JP3591066B2 - Form bending method - Google Patents

Form bending method Download PDF

Info

Publication number
JP3591066B2
JP3591066B2 JP18479395A JP18479395A JP3591066B2 JP 3591066 B2 JP3591066 B2 JP 3591066B2 JP 18479395 A JP18479395 A JP 18479395A JP 18479395 A JP18479395 A JP 18479395A JP 3591066 B2 JP3591066 B2 JP 3591066B2
Authority
JP
Japan
Prior art keywords
bending
movable mold
profile
bent
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18479395A
Other languages
Japanese (ja)
Other versions
JPH0910852A (en
Inventor
光雄 柘植
唯史 袴田
治道 樋野
敬一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP18479395A priority Critical patent/JP3591066B2/en
Publication of JPH0910852A publication Critical patent/JPH0910852A/en
Application granted granted Critical
Publication of JP3591066B2 publication Critical patent/JP3591066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、自動車,車両等のフレーム材や建築用部材として使用されるアルミ合金押出し形材等の形材を押し通し曲げにより二次元又は三次元的に曲げ加工する方法に関する。
【0002】
【従来の技術】
アルミ押出し形材等の長尺形材を曲げ加工する方法には、回転引き曲げや金型を使用した押し通し曲げ等がある。押し通し曲げでは、図1に示すように固定金型に対して上下左右動及び回転可能に配置した可動金型を使用する。形材を固定金型に押し通し、固定金型から突出した形材の突出部を可動金型で拘束した状態で固定金型に対する形材の押し通しを継続すると、固定金型に対する可動金型の位置関係から定まる曲率で形材が曲げ加工される。
【0003】
【発明が解決しようとする課題】
この押し通し曲げは、一般的な引き曲げ等に比較して曲げ半径Rが大きい。したがって、加工度が小さく、加工された形材の内部に弾性歪みが多量に発生する。弾性歪みは、可動金型を通過した後の形材が元の形状に復元しようとするスプリングバックの原因となる。しかも、スプリングバックは、種々の加工条件によって複雑に変化し、定量的に把握できていない。そのため、目標形状に形材を成形することが困難なことから、多数の試行錯誤を繰り返すことによって目標形状を得ているのが実情である。
本発明は、このような問題を解消すべく案出されたものであり、目標とする曲げ形状を得るためのスプリングバック量を予測し、この予測値を取り込んで可動金型の移動量を曲げ装置に入力データとして与えることにより、試行錯誤の回数を大幅に減らし、効率的に且つ高精度で曲げ加工を行うことを目的とする。
【0004】
【課題を解決するための手段】
本発明の曲げ加工方法は、その目的を達成するため、固定金型に対して可動金型を変位した位置に設定し、前記固定金型及び前記可動金型に形材を押し通して曲げ加工する際、前記可動金型の理論動作量M に対する実行動作量M の比M /M で表される補正係数Cを次式で算出し、算出された補正係数に基づいて前記可動金型の動作量を決定することを特徴とする。この方法は、形材の二次元的又は三次元的な曲げ成形に適用される。
C={A×(Z×σ0.2 )+0.3}×10−3×R+B
ただし、A:(8〜11)×10−6の範囲にある係数
B:3.0〜3.6の範囲にある定数
Z:形材断面における引張り側と圧縮側の断面係数の平均値(mm
σ0.2 :引張り試験における0.2%耐力(kgf/mm
R:曲率半径(mm)
【0005】
スプリングバック量に影響する因子には、材料の0.2%耐力(σ0.2 ),断面係数(Z)及び曲げ半径(R)が掲げられる。本発明者等は、各因子についてスプリングバックとの関係を実験によって明らかにし、その実験結果からスプリングバックを定量的に予測できる前述の関係式を導き出した。この関係式に従うとき、多数の試行錯誤を繰り返す必要なく、2回程度のテストで誤差範囲に収まる加工が可能になる。
【0006】
【実施例】
実施例1:(スプリングバック量予測式の導出過程)
材料特性を表1に示したアルミ押出し形材を使用して、種々の曲率半径で曲げ加工し、スプリングバック量を測定した。
【0007】

