and the frequency of the face having the strike and slope exceeding the predetermined value is equal to or less than the predetermined value.
When it is determined that the rock slope 21 is stable, a solidifying agent such as mortar is injected into the opening crack, and reinforcement is performed such that only the lower part of the rock slope 21 is set for anchor installation. On the other hand, when it is determined that the rock slope 21 is not stable, the rock slope 21 is stabilized by performing reinforcement such as increasing the number of anchors to be installed or changing the driving angle.

なお、ステップS14において、TINモデル作成手段12で作成されたTINモデルの各三角形の面を走向・傾斜の大きさによって色分けして表示すれば、岩盤斜面21における不連続面の出現状態を具体的に把握することができるので、岩盤斜面21の補強を効率よく行うことができる。
具体的には、図6のシュミットネットの投影図に投影された極のうち、例えば、頻度が2%以上の極を選択するとともに、投影された極を、径rが傾斜β、角度θが走向αである極座標上の点と見做す。そして、走向αがαk±(Δα/2)でかつ傾斜βがβk±(Δβ/2)の範囲にあるに三角形の面を、走向・傾斜が(αk,βk)である面であるとすることで、図6に示した各三角形を、走向・傾斜の互いに異なるn種類の三角形の面に分類して色分けし表示手段17のディスプレイ上に表示すれば、岩盤斜面21における不連続面の出現状態を具体的に把握することができる。
In addition, in step S14, if each triangular surface of the TIN model created by the TIN model creating means 12 is color-coded according to the strike / inclination size, the appearance state of the discontinuous surface on the rock slope 21 is concretely shown. Therefore, the rock slope 21 can be reinforced efficiently.
Specifically, among the poles projected on the Schmitt net projection of FIG. 6, for example, a pole having a frequency of 2% or more is selected, and the projected pole has a diameter r of inclination β and an angle θ of It is considered as a point on the polar coordinate with the strike α. A plane having a strike direction α of α k ± (Δα / 2) and a slope β in the range of β k ± (Δβ / 2) is defined as a plane having a strike direction / slope of (α k , β k ). Therefore, if the triangles shown in FIG. 6 are classified into n types of triangles having different strike directions and inclinations and are color-coded and displayed on the display of the display means 17, The appearance state of the continuous surface can be grasped specifically.

このように、本実施の形態では、3次元レーザスキャナ11を用いて岩盤斜面21の3次元座標データを採取し、この3次元座標データから選定されたサンプル点を頂点とする三角形網で表した岩盤斜面のTINモデルを作成した後、岩盤斜面21がTINモデルの各三角形の表わす面の走向・傾斜を算出し、この算出された各三角形の表わす面の走向・傾斜分布を求め、この走向・傾斜の分布状態をから、岩盤斜面21に、当該岩盤斜面21の平均的な勾配と同じ勾配を有する斜面の走向・傾斜と異なる走向・傾斜を有する不連続面を検出するようにしたので、岩盤斜面21の不連続面を容易にかつ確実に検出することができる。したがって、岩盤斜面21の安定性を高精度にかつ迅速に評価することができる。また、岩盤斜面21での計測作業がないので、作業の安全性が向上する。
また、本例では、レーザ光による測量によって求められた3次元座標データを用いて岩盤斜面21の走向・傾斜を求めているので、より精密なデータを得ることができる。
更に、統計的手法を用いて不連続面を検出しているので、個人毎の測定誤差の低減を図ることができる。
また、オーバーバング部22があるか否かを判定できるとともに、その具体的な形状を把握できるので、岩盤斜面21の補強前にオーバーバング部22を除去するか否か、また、除去する際にはオーバーバング部22のどこを除去すればよいかなどを事前に検討することができる。したがって、岩盤斜面の補強を効率よく行うことができる。
As described above, in the present embodiment, the three-dimensional laser scanner 11 is used to collect the three-dimensional coordinate data of the rock slope 21 and the triangular point having the sample point selected from the three-dimensional coordinate data as a vertex is represented. After creating the TIN model of the rock slope, the rock slope 21 calculates the strike / inclination of the surface represented by each triangle in the TIN model, and calculates the strike / inclination distribution of the calculated surface represented by each triangle. Since the slope distribution state is detected on the rock slope 21, a discontinuous surface having a strike / slope different from the strike / slope having the same slope as the average slope of the rock slope 21 is detected. A discontinuous surface of the slope 21 can be detected easily and reliably. Therefore, the stability of the rock slope 21 can be evaluated with high accuracy and speed. In addition, since there is no measurement work on the rock slope 21, work safety is improved.
Further, in this example, since the strike / inclination of the rock slope 21 is obtained using the three-dimensional coordinate data obtained by the laser beam survey, more accurate data can be obtained.
Furthermore, since the discontinuous surface is detected using a statistical method, it is possible to reduce the measurement error for each individual.
Moreover, since it can be determined whether or not there is an overbang portion 22 and the specific shape thereof can be grasped, whether or not to remove the overbang portion 22 before the reinforcement of the rock slope 21 is determined. It is possible to examine in advance where to remove the overbang portion 22. Therefore, the rock slope can be reinforced efficiently.

