JPH09327727A - Bending of shape - Google Patents
Bending of shapeInfo
- Publication number
- JPH09327727A JPH09327727A JP16830596A JP16830596A JPH09327727A JP H09327727 A JPH09327727 A JP H09327727A JP 16830596 A JP16830596 A JP 16830596A JP 16830596 A JP16830596 A JP 16830596A JP H09327727 A JPH09327727 A JP H09327727A
- Authority
- JP
- Japan
- Prior art keywords
- bending
- shape
- dimensional
- amount
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Bending Of Plates, Rods, And Pipes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、建材、自動車用部品等
に用いるアルミニウム合金等の形材に対し、固定金型と
可動金型との間で押し通し曲げを行う技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for pushing and bending a shaped material such as an aluminum alloy used for building materials, automobile parts, etc. between a fixed mold and a movable mold.
【0002】[0002]
【従来の技術】アルミニウム合金等の形材に押通し曲げ
を行うには、該形材の断面形状とほぼ同じ形状の挿通口
を有する固定金型と可動金型とを、それぞれ一定の間隔
を置いて配置し、これら2つの金型の間で所定の曲げ形
状を付与するような位置関係に可動金型を動かして両金
型間に該形材を押し通すことにより、所定の曲げ形状に
曲げ加工を行っていた。図1にこのような押通し曲げ装
置、いわゆるマルチベンダーを示す。1はアルミニウム
形材、2は固定金型、3は可動金型であって、可動金型
は、固定金型を通る軸線に垂直な平面内で変位可能であ
り、更に曲げ加工の方向に形材が押し通し易いようにこ
の平面内の変位した位置で角度θを変えることができ
る。図において、2つの金型の間を通る曲げ加工の曲線
が、目標とする曲げの曲率に形材の材料及び形状固有の
スプリングバックの影響を加えた半径Rの曲率となるよ
うに可動金型を動作量Mだけ変位するよう移動して、曲
げ加工に際しては、形材がこれら2つの金型の間を押し
通されて通る間に曲げ加工がなされる。なお、可動金型
の角度θは、形材が無理なく挿通するためのものであっ
て、角度を付与することによって曲げ加工を行うもので
はない。また、この種の押通し曲げ装置においては、一
般的に可動金型の動作機構は次のようになっている。図
1において左右方向(固定金型に対して形材が押し込ま
れる方向)をx、上下方向をy,また紙面に垂直な方向
をzとすると、可動金型はy軸方向、z軸方向に移動可
能で、またx軸、y軸、z軸を中心に回転制御可能な機
構とされている。なお、x軸を中心に可動金型が回転で
きるようになっているのは形材に形材の軸線回りの捩じ
り加工をできるようにするためである。このような曲げ
加工においては、可動金型を所定の曲げの曲率に合わせ
て固定金型の軸線に垂直な平面内で変位・移動を行わな
ければならないが、単純な曲げや一定の曲率の曲げ加工
であれば、実験的に加工条件を確認してその変位位置や
動作量の設定を行えば良いが、立体的な3次元の形状に
沿った曲げ加工では、形材の押し込みと共に所定の曲げ
形状に沿った曲げを付与し、曲げ加工の進行に伴って順
次、所定の曲げ形状に沿った曲げの曲率に応じて可動金
型の動作量を決定して加工を行う必要がある。しかしな
がら、このような3次元立体形状に対しては、加工位置
(形材の長手方向の位置)によって異なるそれぞれの曲
げの曲率及び曲げの方向を把握して、可動金型の動作量
を算出することは困難であり、可動金型の自動的な制御
による正確な曲げ加工は実現し難かった。2. Description of the Related Art In order to press and bend a shape material such as an aluminum alloy, a fixed mold having an insertion opening having a shape substantially the same as the cross-sectional shape of the shape material and a movable mold are provided at regular intervals. It is placed and placed, and the movable die is moved in such a positional relationship as to give a predetermined bending shape between these two dies, and the shape member is pushed between the two dies to bend it into a predetermined bending shape. I was working. FIG. 1 shows such a push-through bending device, a so-called multi-bender. Reference numeral 1 is an aluminum shape member, 2 is a fixed mold, 3 is a movable mold, and the movable mold is displaceable in a plane perpendicular to an axis passing through the fixed mold and further shaped in a bending direction. The angle θ can be changed at a displaced position in this plane so that the material can be easily pushed through. In the figure, the movable mold is such that the curve of the bending process that passes between the two molds has a radius of curvature R that is the effect of the target bending curvature and the springback specific to the material of the shape and shape. Is moved so as to be displaced by the operation amount M, and in the bending process, the bending process is performed while the profile is being pushed between these two molds and passing therethrough. It should be noted that the angle θ of the movable mold is for allowing the shape member to be inserted smoothly, and the bending process is not performed by giving the angle. In addition, in this type of push-through bending device, generally, the operation mechanism of the movable mold is as follows. In FIG. 1, when the horizontal direction (the direction in which the shape member is pushed into the fixed mold) is x, the vertical direction is y, and the direction perpendicular to the paper surface is z, the movable mold is in the y-axis direction and the z-axis direction. The mechanism is movable and capable of rotation control around the x-axis, y-axis, and z-axis. The movable die can be rotated around the x-axis so that the profile can be twisted around the axis of the profile. In such a bending process, the movable die must be displaced and moved in a plane perpendicular to the axis of the fixed die in accordance with the curvature of a predetermined bend, but a simple bend or a bend with a certain curvature is required. In the case of machining, it is sufficient to confirm the machining conditions experimentally and set the displacement position and the amount of movement, but in bending along a three-dimensional three-dimensional shape, it is possible to push the profile and bend it in a predetermined manner. It is necessary to apply a bend along the shape, and sequentially perform the processing by determining the operation amount of the movable mold according to the curvature of the bend along the predetermined bend shape as the bending process progresses. However, for such a three-dimensional solid shape, the amount of movement of the movable mold is calculated by grasping the bending curvature and the bending direction that differ depending on the processing position (position in the longitudinal direction of the profile). It is difficult to achieve accurate bending by automatic control of the movable mold.
【0003】[0003]
【発明が解決しようとする課題】本発明は、このような
問題を解消すべく案出されたものであり、固定金型と可
動金型によって、これらアルミニウム合金などの形材の
曲げ加工を行う方法において、予め設定された立体的な
3次元の曲げ形状に従って、自動的な制御による正確な
押通し曲げを可能とすることを目的とする。SUMMARY OF THE INVENTION The present invention has been devised to solve such a problem. Bending of a shape material such as aluminum alloy is performed by a fixed mold and a movable mold. It is an object of the method to enable accurate push-through bending by automatic control according to a preset three-dimensional three-dimensional bending shape.