Figure 0003591066
【0008】
各曲率半径ごとに金型動作量(図1参照)との関係を調査したところ、図2に黒丸で示す金型動作量M が必要であった。なお、図2の白丸は、スプリングバックのないことを前提にして算出した可動金型の理論動作量M であり、理論動作量M に対する実効金型動作量M の比M /M が補正係数Cとなる。なお、可動金型の回転角θは、可動金型の動作位置において形材の軸線と直交する角度に設定して加工を行う。また、図2では、試料1についての調査結果を表したが、他の試料2〜4も同様な関係を示した。
そこで、図2の結果に基づき各試料について曲率半径Rと補正係数Cとの関係を調査したところ、両者の間に図3に示す関係が成立していた。すなわち、補正係数Cは、次式(1)の一次関数で曲率半径Rから求められることが判った。
C=α×R+B ・・・・(1)
ただし、α:図3の各試料ごとの直線の傾き
R:曲率半径
B:直線と横軸との交点であり、3.28を中間点とし3〜3.6の範囲にある。
【0009】
図3にみられるように、各試料ごとに直線の傾きαが異なる。その理由としては、形材の断面係数Z及び0.2%耐力σ0.2 が掲げられる。断面係数Zは、形材断面における引張り側と圧縮側の断面係数の平均値で表される。そこで、試料1〜4について、直線の傾きαとZ×σ0.2 との関係を求めたところ、図4に示す結果が得られた。
図4も直線関係であることから、直線の傾きαは、次式(2)の一次関数で表されることが判った。
α={A×(Z×σ0.2 )+D}×10−3 ・・・・(2)
ただし、A:図4の直線の傾きを示し、9.5×10−6を中間点とし(8〜11)×10−6の範囲にある。
Z:断面係数
σ0.2 :0.2%耐力(kgf/mm
D:直線と横軸との交点(=0.3)
式(2)を式(1)に代入すると、式(3)が得られる。
C={A×(Z×σ0.2 )+0.3}×10−3×R+B ・・・・(3)
このようにして求められた補正係数Cを使用し、目標曲率半径Rを得るために必要な可動金型の実行動作量M を決定する。この実行動作量M で形材を曲げ加工すると、後述する実施例に示されているように高精度の曲げ加工が可能となる。
【0010】
実施例2:(角筒状形材の曲げ加工)
表1に掲げた試料1〜4から図5に示すサイズ及び形状をもつ角筒状形材を作製し、各種目標曲げ半径で曲げ加工した。このときのA値,B値及び補正係数Cを表2に示す。なお、表2以降では、×10−6を省略してA値を表現した。また、表2に示した試料番号において、ハイフンの前の数値は表1に掲げた試料番号を、ハイフンの後の数値は各試料に関する個々の条件ごとの番号を示す。
【0011】
Figure 0003591066
【0012】
各試料1−1〜4〜3について、それぞれ10本の形材を曲げ加工したあと、曲げ部の曲率を測定した。測定結果を、各10本の試験片中目標値に対して最大の誤差を生じたものを最大曲率半径Rmax ,最少曲率半径Rmin として表3に示した。また、目標曲げ半径とRmax ,Rmin との差の目標曲げ半径に対する百分率(%)で誤差を表した。
【0013】
Figure 0003591066
【0014】
表2及び表3から明らかなように、補正係数を取り込んで曲げ加工するとき、加工後の形材形状を目標形状に誤差14%以内の高精度で一致させることができた。特に、A値,B値,補正係数Cとして中間値を採用して曲げ加工の条件を設定したものでは、目標形状に対して数%の誤差,具体的には6.5%程度の誤差で曲げ加工することが可能になった。
【0015】
実施例3:(円筒状形材の曲げ加工)
引張り強さσ =17.5kgf/mm 及び0.2%耐力σ0.2 =8.5kgf/mm のアルミ合金JIS A6N01で図6にサイズ及び形状を示す円筒状の形材を作製し、表4の条件下で曲げ加工した。なお、曲げ加工では、各条件ごとに10本を試験した。
【0016】
Figure 0003591066
【0017】
曲げ加工後の形状を実施例2と同様に測定した結果を、表5に示す。曲げ加工後の形材は、表5にみられるように極めて高い寸法精度をもつものであった。
【0018】
Figure 0003591066
【0019】
実施例4:(チャンネル材の曲げ加工)
引張り強さσ =17.5kgf/mm 及び0.2%耐力σ0.2 =8.5kgf/mm のアルミ合金JIS A6No1で図7にサイズ及び形状を示すチャンネル材を作製し、表6の条件下で曲げ加工した。なお、曲げ加工では、各条件ごとに10本を試験した。
【0020】
Figure 0003591066
【0021】
曲げ加工後の形状を実施例2と同様に測定した結果を示す表7にみられるように、曲げ加工後の形材は、曲げ半径方向に関して断面積が大きく変化する形状であるにも拘らず、高い寸法精度をもつものであった。
【0022】
Figure 0003591066
【0023】
実施例5:(角筒状形材の二点曲げ)
試料1の材料で図8に示すサイズ及び形状の角筒状形材を作製し、表8に示すA,B及びCの各条件下でR 部及びR 部の曲げ方向及び曲率半径が異なる加工を連続して行った。この場合も、各条件ごとに10本の試験片を曲げ加工した。
【0024】
Figure 0003591066
【0025】
曲げ加工された形材の形状は、実施例2の場合と同様にして求めた結果を示した表9にみられるように寸法精度が高いものであった。
【0026】
Figure 0003591066
【0027】
【発明の効果】
以上に説明したように、本発明に従った曲げ加工においては、本発明者等が実験結果から求めた補正係数及び定数を取り込んで加工条件を設定し、固定金型に対する可動金型の変位量を定めることにより、回転引き曲げ等に比較して曲げ半径が大きな曲げ半径で加工する押し通し曲げにおいても、スプリングバックに起因した誤差要因を解消し、寸法精度よく曲げ加工することが可能になる。このようにして得られた曲げ加工製品は、自動車用スペースフレーム,車両用フレーム,建築用部材等として広範囲な分野で使用される。
【図面の簡単な説明】
【図1】通し曲げ加工の説明図
【図2】曲率半径と可動金型動作量との関係を示すグラフ
【図3】曲率半径と補正係数Cとの関係を示すグラフ
【図4】図3の直線の傾きαとZ×σ0.2 との関係を示すグラフ
【図5】実施例2で曲げ加工した角筒状形材の斜視図
【図6】実施例3で曲げ加工した円筒状形材の斜視図
【図7】実施例4で曲げ加工したチャンネル材の斜視図
【図8】実施例5で二点曲げ加工した角筒状形材の斜視図[0001]
[Industrial applications]
The present invention relates to a method for two-dimensionally or three-dimensionally bending a material such as an extruded aluminum alloy used as a frame material or a building member of an automobile or a vehicle by a push-through bending method.
[0002]
[Prior art]
Examples of a method of bending a long shape material such as an extruded aluminum material include rotary pull bending and push-through bending using a mold. In the push-through bending, as shown in FIG. 1, a movable mold is used which is arranged to be vertically and horizontally movable and rotatable with respect to a fixed mold. If the profile is pushed through the fixed mold, and the projection of the profile protruding from the fixed mold is constrained by the movable mold and the profile is continuously pushed through the fixed mold, the position of the movable mold with respect to the fixed mold is increased. The profile is bent at a curvature determined from the relationship.
[0003]
[Problems to be solved by the invention]
This push-through bending has a larger bending radius R as compared with general pulling bending and the like. Therefore, the degree of processing is small, and a large amount of elastic strain is generated inside the processed profile. The elastic strain causes a springback in which the profile after passing through the movable mold tries to restore the original shape. In addition, the springback changes complicatedly depending on various processing conditions, and cannot be quantitatively grasped. For this reason, it is difficult to form a shape into a target shape, and in fact, the target shape is obtained by repeating a number of trial and error.
The present invention has been devised to solve such a problem, and predicts a springback amount for obtaining a target bending shape, and incorporates the predicted value to bend the moving amount of the movable mold. It is an object of the present invention to significantly reduce the number of trial and error by giving the data as input data to an apparatus, and to perform bending processing efficiently and with high accuracy.
