JPH09326499A - Production of cdte solar cell - Google Patents

Production of cdte solar cell

Info

Publication number
JPH09326499A
JPH09326499A JP8142853A JP14285396A JPH09326499A JP H09326499 A JPH09326499 A JP H09326499A JP 8142853 A JP8142853 A JP 8142853A JP 14285396 A JP14285396 A JP 14285396A JP H09326499 A JPH09326499 A JP H09326499A
Authority
JP
Japan
Prior art keywords
cdte
gas
film
type
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8142853A
Other languages
Japanese (ja)
Inventor
Naomi Matsumura
直巳 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP8142853A priority Critical patent/JPH09326499A/en
Publication of JPH09326499A publication Critical patent/JPH09326499A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a CdTe solar cell through sputtering by forming ohmic electrodes on an n-type CdTe and a p-type CdTe deposited, respectively, using specified CdTe targets. SOLUTION: A window material, i.e., an n-type CdTe, is deposited at first on a transparent glass substrate 5 using a CdTe target 9 containing more Cd than stoichiometric ratio and a mixture gas of Ar and N2 as an atmospheric gas. Mixing ratio of N2 gas in the mixture gas is set in the range of 0.1-0.8 and the pressure of the mixture gas is set in the range of 2×10<-4> -1×10<-3> Torr. Subsequently, the target is replaced by a CdTe target 10 containing more Te than stoichiometric ratio and a p-type CdTe is deposited on the n-type CdTe using only Ar gas. Finally, ohmic electrodes are formed on the n-type CdTe and a p-type CdTe thus completing a solar cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタリング法
によるCdTe太陽電池の製造法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a CdTe solar cell by a sputtering method.

【0002】[0002]

【従来の技術】近年、無限とも言える太陽エネルギーか
ら直接電気エネルギーを取り出すことができる太陽電池
が、エネルギー供給手段として注目されている。特に、
CdTe太陽電池は、他の太陽電池に比べて可視光から
近赤外光まで幅広い領域で高い感度を有しており、変換
効率の高い太陽電池として実用に供されている。
2. Description of the Related Art In recent years, a solar cell which can directly extract electrical energy from infinite solar energy has been attracting attention as an energy supply means. Especially,
The CdTe solar cell has high sensitivity in a wide range from visible light to near infrared light as compared with other solar cells, and is put to practical use as a solar cell having high conversion efficiency.

【0003】CdTe太陽電池の現在の製造法は、まず
粒径数μmのCdS粉末に適量のCdCl2を加えてプ
ロピレングリコールを溶剤としたぺーストをガラス基板
上にスクリーン印刷し、所定容器に収納後700℃程度
に保持して焼結することによって、窓材としてバンドギ
ャップEgの広いCdS層(Eg=2.42eV)を形
成する。続いて粒形1μm以下のCdTe粉末に適量の
CdCl2を加えてプロピレングリコールを溶剤とした
ぺーストを作製し、CdS膜上にスクリーン印刷し、C
dS膜同様、所定容器内で600℃程度に保持してCd
Te層を形成する。次に、CdTe層上にCuを適度に
添加したカーボンペーストをスクリーン印刷し400℃
で焼結し、 CdTe側電極を形成する。最後に適量の
Inを添加したAgペーストをCdS層側に印刷し15
0℃で焼結し、CdS側電極を形成することで太陽電池
セルが完成する。
The current manufacturing method for CdTe solar cells is as follows. First, an appropriate amount of CdCl 2 is added to CdS powder having a particle size of several μm, and a paste using propylene glycol as a solvent is screen-printed on a glass substrate and stored in a predetermined container. Then, the temperature is maintained at about 700 ° C. and sintered to form a CdS layer (Eg = 2.42 eV) having a wide band gap Eg as a window material. Subsequently, an appropriate amount of CdCl 2 was added to CdTe powder having a particle shape of 1 μm or less to prepare a paste using propylene glycol as a solvent, and screen-printed on the CdS film.
Like the dS film, hold Cd in a predetermined container at about 600 ° C
A Te layer is formed. Next, a carbon paste to which Cu is appropriately added is screen-printed on the CdTe layer at 400 ° C.
And sintered to form a CdTe side electrode. Finally, print an Ag paste to which an appropriate amount of In has been added on the CdS layer side.
A solar cell is completed by sintering at 0 ° C. and forming a CdS side electrode.