【0004】[0004]
【課題を解決するための手段】請求項1記載の発明は、
上記課題を達成するため、固定金型及び可動金型を使用
した押し通し曲げにより形材を立体的な3次元形状に曲
げ加工する方法において、目的曲げ形状に対してその3
次元直交座標系における座標値を把握して、形材の任意
位置での曲率半径と曲げ方向を算出すると共に、加工開
始位置より該任意位置までの立体的な3次元形状に沿う
長さを算出し、押し込み量が該3次元形状に沿う長さの
時点において、可動金型の理論動作量を前記算出された
曲率半径と曲げ方向により決定し、該理論動作量に形材
の材質及び形状に固有のスプリングバックによる補正係
数を乗じて可動金型の動作量を決定し、形材の曲げ開始
位置より曲げ完了位置まで、連続して曲げ加工を行うこ
とを特徴とする。これにより、三次元立体座標系におけ
る座標値により曲げ半径と曲げ方向を幾何学的に算出
し、自動的な制御による三次元の立体的曲げ加工を行う
ことができる。また、請求項2の発明では、第1項の発
明の方法にかかる押通し曲げにより形材を立体的な3次
元形状に曲げ加工する方法における具体的な工程を規定
して、第1工程として、目的曲げ形状をその長手方向を
X軸方向にして3次元XYZ立体座標系における座標値
として把握する工程、第2工程として、長尺材の曲げ開
始位置P1 から任意の位置Pn までの目的曲げ形状に沿
う積算値Ln をP1 からPn までの座標値により求める
工程、第3工程として、第1工程の座標値をXY座標面
及びXZ座標面に投影した座標におけるPn 位置におけ
る曲げ半径RXY、RXZを、Pn-1 、Pn 及びPn+1 の座
標より求める工程、第4工程として、固定金型に対する
形材の押し込み方向をx軸、x軸に直交する方向をy
軸、x軸とy軸に直交する方向をz軸とし、形材を固定
金型に押し込みつつ加工開始位置よりの押し込み量Ln
の時点で可動金型をy軸方向の移動及びz軸回りの回転
にてRxyに対応するスプリングバックを補正した動作量
を決定すると共に、同じく可動金型をz軸方向の移動及
びy軸回りの回転にてRxzに対応するスプリングバック
を補正した動作量を決定し、かくして加工開始位置より
の押し込み量Ln の時点で上記動作量で可動金型を動作
させながら形材の曲げ開始位置より曲げ完了位置まで、
連続して曲げ加工を行う工程により、曲げ加工を行うも
のである。更に、請求項3の発明では、請求項1及び2
の実際の曲げ加工に伴うスプリングバックを補正するた
め、補正係数Cを次式により算出して可動金型の移動量
を制御することを特徴とする。 C={A×(Z×σ0.2 )+0.3}×10-3 ×R+
B ただし、A:(8〜11)×10-6の範囲にある係数 B:3.0〜3.6の範囲にある定数 Z:形材断面における引っ張り側と圧縮側の断面係数の
平均値(mm3 ) σ0.2 :引張り試験における0.2%耐力(kgf/m
m2 ) R:曲げ加工の曲率半径(mm) これにより、スプリングバックを補正する場合の補正係
数を正確に求めることが可能となり、加工精度を向上さ
せることが可能となる。更にまた、請求項4の発明によ
れば、請求項1、2及び3の発明において、上記曲げの
曲率半径に応じて幾何学的に算出される理論回転角度θ
t の45〜55%に可動金型の回転量を設定することに
より、曲げ加工に際して、形材の皺や座屈の発生を防止
するものである。なお、ここで理論回転角θt は、可動
金型動作量をMとした場合、θt =2×tan-1(M/
L)で与えられる角度で、形材が固定金型の出口よりx
軸線方向に出て、可動金型の入口に向けて半径Rの円弧
を描いて通過すると想定し、可動金型と可動金型を通過
する形材の接線方向とを直交させた場合の可動金型の回
転角である。本発明は、このような構成により、立体的
な3次元形状の曲げ加工を行うための可動金型の変位動
作制御を正確かつ敏速に行うことを可能とするものであ
る。According to the first aspect of the present invention,
In order to achieve the above-mentioned object, in a method of bending a shape into a three-dimensional three-dimensional shape by push-through bending using a fixed mold and a movable mold, a method of
By grasping the coordinate values in the three-dimensional Cartesian coordinate system, calculate the radius of curvature and bending direction of the profile at an arbitrary position, and also calculate the length along the three-dimensional shape from the processing start position to the arbitrary position. Then, when the pushing amount is a length along the three-dimensional shape, the theoretical operation amount of the movable mold is determined by the calculated radius of curvature and bending direction, and the theoretical operation amount is determined by the material and shape of the shape member. It is characterized in that the amount of movement of the movable mold is determined by multiplying the correction coefficient by the unique springback, and bending is continuously performed from the bending start position of the profile to the bending completion position. Thereby, the bending radius and the bending direction are geometrically calculated by the coordinate values in the three-dimensional solid coordinate system, and the three-dimensional solid bending can be performed by the automatic control. Further, in the invention of claim 2, a specific step in the method of bending the profile into a three-dimensional three-dimensional shape by the push-through bending according to the method of the first aspect is defined, and the first step is defined. A step of grasping the target bending shape as coordinate values in a three-dimensional XYZ three-dimensional coordinate system with the longitudinal direction thereof as the X-axis direction, and as a second step, from the bending start position P 1 of the long material to an arbitrary position P n The step of obtaining the integrated value L n along the target bending shape by the coordinate values from P 1 to P n , and the third step is the P n position in the coordinates where the coordinate values of the first step are projected on the XY coordinate plane and the XZ coordinate plane. As a fourth step of obtaining the bending radii R XY and R XZ in P from the coordinates of P n-1 , P n and P n + 1 , the pushing direction of the shape member with respect to the fixed mold is orthogonal to the x axis and the x axis. Direction y
The z-axis is the direction orthogonal to the x-axis and the x-axis and the y-axis, and the pushing amount L n from the machining start position while pushing the shape member into the fixed mold.