なお、前記実施の形態では、シュミットネットを用いたステレオ投影により、TINモデルの各三角形の面の走向・傾斜の分布を求めた後、不連続面を検出したが、算出されたTINモデルの各三角形の面に走向・傾斜から直接不連続面を検出するようにしてもよい。
具体的には、図7(a)に示すように、互いに隣接する三角形の面sp,sqの走向・傾斜を比較し、走向・傾斜の差が予め設定した許容値よりも小さい場合には、図7(b)に示すように、互いに隣接する三角形の面sp,sqの走向・傾斜が同じであると見做す。このような操作を繰り返すことにより、図7(c)に示すように、TINモデルの三角形の面を許容値の大きさによって決まる複数の面S0,S1,S2,S3,…,…,Snに分類することができる。その結果、掘削面(S0)と不連続面(S1〜Sn)とを区別することができるので、仮想斜面と走向・傾斜が異なる不連続面を確実に検出することができる。
更に、複数の面の頻度(%)をそれぞれ算出し、頻度の少ない面については仮想斜面と見做せば、不連続面を確実に検出することができる。
また、前記例では、岩盤斜面のモデルとしてTINモデルを用いたが、サンプル点を規則的に配置した数値標高モデル(DEM)を用い、サンプル点を結んだ各メッシュの面の走向・傾斜を算出してトンネル切羽の不連続面を抽出してもよい。なお、この場合には、サンプル点を結んで形成されるメッシュとしては三角形のメッシュに限らず、四角形などの多角形のメッシュを用いてもよい。また、三角形のメッシュと多角形のメッシュとの両方を用いてもよい。
また、前記例では、岩盤斜面21のオーバーバング部22を単に掘削除去したが、オーバーバング部22を掘削除去した後、除去された部分のみの走向・傾斜の分布を再測定すれば、岩盤斜面21の安定性評価の信頼性を更に向上させることができる。
In the above-described embodiment, discontinuous surfaces are detected after obtaining the strike / slope distribution of each triangular surface of the TIN model by stereo projection using a Schmitt net. You may make it detect a discontinuous surface directly from a strike and inclination to a triangular surface.
Specifically, as shown in FIG. 7 (a), when the strike / inclination of the triangular faces s p and s q adjacent to each other is compared, and the difference between the strike / inclination is smaller than a preset allowable value, As shown in FIG. 7 (b), it is considered that the strike directions and the inclinations of the triangular faces s p and s q adjacent to each other are the same. By repeating such an operation, as shown in FIG. 7C, a triangular surface of the TIN model has a plurality of surfaces S 0 , S 1 , S 2 , S 3 ,. ..., it can be classified into S n. As a result, the excavated surface (S 0 ) and the discontinuous surfaces (S 1 to S n ) can be distinguished, so that it is possible to reliably detect discontinuous surfaces having different strikes / tilts from the virtual slope.
Furthermore, by calculating the frequency (%) of each of the plurality of surfaces and regarding the less frequent surface as a virtual slope, a discontinuous surface can be reliably detected.
In the above example, the TIN model was used as the rock slope model. However, using the digital elevation model (DEM) in which sample points are regularly arranged, the strike and inclination of each mesh surface connecting the sample points is calculated. Then, the discontinuous surface of the tunnel face may be extracted. In this case, the mesh formed by connecting the sample points is not limited to a triangular mesh, and a polygonal mesh such as a quadrilateral may be used. Further, both a triangular mesh and a polygonal mesh may be used.
In the above example, the overbang portion 22 of the rock slope 21 is simply excavated and removed. However, after the overbang portion 22 is excavated and removed, if the distribution of the strike and inclination of only the removed portion is measured again, the rock slope The reliability of the 21 stability evaluation can be further improved.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は前記実施の形態に記載の範囲には限定されない。前記実施の形態に、多様な変更または改良を加えることが可能であることが当業者にも明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the embodiment. It is apparent from the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