【0004】[0004]

【発明が解決しようとする課題】上記のようにCdS、
CdTe層形成工程の温度保持は600〜700℃の
温度範囲で行われるため、ガラス基板には、硼ケイ酸系
の耐熱ガラスが用いられる。また、従来のCdTe太陽
電池製造プロセスは工程数が多く、加熱冷却を繰り返す
必要があり、かつ高価な耐熱性を有するガラス基板を使
用することからコスト低減化が困難となっている。
As described above, CdS,
Since the temperature is maintained in the temperature range of 600 to 700 ° C. in the CdTe layer forming step, borosilicate heat resistant glass is used for the glass substrate. Further, in the conventional CdTe solar cell manufacturing process, the number of steps is large, it is necessary to repeat heating and cooling, and cost reduction is difficult because an expensive glass substrate having heat resistance is used.

【0005】本発明は、上記問題点を解決し、製造コス
トの安価なCdTe太陽電池の製造方法を提供するもの
である。
The present invention solves the above-mentioned problems and provides a method for manufacturing a CdTe solar cell which is inexpensive to manufacture.

【0006】[0006]

【課題を解決するための手段】本発明はCdTe太陽電
池をスパッタリング法で作製する方法を提供するもの
で、それは以下のような手順で作製される。
The present invention provides a method for producing a CdTe solar cell by a sputtering method, which is produced by the following procedure.

【0007】まず、雰囲気ガスをArとN2の混合ガス
として、Cd過剰のCdTeターゲットを用いて、窓材
となるn型CdTe膜を透明ガラス基板上に成膜する。
その際、上記混合ガスは{N2ガスの体積/(Arガス
の体積+N2ガスの体積)}で定義される混合比を0.
1〜0.8の範囲内とし、混合ガスの圧力は2×10-4
Torr以上、1×10-3Torr以下とする。続いて
ターゲットをTe過剰のCdTeターゲットに交換し、
Arガスのみでn型CdTe膜上にp型CdTe膜を成
膜する。そして、最後にn型CdTe膜とp型CdTe
膜とにオーミック電極を形成することで太陽電池が完成
する。
First, an n-type CdTe film to be a window material is formed on a transparent glass substrate by using an atmosphere gas as a mixed gas of Ar and N 2 and using a Cd-excessive CdTe target.
At this time, the mixed gas has a mixing ratio defined by {volume of N 2 gas / (volume of Ar gas + volume of N 2 gas)} of 0.
Within the range of 1 to 0.8, the pressure of the mixed gas is 2 × 10 -4
Torr or more and 1 × 10 −3 Torr or less. Then replace the target with a Te-rich CdTe target,
A p-type CdTe film is formed on the n-type CdTe film using only Ar gas. And finally, the n-type CdTe film and the p-type CdTe film
A solar cell is completed by forming an ohmic electrode on the film.

【0008】理由は定かでないが、スパッタリングの際
に雰囲気ガスとしてArとN2の混合ガスを用いること
で、通常黒銀色であるCdTeの色調が、混合比によっ
て透明に変化するのである。そのため、n型CdTe膜
がp型CdTe膜に対する窓材として使用できるのであ
る。その際、通常1.44eVであるCdTeのバンド
ギャップは、混合比を0.1〜0.8の範囲で変化させ
ることにより、2.5〜3.5eVの範囲で変化する。
The reason is not clear, but by using a mixed gas of Ar and N 2 as an atmospheric gas during sputtering, the color tone of CdTe, which is usually black silver, changes transparently depending on the mixing ratio. Therefore, the n-type CdTe film can be used as a window material for the p-type CdTe film. At that time, the band gap of CdTe, which is usually 1.44 eV, changes in the range of 2.5 to 3.5 eV by changing the mixing ratio in the range of 0.1 to 0.8.