At the point of time, the movable die is moved in the y-axis direction and is rotated about the z-axis to determine an operation amount in which the spring back corresponding to R xy is corrected, and the movable die is also moved in the z-axis direction and the y-axis. The amount of movement corresponding to the spring back corresponding to R xz is determined by the rotation of the circumference, and at the point of the pushing amount L n from the machining start position, the bending of the profile is started while operating the movable mold with the above amount of movement. From the position to the bending complete position,
Bending is performed by a process of continuously performing bending. Further, according to the invention of claim 3,
In order to correct the springback caused by the actual bending work, the correction coefficient C is calculated by the following equation to control the moving amount of the movable mold. C = {A × (Z × σ 0.2 ) +0.3} × 10 −3 × R +
B where A is a coefficient in the range of (8 to 11) × 10 −6 B is a constant in the range of 3.0 to 3.6 Z is an average value of the cross-section coefficients of the tension side and the compression side in the cross section of the shape member (Mm 3 ) σ 0.2 : 0.2% proof stress in tensile test (kgf / m
m 2 ) R: radius of curvature of bending (mm) With this, it is possible to accurately obtain a correction coefficient when correcting springback, and it is possible to improve processing accuracy. Still further, according to the invention of claim 4, in the inventions of claims 1, 2 and 3, the theoretical rotation angle θ calculated geometrically according to the radius of curvature of the bending.
By setting the rotation amount of the movable mold to 45 to 55% of t , it is possible to prevent wrinkles and buckling of the profile during bending. Note that here, the theoretical rotation angle θ t is θ t = 2 × tan −1 (M /
At the angle given by L), the profile is x from the exit of the fixed mold.
It is assumed that the movable mold and the tangential direction of the shape member passing through the movable mold are orthogonal to each other, assuming that they are drawn in the axial direction and draw an arc of a radius R toward the entrance of the movable mold and pass through the movable mold. The angle of rotation of the mold. According to the present invention, with such a configuration, it is possible to accurately and promptly perform displacement operation control of a movable mold for bending a three-dimensional three-dimensional shape.
【0005】[0005]
【実施の態様】以下に、図面を参照して本発明を具体的
に説明する。被加工材のアルミニウム形材1の予め目標
として設定された立体的な曲げ形状を図3に示す。図3
において、形材の曲げられた形状の長手方向をX軸に概
ね一致させる。これに垂直な方向をそれぞれY及びZ軸
とする。図4及び5に形材1の加工すべき立体形状をX
−Y及びX−Z平面に投影した形状をその形材の中心軸
線で示す。被加工材の立体的な曲げ形状は、これらX、
Y、Z軸の直交座標系の座標値P(x,y,z)で与え
られる。この場合、スプリングバック等を無視すれば可
動金型に動作量(M)を与えた場合、図1において、形
材はx方向に押し込まれ、固定金型の出口を出た際には
x方向にむけて押し出され、その直後より可動金型に向
けて一定半径の円弧を描いて曲げ加工がされる。なお、
本明細書において可動金型の動作量(M)とは、固定金
型の軸線(x)に対して直交する平面での可動金型の軸
線上の位置からの移動量をいう。形材が可動金型を通過
した際には、その時点における可動金型の動作量(M)
に見合う円弧に加工されて可動金型より出る。このこと
は、形材における任意の位置が固定金型をでた後、可動
金型を出るまでの間に可動金型の動作量(M)が変化し
たとしても、可動金型を通過する時点での可動金型の動
作量(M)に依存して、加工後の曲げ形状は、可動金型
より出る時点での可動金型の動作量(M)で決まること
を意味する。以上により、押し込み量に対応する可動金
型の動作量を求めればよいのであるが、押し込み量は曲
げ加工前後での形材の長手方向の長さは変わらないとし
て、立体的な曲げ形状に沿う加工開始位置よりの長さで
求まる。これにより、形材の所定位置での曲げ半径と曲
げ方向が解れば、形材の装置への押し込み量に対する可
動金型の動作量を求めておき、所定の押し込み量に対応
する動作量で可動金型を動作させればよい。また、可動
金型の動作量(M)は前記3次元立体座標系の形状をX
−Y及びX−Z平面に投影した形状により所定位置での
曲率半径を求め、y軸方向の可動金型の動作量(My )
とz軸方向の可動金型の動作量(Mz )をそれぞれ両方
向にそれぞれの動作量分、可動金型を動作させればよ
い。なお、押し込み量とこれに対応する可動金型の動作
量(M)の算出は連続して行えばよいが、この算出操作
を適当な間隔毎に行い、形材の押し込みと可動金型の動
作をこの間隔でスムーズに行えば最小限の誤差で曲げ加
工が行える。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below with reference to the drawings. FIG. 3 shows a three-dimensional bent shape of the aluminum profile 1 which is the workpiece, which is set as a target in advance. FIG.
In, the longitudinal direction of the bent shape of the profile is approximately aligned with the X axis. The directions perpendicular to this are the Y and Z axes, respectively. 4 and 5 show the three-dimensional shape of the profile 1 to be processed as X.
The shape projected on the -Y and X-Z planes is shown by the central axis of the profile. The three-dimensional bending shape of the work material is these X,
It is given by the coordinate value P (x, y, z) in the Cartesian coordinate system of the Y and Z axes. In this case, if the movable die is given a movement amount (M), ignoring springback, etc., in FIG. 1, the profile is pushed in the x-direction, and when it exits the fixed die, it is in the x-direction. Immediately after that, it is bent by drawing an arc with a constant radius toward the movable mold. In addition,
In this specification, the movement amount (M) of the movable mold means the amount of movement from the position on the axis of the movable mold on a plane orthogonal to the axis (x) of the fixed mold. When the profile passes through the movable mold, the amount of movement of the movable mold at that time (M)
It is processed into an arc that fits in and comes out of the movable mold. This means that when the movable die moves through the movable die even if the movable die movement amount (M) changes after leaving the fixed die at an arbitrary position on the shape material and before leaving the movable die. It means that the bent shape after processing depends on the operation amount (M) of the movable mold at the time of exit from the movable mold, depending on the operation amount (M) of the movable mold. From the above, the amount of movement of the movable mold corresponding to the amount of pushing can be obtained, but the amount of pushing does not change the longitudinal length of the profile before and after bending, and follows the three-dimensional bending shape. It can be calculated from the length from the machining start position. By this, if the bending radius and bending direction of the shape at a predetermined position are known, the amount of movement of the movable mold with respect to the amount of pushing of the shape into the device is obtained, and the amount of movement corresponding to the predetermined amount of pushing can be moved. Just move the mold. In addition, the movement amount (M) of the movable mold is the X-shape of the three-dimensional solid coordinate system.
Calculated curvature radius at the predetermined position by the shape obtained by projecting the -Y and X-Z plane, the operation amount of the movable die in the y-axis direction (M y)
And the z-axis movable die movement amount (M z ) may be moved in both directions by the respective movement amounts. It should be noted that the amount of pushing and the amount of movement (M) of the movable mold corresponding thereto may be calculated continuously, but this calculation operation is performed at appropriate intervals to push the shape and move the movable mold. If this is done smoothly at this interval, bending can be performed with a minimum error.