本発明によれば、岩盤斜面の不連続面を効率よくかつ安全に検出することができるとともに、岩盤斜面の安定性評価を高精度にかつ迅速に行うことができるので、岩盤斜面の補強を効率よくかつ的確に行うことができる。   According to the present invention, the discontinuity of the rock slope can be detected efficiently and safely, and the stability of the rock slope can be evaluated with high accuracy and speed. It can be done well and accurately.

10 岩盤斜面の安定性評価装置、10A 演算部、11 3次元レーザスキャナ、
12 TINモデル作成手段、13 走向・傾斜算出手段、
14 走向・傾斜分布解析手段、15 不連続面検出手段、16 安定性判定手段、
17 表示手段、20 山体、21 岩盤斜面。
10 Rock slope stability evaluation device, 10A calculation unit, 11 3D laser scanner,
12 TIN model creation means, 13 strike / tilt calculation means,
14 strike / slope distribution analysis means, 15 discontinuous surface detection means, 16 stability determination means,
17 Display means, 20 mountains, 21 rock slope.

Claims (6)

3次元レーザ計測器を用いて岩盤が露出している岩盤斜面の3次元座標データを採取するステップと、
前記岩盤斜面を前記3次元座標データから選定されたサンプル点を頂点とする三角形網で表した岩盤斜面のTINモデルを作成するステップと、
前記TINモデルの各三角形の表わす面の走向・傾斜を算出するステップと、
前記三角形の表わす面の走向・傾斜の分布状態を求めるステップと、
前記分布状態から、前記岩盤斜面に、当該岩盤斜面の平均的な勾配と同じ勾配を有する斜面の走向・傾斜と異なる走向・傾斜を有する不連続面を検出するステップと有する岩盤斜面における不連続面の検出方法。
Collecting three-dimensional coordinate data of a rock slope where the rock is exposed using a three-dimensional laser measuring instrument;
Creating a TIN model of the rock slope representing the rock slope as a triangular network with the sample points selected from the three-dimensional coordinate data as vertices;
Calculating the strike / inclination of the surface represented by each triangle of the TIN model;
Obtaining a distribution state of strike / slope of the surface represented by the triangle;
A step of detecting a discontinuous surface having a strike / inclination different from the strike / inclination of the slope having the same gradient as the average slope of the rock slope from the distribution state, and a discontinuous surface in the rock slope having Detection method.
前記各三角形の表わす面をシュミットネットを用いてステレオ投影し、前記三角形の表わす面の走向・傾斜の分布を求める請求項1に記載の岩盤斜面における不連続面の検出方法。   The method for detecting a discontinuous surface on a rock slope according to claim 1, wherein the surface represented by each triangle is stereo-projected using a Schmitt net to obtain the strike / slope distribution of the surface represented by the triangle. 前記不連続面の頻度が所定値以下である時に、当該岩盤斜面が安定していると判定するステップを更に設けた請求項1または請求項2に記載の岩盤斜面における不連続面の検出方法。   The method for detecting a discontinuous surface on a rock slope according to claim 1 or 2, further comprising a step of determining that the rock slope is stable when the frequency of the discontinuous surface is a predetermined value or less. 前記岩盤斜面にオーバーバング部があった場合には、前記オーバーバング部を掘削除去した後に、前記オーバーバング部の除去された部分の走向・傾斜の分布を再測定する請求項1〜請求項3のいずれかに記載の岩盤斜面における不連続面の検出方法。   When there is an overbang portion on the rock slope, the strike / inclination distribution of the removed portion of the overbang portion is measured again after excavating and removing the overbang portion. The discontinuous surface detection method in the rock slope according to any one of the above. 前記TINモデルに代えてDEMを用いた請求項1に記載の岩盤斜面における不連続面の検出方法。   The method for detecting a discontinuous surface on a rock slope according to claim 1, wherein a DEM is used instead of the TIN model. 岩盤が露出している岩盤斜面の3次元座標データを採取する3次元データ採取手段と、