【0009】この現象は、真空装置内に導入する混合ガ
スの圧力を、2×10-4Torr以上とすることで顕著
となる。ただし、該混合ガスの圧力が1×10-3Tor
rを越えてしまうとグロー放電が安定せず、n型CdT
e膜の成膜が安定しない。
This phenomenon becomes remarkable when the pressure of the mixed gas introduced into the vacuum device is set to 2 × 10 -4 Torr or more. However, the pressure of the mixed gas is 1 × 10 −3 Tor.
If it exceeds r, the glow discharge will not be stable and the n-type CdT
The film formation of the e film is not stable.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0011】まず、本発明のCdTe太陽電池の製造に
用いる装置について説明する。図1は、イオンビームス
パッタリング装置の該略図である。真空容器1には該容
器1内を所定の真空度とするための真空ポンプ2、Ar
ガス導入管3及びN2ガス導入管4が連結されている。
また、該容器1内には被コーティング材であるガラス基
板5を保持するための基板ホルダー6と、イオン源7か
らのイオンビームの照射によりスパッタリングされる各
種ターゲットを保持するためのターゲットホルダー8が
設置されている。
First, an apparatus used for manufacturing the CdTe solar cell of the present invention will be described. FIG. 1 is a schematic diagram of an ion beam sputtering apparatus. The vacuum container 1 includes a vacuum pump 2 and an Ar pump for maintaining a predetermined degree of vacuum in the container 1.
The gas introduction pipe 3 and the N 2 gas introduction pipe 4 are connected.
A substrate holder 6 for holding a glass substrate 5 as a material to be coated and a target holder 8 for holding various targets to be sputtered by irradiation of an ion beam from an ion source 7 are provided in the container 1. is set up.

【0012】ターゲットホルダー8は四角柱からなり、
ターゲット取付け面である四角柱の四つの側面に異なる
ターゲットが設置可能で、90度毎回転させることでタ
ーゲットの選択ができる。本実施の形態では四つのター
ゲット取付け面を全て使用し、n型CdTe膜用にCd
過剰CdTeターゲット9、p型CdTe膜用にTe過
剰CdTeターゲット10、p型CdTe膜用の電極の
下地としてCu含有Cターゲット11、及び電極材料と
してIn含有Agターゲット12を設置した。該ターゲ
ット9、10、11、12は、いずれも5〜6N程度に
高純度化されたものであるが、スパッタリングに際して
はターゲット表面を上記イオン源7からのArイオンビ
ーム照射によりクリーニングするのがよい。
The target holder 8 is a square pole,
Different targets can be installed on the four side surfaces of the square pole that is the target mounting surface, and the target can be selected by rotating every 90 degrees. In this embodiment, all four target mounting surfaces are used, and Cd for the n-type CdTe film is used.
An excess CdTe target 9, a Te excess CdTe target 10 for the p-type CdTe film, a Cu-containing C target 11 as a base of an electrode for the p-type CdTe film, and an In-containing Ag target 12 as an electrode material were set. The targets 9, 10, 11 and 12 are all highly purified to about 5 to 6 N, but during sputtering, the target surface should be cleaned by irradiation with Ar ion beam from the ion source 7. .

【0013】基板ホルダー6の全面には、窓部を有した
ステンレス製のマスク13が設置されている。該マスク
13は、外部操作により微動送りできる機構を有してお
り、ガラス基板5上にマスク13の窓部に対応した部分
のみに成膜できるように構成されている。
A stainless mask 13 having a window is installed on the entire surface of the substrate holder 6. The mask 13 has a mechanism that can be finely moved by an external operation, and is configured so that a film can be formed on the glass substrate 5 only on a portion corresponding to the window of the mask 13.