【0006】すなわち、これら曲げ加工の過程の任意の
位置P(x,y,z)で見ると、図3に示すように、こ
れらの位置P1 、P2 、P3 、・・・における細分され
た位置毎に、その曲率半径に応じて可動金型の固定金型
との相対的な動作量を制御することにより曲げ加工を行
い、順次にP2 、P3 、・・・Pn と加工を進行するこ
とにより、予め設定された立体形状に曲げ加工すること
ができる。そこで、曲げ加工における形材の隣り合う位
置P1 とP2 間の長さLをX、Y、Z座標上の位置で求
めると、X−Y座標では、位置P1 (P1X、P1Y)から
位置P2 (P2X、P2Y)までの長さLXYは、直線で近似
してこれらの座標から、 LXY=[(P2X−P1X)2 +(P2Y−P1Y)2 ]1/2 (1) 同様にX−Z座標で、位置P1 から位置P2 までの長さ
LXZは、 Lxz=[(P2X−P1X)2 +(P2Z−P1Z)2 ]1/2 (2) であるから、X、Y、Z軸の3次元立体形状における形
材の区間P1 P2 の長さLは、次の式から求めることが
できる。 L=[(LXY)2 +(LXZ)2 ]1/2 (3) したがって、形材の任意の曲げ加工位置Pn における立
体的な曲げ形状における加工開始位置よりの長さは、こ
れらの積算値Ln として決定される。That is, when viewed at arbitrary positions P (x, y, z) in the bending process, as shown in FIG. 3, subdivisions at these positions P 1 , P 2 , P 3 ,. for each location, performs bending by controlling the relative operation amount of the fixed mold of the movable mold in accordance with the radius of curvature, sequentially P 2, P 3, and · · · P n By advancing the processing, it is possible to perform bending processing into a preset three-dimensional shape. Therefore, when the length L between the adjacent positions P 1 and P 2 of the profile in the bending process is determined by the position on the X, Y, Z coordinates, the position P 1 (P 1X , P 1Y on the XY coordinates is obtained. ) To the position P 2 (P 2X , P 2Y ), the length L XY is approximated by a straight line, and from these coordinates, L XY = [(P 2X −P 1X ) 2 + (P 2Y −P 1Y ). 2 ] 1/2 (1) Similarly, in XZ coordinates, the length L XZ from the position P 1 to the position P 2 is L xz = [(P 2X −P 1X ) 2 + (P 2Z −P 1Z ) 2 ] 1/2 (2), the length L of the section P 1 P 2 of the profile in the three-dimensional solid shape of the X, Y, and Z axes can be obtained from the following formula. L = [(L XY ) 2 + (L XZ ) 2 ] 1/2 (3) Therefore, the length from the processing start position in the three-dimensional bending shape at any bending processing position P n of the profile is Is determined as the integrated value L n .
【0007】次に、位置P2 における曲げの曲率半径R
を求める。図3〜5に示す形材の形状を表す曲線上の点
P1 、P2 、P3 の3点間を通る線分をX−Y平面に投
影した部分拡大図を図6に示す。この間の線分を点Q
(QX 、QY )を中心とする円弧と近似すると、直線P
1 P2 の中点の座標A(AX ,AY )は、点P1 、P2
の座標P1 (P1X、P1Y)及びP2 (P2X、P2Y)か
ら、 AX =(P1X+P2X)/2 (4) AY =(P1Y+P2Y)/2 (5) 同様にして、直線P2 P3 の中点の座標B(BX ,B
Y )は、 BX =(P2X+P3X)/2 (6) BY =(P2Y+P3Y)/2 (7) である。また、直線P1 P2 の勾配は、(P2y−P1y)
/(P2x−P1x)、また直線P2P3 の勾配は、(P3y
−P2y)/(P3x−P2x)であって、直線QAの勾配α
は、直線P1 P2 とQAが直交するから、 α=−1×(P2x−P1x)/(P2y−P1y) (8) 直線QBの勾配βも同様に、直線P2 P3 とQBとが直
交するから、 β=−1×(P3x−P2x)/(P3y−P2y) (9) また、点Qを通る2直線QA、QBから 直線QAの勾配 α=QY −AY /QX −AX (10) 直線QBの勾配 β=QY −BY /QX −BX (11) QY −AY =α(QX −AX ) (12) QY −BY =β(QX −BX ) (13) 未知数QY を消去して、 α(QX −AX )+AY =β(QX −BX )+BY (14) これらから、 α・QX −α・AX +AY =β・QX −β・BX +BY (15) QX =(−β・BX +BY +α・AX −AY )/(α−β) (16) 従って、Q点のx座標QX が定まり、同様にして、QY
が定まる。よって、曲率半径Rは以下のとおりとなる。 R=[(QX −AX )2 +(QY −AY )2 ]1/2 (17) 従って、(16)式におけるα、βに(8)、(9)式
を代入し、この式を(17)式に代入することによりP
1 、P2 、P3 の座標値よりP2 位置における曲率半径
Rが求まる。また、点P1 、P2 、P3 について、これ
らの計算を行ったが、これらの後の2点P2 、P3 を順
次重複させてP2 、P3 、P4 によりP3 位置で曲率半
径Rを算出することにより、常に適切な曲げ加工を行う
ことができる。Next, the radius of curvature R of bending at the position P 2
Ask for. FIG. 6 shows a partially enlarged view in which a line segment passing between three points P 1 , P 2 , and P 3 on the curve representing the shape of the profile shown in FIGS. 3 to 5 is projected on the XY plane. The line segment between these points is point Q
Approximating an arc centered at (Q X , Q Y ) as a straight line P
The coordinates A (A X , A Y ) of the midpoint of 1 P 2 are the points P 1 , P 2
From the coordinates P 1 (P 1X , P 1Y ) and P 2 (P 2X , P 2Y ) of A X = (P 1X + P 2X ) / 2 (4) A Y = (P 1Y + P 2Y ) / 2 (5 ) Similarly, the coordinates B (B X , B) of the midpoint of the straight line P 2 P 3
Y ) is B X = (P 2X + P 3X ) / 2 (6) B Y = (P 2Y + P 3Y ) / 2 (7). The slope of the straight line P 1 P 2 is (P 2y −P 1y ).