[0004]
[Means for Solving the Problems]
In order to achieve the object, the bending method of the present invention sets a movable mold at a position displaced with respect to a fixed mold, and performs bending by pushing a shape material through the fixed mold and the movable mold. when the movable metal based on the correction coefficient of the correction coefficient C that is represented by the ratio M a / M t is calculated by the following equation was calculated execution operation amount M a with respect to the theoretical operation amount M t of the movable mold The operation amount of the mold is determined. This method is applied to two-dimensional or three-dimensional bending of a profile.
C = {A × (Z × σ 0.2 ) +0.3} × 10 −3 × R + B
A: Coefficient in the range of (8 to 11) × 10 −6 B: Constant in the range of 3.0 to 3.6 Z: Average value of the cross-sectional modulus on the tensile side and the compressive side in the cross section of the shaped material ( mm 3 )
σ 0.2 : 0.2% proof stress in tensile test (kgf / mm 2 )
R: radius of curvature (mm)
[0005]
Factors that affect the amount of springback include the 0.2% proof stress (σ 0.2 ), section modulus (Z), and bending radius (R) of the material. The present inventors clarified the relationship between each factor and springback by experiments, and derived the above-described relationship from which the springback can be quantitatively predicted. According to this relational expression, it is possible to perform processing within the error range in about two tests without having to repeat many trial and errors.
[0006]
【Example】
Embodiment 1: (Derivation process of springback amount prediction formula)
Using the extruded aluminum material having the material properties shown in Table 1, the material was bent at various radii of curvature, and the amount of springback was measured.
[0007]
Figure 0003591066
[0008]
When checking the relationship between the mold operation amount for each radius of curvature (see FIG. 1), die operation amount M a indicated by a black circle was required in FIG. Incidentally, the white circles in FIG. 2 is a movable mold of the theoretical operation amount M t which is calculated by assuming that there is no spring-back, the ratio M a / M of the effective mold operation amount M a with respect to the theoretical operation amount M t t becomes the correction coefficient C. The processing is performed with the rotation angle θ of the movable mold set at an angle orthogonal to the axis of the profile at the operating position of the movable mold. In addition, FIG. 2 shows the results of the investigation on Sample 1, but the other Samples 2 to 4 also showed the same relationship.
Then, when the relationship between the radius of curvature R and the correction coefficient C was examined for each sample based on the results of FIG. 2, the relationship shown in FIG. 3 was established between the two. That is, it was found that the correction coefficient C was obtained from the radius of curvature R by a linear function of the following equation (1).
C = α × R + B (1)
Here, α: slope of a straight line for each sample in FIG. 3 R: radius of curvature B: intersection of the straight line and the horizontal axis, and is in the range of 3 to 3.6 with 3.28 as an intermediate point.
[0009]
As shown in FIG. 3, the slope α of the straight line differs for each sample. The reasons include the section modulus Z of the profile and the 0.2% proof stress σ 0.2 . The section modulus Z is represented by the average value of the section modulus on the tension side and the compression side in the section of the profile. Then, when the relationship between the slope α of the straight line and Z × σ 0.2 was determined for Samples 1 to 4, the results shown in FIG. 4 were obtained.
Since FIG. 4 also has a linear relationship, it was found that the gradient α of the straight line was represented by a linear function of the following equation (2).
α = {A × (Z × σ 0.2 ) + D} × 10 −3 (2)
However, A: indicates the inclination of the straight line in FIG. 4 and is in the range of (8 to 11) × 10 −6 with 9.5 × 10 −6 as the middle point.
Z: Section modulus σ 0.2 : 0.2% proof stress (kgf / mm 2 )
D: Intersection point between straight line and horizontal axis (= 0.3)
By substituting equation (2) into equation (1), equation (3) is obtained.
C = {A × (Z × σ 0.2 ) +0.3} × 10 −3 × R + B (3)
Thus using the correction coefficient C obtained by, it determines the execution operation amount M a of the movable mold required to obtain the target radius of curvature R. If the execution operation amount M a bent profile in the processing that, it is possible to highly accurate bending as shown in the examples below.
[0010]
Example 2: (Bending of rectangular tubular material)