【0014】次に、太陽電池の製造について説明する。
まず、ターゲットにCd過剰CdTeターゲット9を用
いて、n型CdTe膜を成膜する。このとき、雰囲気ガ
スに混合比が0.1〜0.8の範囲にあるArとN2
混合ガスを用い、混合ガスの圧力を2×10-4Torr
以上、1×10-3Torr以下とすることで、n型Cd
Te膜は、CdTe本来の黒銀色ではなく透明となる。
Next, the production of the solar cell will be described.
First, using the Cd-excessive CdTe target 9 as a target, an n-type CdTe film is formed. At this time, a mixed gas of Ar and N 2 having a mixing ratio in the range of 0.1 to 0.8 was used as the atmospheric gas, and the pressure of the mixed gas was 2 × 10 −4 Torr.
As described above, the n-type Cd is set to 1 × 10 −3 Torr or less.
The Te film becomes transparent instead of the original black silver color of CdTe.

【0015】次に、マスク13の位置を若干移動させ、
Arガス雰囲気でTe過剰CdTeターゲット10を用
いて、n型CdTe膜上にp型CdTe膜を成膜する。
続いて、マスク13の位置を更に移動させ、p型CdT
e膜用電極の下地として、Cu含有C電極をp型CdT
e膜上に形成する。Cu添加CdTe結晶は低抵抗のp
型となるため、Cu含有C電極を設けることで、p型C
dTe膜に対する電極のオーミック特性が改善されるの
である。最後に、マスク13の位置を更に移動させて、
n型CdTe膜とp型CdTe膜にIn含有Ag電極を
形成することで、図2に示すような構造の太陽電池が完
成する。
Next, the position of the mask 13 is slightly moved,
A p-type CdTe film is formed on the n-type CdTe film by using the Te-excessive CdTe target 10 in an Ar gas atmosphere.
Then, the position of the mask 13 is further moved to p-type CdT.
A Cu-containing C electrode is used as a base of the e-film electrode to form a p-type CdT
e formed on the film. Cu-added CdTe crystal has a low resistance p
P-type C by providing a Cu-containing C electrode
The ohmic characteristics of the electrode with respect to the dTe film are improved. Finally, move the position of the mask 13 further,
By forming an In-containing Ag electrode on the n-type CdTe film and the p-type CdTe film, a solar cell having a structure as shown in FIG. 2 is completed.

【0016】上記CdTe太陽電池は、イオンビームス
パッタリング装置の他、直流二極、高周波、マグネトロ
ン等のスパッタリング装置で製造することができる。
The CdTe solar cell can be manufactured by a sputtering device such as a DC bipolar, high frequency, or magnetron in addition to the ion beam sputtering device.

【0017】[0017]

【実施例】以下、実施例について図1及び図2を用いて
説明する。
EXAMPLES Examples will be described below with reference to FIGS. 1 and 2.

【0018】一辺20cm、厚さ3mmの透明ガラス基
板5をアセトンを用いて超音波洗浄した後、前記ガラス
基板を基板ホルダー6に設置し、真空ポンプ2を作動さ
せて真空容器1内を1×10-6Torrまで排気した。
After ultrasonically cleaning a transparent glass substrate 5 having a side of 20 cm and a thickness of 3 mm with acetone, the glass substrate is placed on the substrate holder 6 and the vacuum pump 2 is operated to make the inside of the vacuum container 1 1 ×. It was evacuated to 10 -6 Torr.

【0019】次に、真空容器1内にArガス導入管3と
2ガス導入管4からArとN2を導入し、混合ガスの圧
力を2×10-4Torrとした後、イオン源7から加速
電圧3kV、電流密度11mA/cm2のAr+N2混合
イオンビームをCd過剰CdTeターゲット9上に照射
して、膜厚3μmのn型CdTe膜15を成膜した(図
2参照)。
Next, Ar and N 2 are introduced into the vacuum vessel 1 through the Ar gas introduction pipe 3 and the N 2 gas introduction pipe 4 to adjust the pressure of the mixed gas to 2 × 10 -4 Torr, and then the ion source 7 is used. Then, an Ar + N 2 mixed ion beam having an accelerating voltage of 3 kV and a current density of 11 mA / cm 2 was irradiated onto the Cd-excessive CdTe target 9 to form an n-type CdTe film 15 having a film thickness of 3 μm (see FIG. 2).