/ (P 2x −P 1x ), and the slope of the straight line P 2 P 3 is (P 3y
−P 2y ) / (P 3x −P 2x ), and the gradient α of the straight line QA
, Since the straight line P 1 P 2 and QA are orthogonal, α = −1 × (P 2x −P 1x ) / (P 2y −P 1y ) (8) The slope β of the straight line QB is also the straight line P 2 P Since 3 and QB are orthogonal to each other, β = −1 × (P 3x −P 2x ) / (P 3y −P 2y ) (9) In addition, two straight lines QA and QB passing through the point Q have a gradient α = Q Y −A Y / Q X −A X (10) Gradient β = Q Y −B Y / Q X −B X (11) Q Y −A Y = α (Q X −A X ) (12) ) Q Y −B Y = β (Q X −B X ) (13) Eliminating the unknown Q Y , α (Q X −A X ) + A Y = β (Q X −B X ) + B Y (14) these, α · Q X -α · A X + A Y = β · Q X -β · B X + B Y (15) Q X = (- β · B X + B Y + α · A X -A Y) / ( α-β) (16) Therefore, the x coordinate Q X of the Q point is determined, and similarly, Q Y
Is determined. Therefore, the radius of curvature R is as follows. R = [(Q X -A X ) 2 + (Q Y -A Y) 2] 1/2 (17) Thus, (16) alpha in the equation, the beta (8), by substituting equation (9), By substituting this equation into equation (17), P
The radius of curvature R at the P 2 position can be obtained from the coordinate values of 1 , P 2 , and P 3 . Also, these points P 1 , P 2 and P 3 were calculated, but the two points P 2 and P 3 after these points were sequentially overlapped, and at the P 3 position by P 2 , P 3 and P 4. By calculating the radius of curvature R, appropriate bending can always be performed.
【0008】次に上記XY平面にて見た場合の曲率半径
Rに対する可動金型の理論動作量My (y方向に対する
移動量)は、図7を参照して次のように計算する。押し
出された形材は固定金型を出た直後はx方向に出て、可
動金型に入るまで半径Rの円弧を描いて可動金型より半
径Rの曲げを付与されて、連続して出て行くこととして
近似される。この場合、この半径Rの中心は固定金型出
口のy軸方向にある。固定金型の出口aとこの半径Rの
中心c間の距離はRである。ここで、理論動作量My に
おける可動金型の中心bよりx方向、即ち直線acに降
ろした垂線の足をdとするとcbdは直角三角形であっ
て、ca=R、bd=Lであるから、 cd=(R2 −L2 )1/2 My =ad=R−(R2 −L2 )1/2 となる。以上の関
係はX−Z座標系でも同様に成り立つから、可動金型の
Z軸方向の理論動作量Mz が求まる。このようにして計
算されたY軸方向及びZ軸方向の可動金型動作量をそれ
ぞれ用い、押し込み量積算値Ln におけるX−Y座標面
での曲率半径と、X−Z座標面での曲率半径により、可
動金型のy方向の理論動作量とz方向の理論動作量を求
めることにより、立体的な3次元の形状の曲げ加工を行
うことができる。これらの数値処理は、3次元立体形状
の数値が与えられれば、自動的に容易に算出されるもの
であり、これによって曲げ加工を連続的に正確に行うた
めの可動金型の動作量を容易に得ることができる。尚、
以上の説明では可動金型の動作量制御をy方向、z方向
に行うよう目標曲げ形状をX−Y座標とX−Z座標に分
解して加工する制御法を示したが、曲率半径とその曲げ
方向を求めて、この曲げ方向に直接可動金型を動作させ
てもよい。Next, the theoretical operation amount M y (movement amount in the y direction) of the movable mold with respect to the radius of curvature R when viewed on the XY plane is calculated as follows with reference to FIG. Immediately after exiting the fixed mold, the extruded profile exits in the x-direction, draws an arc of radius R until it enters the movable mold, is bent by the movable mold with radius R, and is continuously ejected. It is approximated as going. In this case, the center of this radius R is in the y-axis direction of the fixed mold outlet. The distance between the outlet a of the fixed mold and the center c of this radius R is R. Here, when the foot of a perpendicular line drawn from the center b of the movable mold in the theoretical motion amount M y to the x direction, that is, the straight line ac is d, cbd is a right triangle, and ca = R and bd = L. , cd = (R 2 -L 2 ) 1/2 M y = ad = R- (R 2 -L 2) becomes 1/2. Since the above relationship holds in the X-Z coordinate system as well, the theoretical operation amount M z of the movable mold in the Z-axis direction can be obtained. Using the movable die movement amounts in the Y-axis direction and the Z-axis direction calculated in this way, respectively, the radius of curvature on the XY coordinate plane and the curvature on the XZ coordinate plane at the integrated value L n of the pushing amount. By calculating the theoretical operation amount of the movable die in the y direction and the theoretical operation amount of the z direction from the radius, it is possible to perform a three-dimensional three-dimensional shape bending process. These numerical processes are easily calculated automatically if a numerical value of a three-dimensional solid shape is given, which facilitates the operation amount of the movable mold for continuously and accurately performing bending. Can be obtained. still,
In the above description, the control method in which the target bending shape is decomposed into the XY coordinates and the XZ coordinates so as to perform the motion amount control of the movable mold in the y direction and the z direction and processed, is shown. The movable die may be directly operated in the bending direction after obtaining the bending direction.
【0009】以上の可動金型の動作量は、形材の幾何学
的な立体形状から導いた理論動作量であるが、実際の曲
げ加工においては、材質や断面形状などに固有のスプリ
ングバックを伴うため、目標とする形状に正確に曲げ加
工を行うにはこれらのスプリングバックを見込む補正を
行う必要がある。すなわち、本発明者らは、先に特願平
7−184793号の出願において、これらスプリング
バックに対する補正係数の関係を解明して補正方法を提
案している。図8において、曲げ加工の曲率半径と金型
動作量との関係を示すとおり、目標とする形状とするた
め前記の手法により算出した曲げ加工の可動金型の動作
量すなわち理論動作量Mt に対して実際に目標とする曲
げ加工の形状とするために行った金型の動作量Ma との
間には動作量の差があり、この差がいわゆるスプリング
バックに相当する。The above-mentioned amount of movement of the movable die is a theoretical amount of movement derived from the geometrical three-dimensional shape of the shape material, but in actual bending, a springback peculiar to the material and the cross-sectional shape is applied. Therefore, it is necessary to correct these springbacks in order to accurately perform bending work on a target shape. That is, the present inventors previously proposed a correction method in the application of Japanese Patent Application No. 7-184793 by clarifying the relationship of the correction coefficient with respect to these springbacks. In FIG. 8, as shown by the relationship between the radius of curvature of bending and the amount of movement of the die, the amount of movement of the movable die for bending, that is, the theoretical amount of movement M t , calculated by the above-described method to obtain the target shape Indeed there is a difference in movement amount between the mold operation amount M a conducted to the bending shape the target for this difference corresponds to a so-called spring-back.