From the samples 1 to 4 listed in Table 1, rectangular tubular members having the size and shape shown in FIG. 5 were prepared and bent at various target bending radii. Table 2 shows the A value, B value and correction coefficient C at this time. In Table 2 and subsequent figures, the A value is expressed by omitting × 10 −6 . In the sample numbers shown in Table 2, the numerical value before the hyphen indicates the sample number listed in Table 1, and the numerical value after the hyphen indicates the number of each sample for each condition.
[0011]
Figure 0003591066
[0012]
For each of the samples 1-1 to 4-3, after bending each of ten shaped members, the curvature of the bent portion was measured. The results of the measurement are shown in Table 3 as the maximum radius of curvature R max and the minimum radius of curvature R min for each of the ten test pieces that produced the maximum error with respect to the target value. In addition, the error was expressed as a percentage (%) of the difference between the target bending radius and Rmax , Rmin with respect to the target bending radius.
[0013]
Figure 0003591066
[0014]
As is clear from Tables 2 and 3, when bending was performed by taking in the correction coefficient, the shape of the processed material could be matched with the target shape with high accuracy within 14% of the error. In particular, when the bending conditions are set by using intermediate values as the A value, the B value, and the correction coefficient C, an error of several%, specifically, an error of about 6.5% with respect to the target shape is obtained. It is now possible to bend.
[0015]
Example 3: (Bending of cylindrical shaped material)
A cylindrical member having the size and shape shown in FIG. 6 is manufactured using an aluminum alloy JIS A6N01 having a tensile strength σ B = 17.5 kgf / mm 2 and a 0.2% proof stress σ 0.2 = 8.5 kgf / mm 2 . Then, bending was performed under the conditions shown in Table 4. In the bending, ten pieces were tested for each condition.
[0016]
Figure 0003591066
[0017]
Table 5 shows the results of measuring the shape after bending in the same manner as in Example 2. As shown in Table 5, the profile after bending had extremely high dimensional accuracy.
[0018]
Figure 0003591066
[0019]
Example 4: (Bending of channel material)
A channel material having the size and shape shown in FIG. 7 was prepared using an aluminum alloy JIS A6No1 having a tensile strength σ B = 17.5 kgf / mm 2 and a 0.2% proof stress σ 0.2 = 8.5 kgf / mm 2 . Bending was performed under the conditions of No. 6. In the bending, ten pieces were tested for each condition.
[0020]
Figure 0003591066
[0021]
As can be seen from Table 7 showing the results of measuring the shape after bending in the same manner as in Example 2, the shape after bending has a shape whose cross-sectional area changes greatly in the bending radial direction. Had high dimensional accuracy.
[0022]
Figure 0003591066
[0023]
Example 5: (Two-point bending of rectangular tubular material)
A rectangular tube-shaped material having the size and shape shown in FIG. 8 was prepared from the material of sample 1, and the bending directions and the radii of curvature of R 1 and R 2 under the conditions A, B and C shown in Table 8 were obtained. Different processing was performed in succession. Also in this case, ten test pieces were bent for each condition.
[0024]
Figure 0003591066
[0025]
The shape of the bent shape member had high dimensional accuracy as shown in Table 9 showing the results obtained in the same manner as in Example 2.
[0026]
Figure 0003591066
[0027]
【The invention's effect】
As described above, in the bending according to the present invention, the present inventors take in the correction coefficients and constants obtained from the experimental results, set the processing conditions, and set the amount of displacement of the movable mold with respect to the fixed mold. In the case of press-through bending in which a bending radius is larger than that in rotary pull bending or the like, error factors caused by springback can be eliminated, and bending can be performed with high dimensional accuracy. The thus obtained bent product is used in a wide range of fields as a space frame for a vehicle, a frame for a vehicle, a member for a building, and the like.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of through bending. FIG. 2 is a graph showing a relationship between a radius of curvature and a movable mold operation amount. FIG. 3 is a graph showing a relationship between a radius of curvature and a correction coefficient C. FIG. 5 is a graph showing the relationship between the inclination α of the straight line and Z × σ 0.2 . FIG. 5 is a perspective view of a rectangular tubular material bent in Example 2. FIG. 6 is a cylindrical shape bent in Example 3. FIG. 7 is a perspective view of a channel material bent in Example 4; FIG. 8 is a perspective view of a rectangular cylindrical shape material bent in two points in Example 5;