【0020】このとき、Arガスの流量を毎分8scc
m(「sccm」とは、Stadard cubic centimeterの略
で、25℃、1気圧の標準状態における1cm3のガス
の体積を表す)、N2ガスの流量を毎分2sccmとし
たところ、バンドギャップが2.7eVの透明n型Cd
Te膜が得られた。なお、成膜時の基板温度は最高で6
5℃であった。
At this time, the flow rate of Ar gas is 8 sccm / min.
m (“sccm” is an abbreviation for Stadard cubic centimeter, and represents the volume of gas of 1 cm 3 under standard conditions of 25 ° C. and 1 atmosphere), and the flow rate of N 2 gas was 2 sccm / min. 2.7 eV transparent n-type Cd
A Te film was obtained. The maximum substrate temperature during film formation is 6
5 ° C.

【0021】続いて、N2ガス導入管4を閉じ、Arガ
スの流量を毎分10sccmとし、マスク13を外部操
作により1mm移動させた後、イオン源7から加速電圧
3kV、電流密度11mA/cm2のArイオンビーム
をTe過剰CdTeターゲット10上に照射して、透明
n型CdTe膜15上に膜厚3μmのp型CdTe膜1
6を設けた(図2参照)。
Subsequently, the N 2 gas introduction tube 4 was closed, the flow rate of Ar gas was set to 10 sccm / min, and the mask 13 was moved by 1 mm by an external operation. Then, the acceleration voltage was 3 kV from the ion source 7 and the current density was 11 mA / cm. The Ar-excessive CdTe target 10 is irradiated with an Ar ion beam of 2 to form a p-type CdTe film 1 having a film thickness of 3 μm on the transparent n-type CdTe film 15.
6 was provided (see FIG. 2).

【0022】さらにマスク13を1mm移動させた後、
ターゲットをCu含有Cターゲット11に換え、p型C
dTe膜の成膜条件と同条件で、p型CdTe層16上
に膜厚2μmのCu含有C電極17を設け(図2参
照)、最後に、マスク13を再度1mm移動させ、ター
ゲットをIn含有Agターゲット12とし、p型CdT
e膜の成膜条件と同条件で、n型CdTe膜15上およ
びCu含有C電極17上に膜厚2μmのIn含有Ag電
極18を設けた(図2参照)。
After further moving the mask 13 by 1 mm,
The target is changed to the Cu-containing C target 11, and p-type C
A Cu-containing C electrode 17 having a film thickness of 2 μm is provided on the p-type CdTe layer 16 under the same conditions as the dTe film formation (see FIG. 2), and finally, the mask 13 is moved again by 1 mm to make the target contain In. Ag target 12 and p-type CdT
An In-containing Ag electrode 18 having a film thickness of 2 μm was provided on the n-type CdTe film 15 and the Cu-containing C electrode 17 under the same conditions as those for forming the e-film (see FIG. 2).

【0023】上記の手順により作製された太陽電池に、
ガラス基板5側より自然太陽光に近似したスペクトルを
有するXeランプ光19を強度AM1.5−100mW
/cm2で照射した。その結果、開放電圧VOCが5.8
V、短絡電流ISCが2.79mA/cm2であり、動作
点での形状因子f.f.が0.65であることから、変
換効率は10.5%となり、従来方法で作製した太陽電
池と同等の変換効率を示した。
In the solar cell manufactured by the above procedure,
Intensity of Xe lamp light 19 having a spectrum similar to natural sunlight from the glass substrate 5 side is AM 1.5-100 mW.
/ Cm 2 was irradiated. As a result, the open circuit voltage V OC is 5.8.
V, the short circuit current I SC is 2.79 mA / cm 2 , and the form factor f. f. Is 0.65, the conversion efficiency is 10.5%, which is equivalent to the conversion efficiency of the solar cell manufactured by the conventional method.

【0024】上記方法に従い、図2に示す構造のCdT
e太陽電池を作製したところ、従来方法で5日間要した
CdTe太陽電池の製造が、1日に短縮することができ
た。
According to the above method, the CdT having the structure shown in FIG.
When an e solar cell was produced, the production of the CdTe solar cell, which took 5 days by the conventional method, could be shortened to 1 day.