【0010】図8に示す関係から、動作量の比Ma /M
t とRとの関係を各種の材質の形材ごとに図に示すと、
図9に見るとおり形材の材質及び形状に固有の傾きを有
する直線で表され、また、図示のとおり、各直線はほぼ
一点Bを通る。このことから、可動金型の理論動作量M
t に対する実行動作量Ma の比Ma /Mt と曲げの曲率
半径との関係を実験的に求めて、以下に示す式による補
正係数Cを算出できる。 C=α・R+B (18) ただし、 C:補正係数 α:各形材ごとの直線の傾き(b/a):図9参照 R:曲率半径(mm) B:実験によって得られた横軸との交点。図より3.0
〜3.6の範囲にある定数 ところで、これらの各試料ごとに直線の傾きが異なる
が、このようなスプリングバック量に影響する因子は、
材料の0.2%耐力(σ0.2 )、断面係数(Z)、及び
曲げ半径Rであると見ることができる。これらの試料に
ついて、直線の傾きとZ×σ0.2 との関係を求めると図
10に示す結果が得られた。これらの関係も直線関係に
あり、一次関数で近似できるから、上記直線の傾きα
は、 α={A×(Z×σ0.2 )+D}×10-3 (19) ただし、 A:図10の直線の傾き(x/y)を示し、9.5×1
0-3を中間点として(8〜11)×10-6の範囲にあ
る。 Z:断面係数Zは形材断面における引っ張り側と圧縮側
の平均値で表される(mm3 ) σ0.2 :0.2%耐力(kgf/mm2 ) D:直線と横軸との交点(=0.3) よって、式(16)と(17)とから、 C={A×(Z×σ0.2 )+0.3}×10-3×R+B (20) 従って、この補正係数を見込んだ曲げ加工のための可動
金型の動作量Mt は、次のようになる。 Ma =C・Mt このようにして得られた可動金型動作量を用いることに
より、高精度の曲げ加工が可能となる。From the relationship shown in FIG. 8, the ratio of operation amount M a / M
When the relationship between t and R is shown in the figure for each shape of various materials,
As shown in FIG. 9, it is represented by a straight line having an inclination peculiar to the material and shape of the shape member, and as shown in the drawing, each straight line passes through substantially one point B. From this, the theoretical operation amount M of the movable mold
the relationship between the radius of curvature of the bending ratio M a / M t execution operation amount M a for t experimentally obtained, it calculates the correction coefficient C by the equation shown below. C = α · R + B (18) where C: correction coefficient α: slope of straight line for each shape (b / a): see FIG. 9 R: radius of curvature (mm) B: horizontal axis obtained by experiment Intersection. 3.0 from the figure
A constant in the range of up to 3.6 By the way, although the slope of the straight line differs for each of these samples, the factors that influence the amount of springback are:
It can be seen as the 0.2% proof stress (σ 0.2 ) of the material, the section modulus (Z) and the bending radius R. When the relationship between the slope of the straight line and Z × σ 0.2 was obtained for these samples, the results shown in FIG. 10 were obtained. These relationships are also linear relationships and can be approximated by a linear function.
Is α = {A × (Z × σ 0.2 ) + D} × 10 −3 (19) where A is the slope (x / y) of the straight line in FIG. 10, and 9.5 × 1
It is in the range of (8 to 11) × 10 −6 with 0 −3 as the midpoint. Z: Section modulus Z is represented by the average value on the tensile side and the compression side in the section of the profile (mm 3 ) σ 0.2 : 0.2% proof stress (kgf / mm 2 ) D: The intersection of the straight line and the horizontal axis ( = 0.3) Therefore, from equations (16) and (17), C = {A × (Z × σ 0.2 ) +0.3} × 10 −3 × R + B (20) Therefore, this correction coefficient is estimated. The operation amount M t of the movable mold for bending is as follows. M a = C · M t By using the movable die movement amount obtained in this way, highly accurate bending can be performed.
【0011】更に、前記したように押し通し曲げに際し
て、固体金型に対して可動金型を変位した動作位置にお
いて、形材中心軸線と可動金型の中心線との交点を中心
として、回転角θを与えて曲げに伴う形材のしわの発生
や座屈を防止しているが、本発明者らは、先にこの回転
角θにおいて、固定金型及び可動金型を使用した押し通
し曲げで形材を曲げ加工する際、曲げ半径に応じて幾何
学的に算出される理論的な回転角度に対して、45〜5
5%に可動金型の回転量を設定することにより形状精度
の良好な押し出し形材の曲げ加工が可能となることを見
い出し、特開平7−353511号の出願を行ってい
る。従って、本発明の立体形状の曲げ加工の手法におい
ても、上記の可動金型の回転角θを曲げ半径に応じて幾
何学的に算出される理論的な回転角度に対して、45〜
55%に可動金型の回転量を設定することにより、その
曲げ加工製品においても、その曲げ加工に際して座屈や
しわの発生を防止し良好な形状精度を持つ曲げ加工製品
を得ることができる。Further, during the push-through bending as described above, at the operating position where the movable mold is displaced with respect to the solid mold, the rotation angle θ is centered on the intersection of the shape member central axis and the movable mold center line. Although the generation of wrinkles and buckling of the profile due to bending is prevented, the inventors of the present invention previously described that, at this rotation angle θ, the shape is formed by push-through bending using a fixed mold and a movable mold. When bending a material, 45 to 5 against the theoretical rotation angle calculated geometrically according to the bending radius
It has been found that setting the rotation amount of the movable mold to 5% makes it possible to bend an extruded shape member having good shape accuracy, and filed an application for Japanese Patent Application Laid-Open No. 7-353511. Therefore, also in the method of bending a three-dimensional shape of the present invention, the rotation angle θ of the movable mold is 45 to 45 with respect to the theoretical rotation angle geometrically calculated according to the bending radius.
By setting the rotation amount of the movable mold to 55%, it is possible to obtain a bent product having good shape accuracy by preventing buckling and wrinkling during bending.