Claims (3)

固定金型に対して可動金型を変位した位置に設定し、前記固定金型及び前記可動金型に形材を押し通して曲げ加工する際、前記可動金型の理論動作量M に対する実行動作量M の比M /M で表される補正係数Cを次式で算出し、算出された補正係数に基づいて前記可動金型の動作量を決定することを特徴とする形材の曲げ加工方法。
C={A×(Z×σ0.2 )+0.3}×10−3×R+B
ただし、A:(8〜11)×10−6の範囲にある係数
B:3.0〜3.6の範囲にある定数
Z:形材断面における引張り側と圧縮側の断面係数の平均値(mm
σ0.2 :引張り試験における0.2%耐力(kgf/mm
R:曲率半径(mm)
Was set at a position displaced a movable mold with respect to the fixed die, the the stationary mold and the movable mold bending forced through the frame members when processing, perform operations relative to the theoretical movement amount M t of the movable mold the correction factor C which is represented by the ratio M a / M t amount M a is calculated by the following equation, based on the calculated correction coefficient profile, characterized by determining an operation amount of the movable mold Bending method.
C = {A × (Z × σ 0.2 ) +0.3} × 10 −3 × R + B
A: Coefficient in the range of (8 to 11) × 10 −6 B: Constant in the range of 3.0 to 3.6 Z: Average value of the cross-sectional modulus on the tensile side and the compressive side in the cross section of the shaped material ( mm 3 )
σ 0.2 : 0.2% proof stress in tensile test (kgf / mm 2 )
R: radius of curvature (mm)
請求項1記載の補正係数Cを使用し、形材を二次元的又は三次元的に曲げ成形する形材の曲げ加工方法。A method for bending a profile, wherein the profile is bent two-dimensionally or three-dimensionally using the correction coefficient C according to claim 1. 請求項1又は2記載の方法で曲げ加工された形材。A shaped member bent by the method according to claim 1.
JP18479395A 1995-06-28 1995-06-28 Form bending method Expired - Fee Related JP3591066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18479395A JP3591066B2 (en) 1995-06-28 1995-06-28 Form bending method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18479395A JP3591066B2 (en) 1995-06-28 1995-06-28 Form bending method