【0025】[0025]

【発明の効果】本発明によれば、低廉なガラス基板を使
用でき、さらにCdTe太陽電池の生産における工程数
を減少させることができる。それにより製作日数を大幅
に減らすことができ、製造コストの安価な太陽電池を提
供することができる。
According to the present invention, an inexpensive glass substrate can be used, and the number of steps in the production of CdTe solar cells can be reduced. As a result, the number of manufacturing days can be significantly reduced, and a solar cell with low manufacturing cost can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、イオンビームスパッタリング装置の概
略図である。
FIG. 1 is a schematic diagram of an ion beam sputtering apparatus.

【図2】図2は、CdTe太陽電池の断面図である。FIG. 2 is a cross-sectional view of a CdTe solar cell.

【符号の説明】[Explanation of symbols]

1 真空容器 2 真空ポンプ 3 Arガス導入管 4 N2ガス導入管 5 ガラス基板 6 基板ホルダー 7 イオン源 8 ターゲットホルダー 9 Cd過剰CdTeターゲット 10 Te過剰CdTeターゲット 11 Cu含有Cターゲット 12 In含有Agターゲット 13 マスク 14 透明n型CdTe膜 15 p型CdTe膜 16 Cu含有C電極 17 In含有Ag電極 18 リード線 19 Xeランプ光1 Vacuum Container 2 Vacuum Pump 3 Ar Gas Introducing Tube 4 N 2 Gas Introducing Tube 5 Glass Substrate 6 Substrate Holder 7 Ion Source 8 Target Holder 9 Cd Excess CdTe Target 10 Te Excess CdTe Target 11 Cu-Containing C Target 12 In-Containing Ag Target 13 Mask 14 Transparent n-type CdTe film 15 p-type CdTe film 16 Cu-containing C electrode 17 In-containing Ag electrode 18 Lead wire 19 Xe lamp light

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スパッタリング法によるCdTe太陽電
池の製造において、化学量論比よりもCd過剰のCdT
eターゲットを用いて、透明ガラス基板上にArガスと
2ガスの混合ガスを雰囲気ガスとしてn型CdTe膜
を成膜し、次に、化学量論比よりもTe過剰のCdTe
ターゲットを用いて、n型CdTe膜上にArガスを雰
囲気ガスとしてp型CdTe膜を成膜し、最後にn型C
dTe膜とp型CdTe膜とにオーミック電極を形成す
ることを特徴とするCdTe太陽電池の製造方法。
1. In the production of a CdTe solar cell by a sputtering method, CdT in excess of stoichiometric ratio CdT.
An e-target was used to form an n-type CdTe film on a transparent glass substrate using a mixed gas of Ar gas and N 2 gas as an atmosphere gas, and then CdTe in a Te excess of stoichiometric ratio was used.
Using the target, a p-type CdTe film is formed on the n-type CdTe film using Ar gas as an atmospheric gas, and finally the n-type CdTe film is formed.
A method for manufacturing a CdTe solar cell, which comprises forming an ohmic electrode on the dTe film and the p-type CdTe film.
【請求項2】 前記n型CdTe膜の成膜において、前
記混合ガス中のN2ガスの混合比が0.1以上、0.8
以下であり、かつ該混合ガスの圧力が2×10-4Tor
r以上、1×10-3Torr以下であることを特徴とす
る請求項1記載のCdTe太陽電池の製造方法。
2. In the formation of the n-type CdTe film, the mixing ratio of N 2 gas in the mixed gas is 0.1 or more and 0.8.
And the pressure of the mixed gas is 2 × 10 −4 Tor
The method for producing a CdTe solar cell according to claim 1, wherein the value is r or more and 1 × 10 −3 Torr or less.
JP8142853A 1996-06-05 1996-06-05 Production of cdte solar cell Pending JPH09326499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8142853A JPH09326499A (en) 1996-06-05 1996-06-05 Production of cdte solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8142853A JPH09326499A (en) 1996-06-05 1996-06-05 Production of cdte solar cell