【0012】(実施例)実施例を図11、12及び表1
に基づいて以下に説明する。図11は目的とする三次元
曲げされた形材のX−Z座標面投影座標で、同図12は
X−Y面投影座標である。表1は、図11、12に応じ
て算出された補正係数を考慮した可動金型のz,y軸方
向の動作量Mz 、My とy軸またはz軸回りの可動金型
回転量Rz 、Ry を示す。xL は押し込み量である。こ
れにより、10本の形材に対し曲げ加工を施した結果を
計測し、図11、12のものと同じ座標面について比較
した結果、各試料とも各位置座標に関しての誤差は数m
m以下であり、最も大きな誤差を生じたものでも8.5
mmであった。(Embodiment) An embodiment is shown in FIGS.
It will be described below based on. FIG. 11 shows the X-Z coordinate plane projection coordinates of the target three-dimensionally bent profile, and FIG. 12 shows the XY plane projection coordinates. Table 1 shows movement amounts M z and M y in the z and y axis directions of the movable die in consideration of the correction coefficient calculated according to FIGS. 11 and 12, and the movable die rotation amount R around the y axis or the z axis. z and R y are shown. x L is the pushing amount. As a result, the results of bending the ten shape members were measured, and the results were compared on the same coordinate plane as those of FIGS. 11 and 12. As a result, each sample had an error of several meters in each position coordinate.
m or less, and even the largest error is 8.5.
mm.
【0013】表1 Table 1
【0014】[0014]
【発明の効果】以上に説明したように、本発明によれ
ば、立体的な複雑な形状に対しても、容易にかつ正確に
曲げ加工を行うことができるのであり、また、これらの
立体形状が数値化されることから、可動金型を自動的に
制御することが可能となり、加工精度の改善及び生産性
の大幅な向上が可能となる。As described above, according to the present invention, it is possible to easily and accurately perform a bending process even on a three-dimensional complex shape. Since it is numerically represented, it becomes possible to automatically control the movable die, and it is possible to improve the processing accuracy and the productivity significantly.
【図1】 固定金型及び可動金型による形材の押し通し
曲げ概念図FIG. 1 Conceptual diagram of pushing and bending a shape member by a fixed mold and a movable mold
【図2】 固定金型断面図[Figure 2] Cross section of fixed mold
【図3】 3次元座標系における形材の立体形状[Fig. 3] Three-dimensional shape of a frame in a three-dimensional coordinate system
【図4】 図3の立体形状のXY平面への投影図FIG. 4 is a projection view of the three-dimensional shape of FIG. 3 on the XY plane.
【図5】 図3の立体形状のXZ平面への投影図5 is a projection view of the three-dimensional shape of FIG. 3 on the XZ plane.
【図6】 図4の部分拡大図6 is a partially enlarged view of FIG.
【図7】 曲げの曲率半径と可動金型の動作量との関係FIG. 7: Relationship between bending radius of curvature and amount of movement of movable mold
【図8】 曲げの曲率半径と可動金型の動作量(実行動
作量/理論動作量)との関係FIG. 8 shows the relationship between the radius of curvature of bending and the movement amount of the movable mold (execution movement amount / theoretical movement amount).
【図9】 曲げの曲率半径と可動金型動作量との関係FIG. 9: Relationship between bending radius of curvature and movable die movement amount
【図10】 傾きαとz×σ0.2 との関係FIG. 10 Relationship between slope α and z × σ 0.2
【図11】 実施例の加工形状のX−Z面への投影座標
位置FIG. 11 is a projected coordinate position of the processed shape of the embodiment on the XZ plane.
【図12】 実施例の加工形状のX−Y面への投影座標
位置FIG. 12 is a projected coordinate position of the processed shape of the embodiment on the XY plane.
1:形材 2:固定金型 3:可動金型 1: Shape material 2: Fixed mold 3: Movable mold
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々本 隆 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 樋野 治道 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 杉山 敬一 東京都品川区東品川2丁目2番20号 日本 軽金属株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takashi Sasamoto 1-34-1 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture Nippon Light Metal Co., Ltd., Group Technology Center (72) Inventor Hino, Hinohara Kambara-machi, Anbara-gun, Shizuoka Prefecture 1-34-1 Nippon Light Metal Co., Ltd. Group Technology Center (72) Inventor Keiichi Sugiyama 2-22-20 Higashishinagawa, Shinagawa-ku, Tokyo Within Japan Light Metal Co., Ltd.
Claims (4)
し曲げにより形材を立体的な3次元形状に曲げ加工する
方法において、目的曲げ形状に対してその3次元直交座
標系における座標値を把握して、形材の任意位置での曲
率半径と曲げ方向を算出すると共に、加工開始位置より
該任意位置までの立体的な3次元形状に沿う長さを算出
し、押し込み量が該3次元形状に沿う長さの時点におい
て、可動金型の理論動作量を前記算出された曲率半径と
曲げ方向により決定し、該理論動作量に形材の材質及び
形状に固有のスプリングバックによる補正係数を乗じて
可動金型の動作量を決定し、形材の曲げ開始位置より曲
げ完了位置まで、連続して曲げ加工を行うことを特徴と
する形材の曲げ加工方法。1. A method of bending a shape into a three-dimensional three-dimensional shape by push-through bending using a fixed die and a movable die, wherein a coordinate value in a three-dimensional orthogonal coordinate system is set with respect to a target bend shape. Grasp and calculate the radius of curvature and bending direction of the profile at an arbitrary position, and also calculate the length along the three-dimensional three-dimensional shape from the processing start position to the arbitrary position, and the pushing amount is the three-dimensional shape. At the time of the length along the shape, the theoretical operation amount of the movable mold is determined by the calculated radius of curvature and bending direction, and the correction amount by the springback peculiar to the material and shape of the profile is added to the theoretical operation amount. A method for bending a profile, which comprises multiplying the amount of movement of the movable mold by multiplying and performing bending continuously from the bending start position of the profile to the bending completion position.
し曲げにより形材を立体的な3次元形状に曲げ加工する
方法において、 第1工程として、目的曲げ形状をその長手方向をX軸方
向にして3次元XYZ立体座標系における座標値として
把握する工程、 第2工程として、形材の曲げ開始位置P1 から任意の位
置Pn までの目的曲げ形状に沿う積算値Ln をP1 から
Pn までの各座標値により求める工程、 第3工程として、第1工程の座標値をXY座標面及びX
Z座標面に投影した座標におけるPn 位置における曲げ
半径RXY、RXZを、Pn-1 、Pn 及びPn+1 の座標より
求める工程、 第4工程として、固定金型に対する形材の押し込み方向
をx軸、x軸に直交する方向をy軸、x軸とy軸に直交
する方向をz軸とし、形材を固定金型に押し込みつつ加
工開始位置よりの押し込み量Ln の時点で可動金型をy
軸方向の移動及びz軸回りの回転にてRxyに対応するス
プリングバックを補正した動作量を決定すると共に、同
じく可動金型をz軸方向の移動及びy軸回りの回転にて
Rxzに対応するスプリングバックを補正した動作量を決
定し、かくして加工開始位置よりの押し込み量Ln の時
点で上記動作量で可動金型を動作させながら形材の曲げ
開始位置より曲げ完了位置まで、連続して曲げ加工を行
う工程、とよりなることを特徴とする形材の曲げ加工方
法。2. A method for bending a shape into a three-dimensional three-dimensional shape by push-through bending using a fixed die and a movable die, wherein the first bending step is a target bending shape whose longitudinal direction is the X-axis direction. the step of grasping the coordinate values in three-dimensional XYZ three-dimensional coordinate system in the, as a second step, the integrated value L n along the intended bending shape from the bending start position P 1 of the profile to the desired position P n from P 1 The step of obtaining the coordinate values up to P n , and the third step is the coordinate values of the first step as the third step.