前記岩盤斜面を前記3次元座標データから選定されたサンプル点を頂点とする三角形網で表したTINモデルを作成するTINモデル作成手段と、
前記TINモデルの各三角形の頂点の3次元座標を用いて各三角形の表わす面の走向・傾斜を算出する走向・傾斜算出手段と、
シュミットネットを用いたステレオ投影を用いて各三角形の表わす面の走向・傾斜の分布を求める走向・傾斜分布解析手段と、
前記各三角形の表わす面の走向・傾斜の分布から前記岩盤斜面の平均的な勾配と同じ勾配を有する斜面の走向・傾斜と異なる走向・傾斜を有する不連続面を検出する不連続面検出手段とを備えた岩盤斜面における不連続面の検出装置。
3D data collection means for collecting 3D coordinate data of the rock slope where the rock is exposed;
A TIN model creating means for creating a TIN model in which the rock slope is represented by a triangular network having apexes of sample points selected from the three-dimensional coordinate data;
Strike / tilt calculation means for calculating the strike / inclination of the surface represented by each triangle using the three-dimensional coordinates of the vertices of each triangle of the TIN model;
A strike / tilt distribution analysis means for obtaining the strike / tilt distribution of the surface represented by each triangle using stereo projection using a Schmitt net,
Discontinuous surface detecting means for detecting a discontinuous surface having a strike / inclination different from the strike / inclination of the slope having the same gradient as the average slope of the rock slope from the distribution of the strike / inclination of the surface represented by each triangle; A device for detecting discontinuities on rock slopes with
JP2011211073A 2011-09-27 2011-09-27 Detection method of discontinuity surface on rock bed slope and detection device of the same Pending JP2013072705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211073A JP2013072705A (en) 2011-09-27 2011-09-27 Detection method of discontinuity surface on rock bed slope and detection device of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211073A JP2013072705A (en) 2011-09-27 2011-09-27 Detection method of discontinuity surface on rock bed slope and detection device of the same

Publications (1)

Publication Number Publication Date
JP2013072705A true JP2013072705A (en) 2013-04-22

Family

ID=48477335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211073A Pending JP2013072705A (en) 2011-09-27 2011-09-27 Detection method of discontinuity surface on rock bed slope and detection device of the same

Country Status (1)

Country Link
JP (1) JP2013072705A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104700407A (en) * 2015-03-11 2015-06-10 浙江大学 Rock mass crack recognizing method and system
CN109725132A (en) * 2019-02-21 2019-05-07 中国石油大学(华东) Measure a kind of short-cut method of crack figure in straight well core
JP2019148505A (en) * 2018-02-27 2019-09-05 鉄建建設株式会社 Running inclination measuring device and running inclination measuring method
CN113431997A (en) * 2021-06-22 2021-09-24 安徽科技学院 Geographic information system storage device capable of being used for terrain self-adaptive acquisition component
JP2022109302A (en) * 2018-02-27 2022-07-27 鉄建建設株式会社 Running inclination measuring device and running inclination measuring method
CN114812503A (en) * 2022-04-14 2022-07-29 湖北省水利水电规划勘测设计院 Cliff point cloud extraction method based on airborne laser scanning

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216999A (en) * 1985-03-22 1986-09-26 東急建設株式会社 Stable treatment of rock
JPH1162465A (en) * 1997-08-25 1999-03-05 Ohbayashi Corp System and method for evaluating natural ground stability in excavating rock-bed
JP2000146631A (en) * 1998-11-06 2000-05-26 Ohbayashi Corp Method for evaluating tunnel working face breakdown probability
JP2001032679A (en) * 1999-07-16 2001-02-06 Ohbayashi Corp Facing front crack distribution predicting method
JP2001271583A (en) * 2000-03-24 2001-10-05 Toda Constr Co Ltd Tunnel inner wall measuring system and measuring method
JP2003323640A (en) * 2002-04-26 2003-11-14 Asia Air Survey Co Ltd Method, system and program for preparing highly precise city model using laser scanner data and aerial photographic image
JP2004362087A (en) * 2003-06-03 2004-12-24 Japan Science & Technology Agency Method and program for forming image, recording medium, image formation device, and vector diagram of incline
JP2007048185A (en) * 2005-08-12 2007-02-22 Kokusai Kogyo Co Ltd System and method for creating color altitude and inclination map
JP2007293597A (en) * 2006-04-25 2007-11-08 Mitsubishi Electric Corp Analysis device, retrieval device and measurement device, and program
JP2008076405A (en) * 2007-10-16 2008-04-03 Topcon Corp Three-dimensional surveying apparatus and electronic storage medium
JP2010266419A (en) * 2009-05-18 2010-11-25 Kokusai Kogyo Co Ltd Method of analyzing topography change using topography image, and program thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216999A (en) * 1985-03-22 1986-09-26 東急建設株式会社 Stable treatment of rock
JPH1162465A (en) * 1997-08-25 1999-03-05 Ohbayashi Corp System and method for evaluating natural ground stability in excavating rock-bed
JP2000146631A (en) * 1998-11-06 2000-05-26 Ohbayashi Corp Method for evaluating tunnel working face breakdown probability
JP2001032679A (en) * 1999-07-16 2001-02-06 Ohbayashi Corp Facing front crack distribution predicting method
JP2001271583A (en) * 2000-03-24 2001-10-05 Toda Constr Co Ltd Tunnel inner wall measuring system and measuring method
JP2003323640A (en) * 2002-04-26 2003-11-14 Asia Air Survey Co Ltd Method, system and program for preparing highly precise city model using laser scanner data and aerial photographic image
JP2004362087A (en) * 2003-06-03 2004-12-24 Japan Science & Technology Agency Method and program for forming image, recording medium, image formation device, and vector diagram of incline
JP2007048185A (en) * 2005-08-12 2007-02-22 Kokusai Kogyo Co Ltd System and method for creating color altitude and inclination map
JP2007293597A (en) * 2006-04-25 2007-11-08 Mitsubishi Electric Corp Analysis device, retrieval device and measurement device, and program
JP2008076405A (en) * 2007-10-16 2008-04-03 Topcon Corp Three-dimensional surveying apparatus and electronic storage medium
JP2010266419A (en) * 2009-05-18 2010-11-25 Kokusai Kogyo Co Ltd Method of analyzing topography change using topography image, and program thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
三木 茂,西垣 好彦: "ブロック理論による岩盤斜面の解析と適用例", 構造地質(構造地質研究会誌), vol. 第37号, JPN7015001411, 1991, JP, pages 13 - 22, ISSN: 0003081185 *
土肥 秦之、外3名: "3Dレーザースキャナを用いたトンネル壁面のき裂の抽出に関する研究", 土木学会年次学術講演会講演概要集, vol. 62巻, JPN6015015967, September 2007 (2007-09-01), pages 6 - 052, ISSN: 0003081184 *
岩野政浩(大成建設): "第2編 地盤力学 第5章 岩盤力学 5.4.1 不連続面の幾何学特性と力学特性", 地盤工学ハンドブック, vol. 第1版, JPN6015050648, 20 March 1999 (1999-03-20), JP, pages 254 - 255, ISSN: 0003219198 *
長井 正、外5名: "姉山(所原)トンネルにおける急崖斜面に対する3Dレーザー計測を適用した調査と施工", 研究発表会講演論文集, vol. 平成21年, JPN6015015964, 22 October 2009 (2009-10-22), JP, pages 79 - 80, ISSN: 0003081183 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104700407A (en) * 2015-03-11 2015-06-10 浙江大学 Rock mass crack recognizing method and system
CN104700407B (en) * 2015-03-11 2018-02-13 浙江大学 The method and system of Rockmass fractures identification
JP2019148505A (en) * 2018-02-27 2019-09-05 鉄建建設株式会社 Running inclination measuring device and running inclination measuring method
JP7078927B2 (en) 2018-02-27 2022-06-01 鉄建建設株式会社 Strike and dip symbol measuring device and strike and dip symbol measuring method
JP2022109302A (en) * 2018-02-27 2022-07-27 鉄建建設株式会社 Running inclination measuring device and running inclination measuring method
JP7283708B2 (en) 2018-02-27 2023-05-30 鉄建建設株式会社 Strike-dip measurement device and method for measuring strike-dip
CN109725132A (en) * 2019-02-21 2019-05-07 中国石油大学(华东) Measure a kind of short-cut method of crack figure in straight well core
CN113431997A (en) * 2021-06-22 2021-09-24 安徽科技学院 Geographic information system storage device capable of being used for terrain self-adaptive acquisition component
CN113431997B (en) * 2021-06-22 2023-06-20 安徽科技学院 Geographic information system storage device that can self-adaptation topography collection part was used
CN114812503A (en) * 2022-04-14 2022-07-29 湖北省水利水电规划勘测设计院 Cliff point cloud extraction method based on airborne laser scanning
CN114812503B (en) * 2022-04-14 2024-05-28 湖北省水利水电规划勘测设计院 Cliff point cloud extraction method based on airborne laser scanning