Publications (1)

Publication Number Publication Date
JPH09326499A true JPH09326499A (en) 1997-12-16

Family

ID=15325148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8142853A Pending JPH09326499A (en) 1996-06-05 1996-06-05 Production of cdte solar cell

Country Status (1)

Country Link
JP (1) JPH09326499A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009146063A1 (en) * 2008-04-02 2009-12-03 Sunlight Photonics Inc. Method for forming a compound semi-conductor thin-film
US7910396B2 (en) 2009-10-21 2011-03-22 Sunlight Photonics, Inc. Three-stage formation of thin-films for photovoltaic devices
US8012788B1 (en) 2009-10-21 2011-09-06 Sunlight Photonics Inc. Multi-stage formation of thin-films for photovoltaic devices
US8110428B2 (en) 2008-11-25 2012-02-07 Sunlight Photonics Inc. Thin-film photovoltaic devices
US9856143B2 (en) 2008-10-17 2018-01-02 Sunlight Photonics Inc. Pressure controlled droplet spraying (PCDS) method for forming particles of compound materials from melts

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009146063A1 (en) * 2008-04-02 2009-12-03 Sunlight Photonics Inc. Method for forming a compound semi-conductor thin-film
US7842534B2 (en) 2008-04-02 2010-11-30 Sunlight Photonics Inc. Method for forming a compound semi-conductor thin-film
US8431430B2 (en) 2008-04-02 2013-04-30 Sunlight Photonics Inc. Method for forming a compound semi-conductor thin-film
US9856143B2 (en) 2008-10-17 2018-01-02 Sunlight Photonics Inc. Pressure controlled droplet spraying (PCDS) method for forming particles of compound materials from melts
US8110428B2 (en) 2008-11-25 2012-02-07 Sunlight Photonics Inc. Thin-film photovoltaic devices
US7910396B2 (en) 2009-10-21 2011-03-22 Sunlight Photonics, Inc. Three-stage formation of thin-films for photovoltaic devices
US8012788B1 (en) 2009-10-21 2011-09-06 Sunlight Photonics Inc. Multi-stage formation of thin-films for photovoltaic devices

Similar Documents

Publication Publication Date Title
US4581108A (en) Process of forming a compound semiconductive material
US5393675A (en) Process for RF sputtering of cadmium telluride photovoltaic cell
US5603778A (en) Method of forming transparent conductive layer, photoelectric conversion device using the transparent conductive layer, and manufacturing method for the photoelectric conversion device
US6852614B1 (en) Method of manufacturing semiconductor having group II-group VI compounds doped with nitrogen
JPS6252478B2 (en)
JP2004158619A (en) Electronic device and manufacturing method therefor
JP2994812B2 (en) Solar cell
JP2002064108A (en) Compound semiconductor film forming device
JPS6258145B2 (en)
JPH09326499A (en) Production of cdte solar cell
JP2009021607A (en) Method for production of transparent conductive oxide coating
AU2011201950A1 (en) Cadmium sulfide layers for use in cadmium telluride based thin film photovoltaic devices and methods of their manufacture
EP0195152B1 (en) Process of forming a compound semiconductive material
Moruzzi High emission photocathode for swarm experiments
US4266984A (en) Enhanced open circuit voltage in amorphous silicon photovoltaic devices
JP3468328B2 (en) Manufacturing method of semiconductor thin film
US4289602A (en) Electrochemical oxidation of amorphous silicon
KR100936487B1 (en) Manufacturing method of cds/cdte thin film solar cells
JP2002064062A (en) Film formation method of compound semiconductor
JPH07106615A (en) Transparent conductive film and production of photoelectric conversion semiconductor device
JPH053333A (en) Method for repairing solar battery
JPS61292817A (en) Formation of transparent conducting metal oxide film
JPH06192827A (en) Deposited film and its formation
JPH0730134A (en) Manufacture of solar cell
CN115172512B (en) beta-Ga 2 O 3 Base ultraviolet detector and preparation method thereof