A step of obtaining bending radii R XY , R XZ at the P n position in the coordinates projected on the Z coordinate plane from the coordinates of P n -1 , P n and P n + 1. The pressing direction of is the x-axis, the direction orthogonal to the x-axis is the y-axis, and the direction orthogonal to the x-axis and the y-axis is the z-axis, and the pushing amount L n from the processing start position while pushing the profile into the fixed mold Move the movable mold to y
The movement amount in which the spring back corresponding to R xy is corrected by the movement in the axial direction and the rotation about the z axis is determined, and the movable die is also set to R xz by the movement in the z axis direction and the rotation about the y axis. A corresponding motion amount with the corrected springback is determined, and thus, at the time of the pushing amount L n from the machining start position, the movable mold is operated with the above motion amount while continuously moving from the bending start position of the profile to the bending completion position. And a bending step, and a bending method for a profile, comprising:
数Cを次式により算出して可動金型の動作量を制御する
ことを特徴とする請求項1又は2記載の形材の曲げ加工
方法。 C={A×(Z×σ0.2 )+0.3}×10-3 ×R+
B ただし、A:(8〜11)×10-6の範囲にある係数 B:3.0〜3.6の範囲にある定数 Z:形材断面における引っ張り側と圧縮側の断面係数の
平均値(mm3 ) σ0.2 :引張り試験における0.2%耐力(kgf/m
m2 ) R:曲げ加工の曲率半径(mm)3. The method for bending a profile according to claim 1, wherein a correction coefficient C for correcting the springback is calculated by the following equation to control the operation amount of the movable mold. C = {A × (Z × σ 0.2 ) +0.3} × 10 −3 × R +
B where A is a coefficient in the range of (8 to 11) × 10 −6 B is a constant in the range of 3.0 to 3.6 Z is an average value of cross-sectional coefficients of the tensile side and the compression side in the cross section of the shape (Mm 3 ) σ 0.2 : 0.2% proof stress in tensile test (kgf / m
m 2 ) R: Curvature radius of bending (mm)
算出される理論回転角度θの45〜55%に可動金型の
回転量を設定することを特徴とする請求項1乃至3記載
の形材の曲げ加工方法。4. The rotation amount of the movable mold is set to 45 to 55% of the theoretical rotation angle θ geometrically calculated according to the radius of curvature of the bending. Bending method of the section shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16830596A JPH09327727A (en) | 1996-06-06 | 1996-06-06 | Bending of shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16830596A JPH09327727A (en) | 1996-06-06 | 1996-06-06 | Bending of shape |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09327727A true JPH09327727A (en) | 1997-12-22 |
Family
ID=15865566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16830596A Pending JPH09327727A (en) | 1996-06-06 | 1996-06-06 | Bending of shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09327727A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6954679B1 (en) | 1999-09-24 | 2005-10-11 | Honda Giken Kogyo Kabushiki Kaisha | Method of generating control data for bending and torsion apparatuses |
CN103707299A (en) * | 2013-12-18 | 2014-04-09 | 南京埃斯顿机器人工程有限公司 | Method of implementing real-time bending follow of bending robot |
JP2019104019A (en) * | 2017-12-11 | 2019-06-27 | 川崎重工業株式会社 | Apparatus and method for manufacturing roll-formed component |
-
1996
- 1996-06-06 JP JP16830596A patent/JPH09327727A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6954679B1 (en) | 1999-09-24 | 2005-10-11 | Honda Giken Kogyo Kabushiki Kaisha | Method of generating control data for bending and torsion apparatuses |
CN103707299A (en) * | 2013-12-18 | 2014-04-09 | 南京埃斯顿机器人工程有限公司 | Method of implementing real-time bending follow of bending robot |
CN103707299B (en) * | 2013-12-18 | 2016-01-13 | 南京埃斯顿机器人工程有限公司 | A kind of method realizing the bending of bending robot and follow in real time |
JP2019104019A (en) * | 2017-12-11 | 2019-06-27 | 川崎重工業株式会社 | Apparatus and method for manufacturing roll-formed component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2093535B1 (en) | Coordinate measuring machine using mechanical scanning | |
EP0753362A1 (en) | Press brake | |
EP0928647A2 (en) | Tube bending apparatus and method | |
US10525515B2 (en) | Roll-bending processing method and processing device | |
JPH1058045A (en) | Method for bending and device therefor | |
JP3658940B2 (en) | 3D bending method for profiles | |
JPH09327727A (en) | Bending of shape | |
JP2515217B2 (en) | Method and apparatus for bending metallic material by bend-ing-roll | |
JP3434981B2 (en) | Long material straightening device and straightening method | |
JP3666926B2 (en) | Press brake | |
JPH0639439A (en) | Data correcting method for radius bending | |
JP3548971B2 (en) | Bending method of extruded profile | |
JPH10286627A (en) | Work inclination angle measuring method, work bend angle measuring method, work inclination quantity measuring instrument and work bend angle measuring instrument | |
JPH11138217A (en) | Bending method by pushing through | |
JP5737657B2 (en) | Bending method and system using a press brake | |
JPH07265957A (en) | Press brake | |
JPS6182933A (en) | Three roll bending device | |
JP3801466B2 (en) | Bending method and bending apparatus | |
JP3085272U (en) | High performance machine with reduced setup time for programmed sheet bending | |
JP2000140943A (en) | Calculating method of material attribute, folding method and its device | |
JP2000254729A (en) | Bending method and bending system | |
JP2001025822A (en) | Method for positioning abutting rod of back gage device, backgage device, bending method and bending machine | |
JPH08192230A (en) | Device for bending pipe | |
JP3591066B2 (en) | Form bending method | |
JP7518697B2 (en) | Manufacturing method for long bending workpieces |