Similar Documents

Publication Publication Date Title
JP5986362B2 (en) Method and apparatus for extracting discontinuity of tunnel face
Zhao et al. Structural health monitoring and inspection of dams based on UAV photogrammetry with image 3D reconstruction
Armesto et al. Terrestrial laser scanning used to determine the geometry of a granite boulder for stability analysis purposes
JP2013072705A (en) Detection method of discontinuity surface on rock bed slope and detection device of the same
JP2018531402A6 (en) Slope stability rider
JP2018531402A (en) Slope stability rider
Kim et al. Back analysis of a natural jointed rock slope based on the photogrammetry method
CN114021487B (en) Early warning method, device and equipment for landslide collapse and readable storage medium
Bobkowska et al. Implementation of spatial information for monitoring and analysis of the area around the port using laser scanning techniques
Tuckey An integrated field mapping-numerical modelling approach to characterising discontinuity persistence and intact rock bridges in large open pit slopes
Pérez-Rey et al. Failure mechanisms and stability analyses of granitic boulders focusing a case study in Galicia (Spain)
US20220404834A1 (en) Simulator
Otoo et al. 3-D discontinuity orientations using combined optical imaging and LiDAR techniques
JP6559201B2 (en) Analysis system, analysis method, and analysis program
Otoo et al. Verification of a 3-D LiDAR viewer for discontinuity orientations
KR102357109B1 (en) Tunnel surface mapping system under construction
Sala Game-Engine Based Rockfall Modelling: Testing and Application of a New Rockfall Simulation Tool
Kuczyńska et al. Modern applications of terrestrial laser scanning
JP6773280B2 (en) Tunnel excavation management method and management equipment
Maerz et al. Using LIDAR in highway rock cuts
Kamalzare et al. New visualization method to evaluate erosion quantity and pattern
JP2021046663A (en) Tunnel face state display system, tunnel face state display method, and moving measuring object
Otoo et al. Verification of a 3-D LiDAR point cloud viewer for measuring discontinuity orientations
KR20160075889A (en) Method of providing graphic user interface from geotechnical and associated structures safety monitoring system
KR102568835B1 (en) Safety management system for tunnel construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160705