Publications (2)

Publication Number Publication Date
JPH0910852A JPH0910852A (en) 1997-01-14
JP3591066B2 true JP3591066B2 (en) 2004-11-17

Family

ID=16159395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18479395A Expired - Fee Related JP3591066B2 (en) 1995-06-28 1995-06-28 Form bending method

Country Status (1)

Country Link
JP (1) JP3591066B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589609B2 (en) * 2009-06-30 2014-09-17 新日鐵住金株式会社 Bending member manufacturing apparatus having correction function
KR102017304B1 (en) 2017-12-29 2019-10-21 주식회사 현대케피코 Vis valve actuator with self filter cleaning function

Also Published As

Publication number Publication date
JPH0910852A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
Li et al. Simulation of springback
EP0429677B1 (en) Measuring robot system
JPH0760362A (en) Spring back angle measuring instrument for v bending
JP3591066B2 (en) Form bending method
Miller et al. Three-dimensional effects of the bend–stretch forming of aluminum tubes
JP2515217B2 (en) Method and apparatus for bending metallic material by bend-ing-roll
Forcellese et al. Computer aided engineering of the sheet bending process
JP6649187B2 (en) Method for estimating tensile properties
Baragetti A theoretical study on nonlinear bending of wires
JPH1177173A (en) Working method for three-dimensional bending of shape
JP7327595B1 (en) METHOD AND DEVICE FOR ACQUIRING FORMING LIMIT OF METAL PLATE
JP3345427B2 (en) Measurement method for determining biaxial forming behavior of metal materials such as sheet metal
JPS6182933A (en) Three roll bending device
US5743124A (en) Method of bending extruded shapes
JP3783746B2 (en) Buckling limit and wrinkle shape prediction method for bending of hollow profile
CN114309261A (en) Progressive forming bending method for double-curved-surface metal plate
Wang et al. Stretch flanging of “V”-shaped sheet metal blanks
Kut et al. Bending moment and cross-section deformation of a box profile
WO2024070064A1 (en) Residual stress distribution calculation method, device and program
JPH10166064A (en) Method for bending shape
RU2319945C1 (en) Method of building diagram of deforamtion of material
JP3773735B2 (en) Method for predicting springback angle by bending hollow shape material, bending method for hollow shape material, mold design method and recording medium
JPH0924422A (en) Correcting method for bent shape of shapes
JP4798983B2 (en) Estimation method of residual stress when passing through roll straightener
Ambrogio et al. Improvement geometrical precision in sheet incremental forming processes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees