JPH09325823A - Load device - Google Patents

Load device

Info

Publication number
JPH09325823A
JPH09325823A JP8178412A JP17841296A JPH09325823A JP H09325823 A JPH09325823 A JP H09325823A JP 8178412 A JP8178412 A JP 8178412A JP 17841296 A JP17841296 A JP 17841296A JP H09325823 A JPH09325823 A JP H09325823A
Authority
JP
Japan
Prior art keywords
power supply
voltage
power
test
under test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8178412A
Other languages
Japanese (ja)
Inventor
Shigeisa Imoto
成勲 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8178412A priority Critical patent/JPH09325823A/en
Publication of JPH09325823A publication Critical patent/JPH09325823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Voltage And Current In General (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To recycle a power for test by a method for returning the power for test to the input side of a power supply device to be tested or an original power supply while driving a constant current or a constant resistor to be a load by an auxiliary power supply or an inverter in order to reuse the power for test being wasted in a conventional method. SOLUTION: The power supply 1 is connected to the input of the power supply device 3 to be tested and the auxiliary power supply 2 is connected to the output terminal side of the device 3 to adjust the output current I1 of the device 3 while executing power feedback by holding voltage balance with the power supply 1 so that a voltage difference between the voltage of the power supply 1 and the output voltage of the power supply 2 is impressed to an impedance element Z. The inverter for converting frequency or converting DC into AC is connected to the output side of the device 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス、直流電源、
交流電源、電池等のあらゆる電源装置の試験用負荷装置
に関する。
BACKGROUND OF THE INVENTION The present invention relates to a transformer, a DC power source,
The present invention relates to a load device for testing any power supply device such as an AC power supply and a battery.

【0002】[0002]

【従来の技術】従来の負荷装置は電力を消費するのみ
で、電気のリサイクルは考慮されていない。
2. Description of the Related Art A conventional load device consumes only electric power and does not consider recycling of electricity.

【0003】[0003]

【発明が解決しようとする課題】従って、本発明は従来
捨てられていた試験用電力を再利用するために、負荷と
しての定電流または定抵抗動作をしながら試験用電力を
被試験電源装置の入力側または元電源に戻すという方法
で試験用電力のリサイクルを可能にし、省エネルギーに
寄与してより多方面に経済的効果をもたらすことを目的
とする。
Therefore, according to the present invention, in order to reuse the test power which has been conventionally discarded, the test power is supplied to the power source device under test while performing constant current or constant resistance operation as a load. The purpose is to make it possible to recycle the test power by returning it to the input side or the original power source, contribute to energy saving, and bring about economic effects in various fields.

【0004】[0004]

【課題を解決するための手段】本発明(請求項1に記載
の第1発明)の負荷装置は、電源に接続された被試験電
源装置と、前記電源と電圧バランスをとって電力帰還を
しながら前記被試験電源装置の出力電流を調整するため
に前記被試験電源装置の出力端子に接続された補助電源
と、前記電源の電圧と前記補助電源の出力電圧の差の電
圧が印加されるように接続されたインピーダンス素子と
から成るものである。
A load device according to the present invention (a first invention according to claim 1) provides a power supply to a power source device under test connected to a power source, and a voltage balance with the power source. While the auxiliary power source connected to the output terminal of the power source device under test for adjusting the output current of the power source device under test, a voltage difference between the voltage of the power source and the output voltage of the auxiliary power source is applied. And an impedance element connected to.

【0005】本発明(請求項2に記載の第2発明)の負
荷装置は、請求項1に記載の第1発明で記述した前記被
試験電源装置の出力端子と前記補助電源の入力端子との
間に周波数変換または直流を交流に変換することを目的
としたインバータを挿入したものである。
A load device according to the present invention (a second invention according to claim 2) comprises an output terminal of the power supply device under test described in the first invention according to claim 1 and an input terminal of the auxiliary power supply. An inverter for the purpose of frequency conversion or DC to AC conversion is inserted between them.

【0006】[0006]

【作用】上記構成より成る第1発明の負荷装置の原理を
図面を用いて説明する。図1−(a)は従来の負荷であ
り負荷に供給される電力はすべて消費され電気の再利用
は考慮されていない。図1−(b)は第1発明の負荷装
置に関わるものであり被試験電源3の試験電力E1×I
1が補助電源2とインピーダンスZを通して被試験電源
3の入力側に戻されている。試験電流I1は、{E0−
(E1−E2)}/Zまたは{E0−(E1+E2)}
/Zで与えられ電圧E2によって調整することができ
る。図1−(c)も第1発明の負荷装置に関わるもので
あり被試験電源3の試験電力E1×I1が補助電源2に
よってE2×I3に変換されインピーダンスZを通して
被試験電源3の入力側に戻される。試験電流I1は、
{(E0−E2)/Z}×E1/E2で与えられ電圧E
2によって調整することができる。
The principle of the load device according to the first aspect of the present invention will be described with reference to the drawings. FIG. 1- (a) shows a conventional load, and all the electric power supplied to the load is consumed and the reuse of electricity is not considered. FIG. 1- (b) relates to the load device of the first aspect of the invention, and the test power E1 × I of the power supply 3 under test.
1 is returned to the input side of the power supply 3 under test through the auxiliary power supply 2 and the impedance Z. The test current I1 is {E0-
(E1-E2)} / Z or {E0- (E1 + E2)}
It is given by / Z and can be adjusted by the voltage E2. FIG. 1- (c) also relates to the load device of the first invention, in which the test power E1 × I1 of the power source under test 3 is converted into E2 × I3 by the auxiliary power source 2 and is input to the input side of the power source under test 3 through the impedance Z. Will be returned. The test current I1 is
The voltage E given by {(E0-E2) / Z} × E1 / E2
2 can be adjusted.

【0007】上記構成より成る第2発明の負荷装置は、
周波数変換または直流を交流に変換することを目的とし
たインバータ4を被試験電源3の出力側に設置するので
被試験電源の電圧が直流であっても第1発明の負荷装置
と同様の効果が得られる。また被試験電源3の電圧が交
流の場合であっても交流スイッチから成るインバータで
交流電圧を直流に変換することなく直接高周波電圧に変
換することによって各変圧器を小さくすることができ
る。図1−(d)は第2発明の負荷装置に関わるもので
あり直流の試験電力E1×I1がインバータ4で交流電
力E3×I3に変換されて補助電源2とインピーダンス
Zを通して被試験電源3の入力側に戻される。試験電流
I1は{E0−(E3−E2)}/Zまたは{E0−
(E3+E2)}/Zで決まり電圧E2によって調整す
ることができる。図1−(e)は被試験電源3が電池の
場合の第2発明の負荷装置に関わるものであり電池5の
試験電力E1×I1がインバータ4で交流電力のE3×
I0に変換されて補助電源2とインピーダンスZを通し
て商用電源に回生される。試験電流I1は、{E0−
(E3−E2)}/Zまたは{E0−(E3+E2)}
/Zで決まり電圧E2によって調整することができる
が、インバータ自身で出力電圧E3を可変する場合は補
助電源2は省略できる。
The load device of the second invention having the above structure is
Since the inverter 4 for the purpose of frequency conversion or conversion of direct current into alternating current is installed on the output side of the power source under test 3, even if the voltage of the power source under test is direct current, the same effect as the load device of the first invention can be obtained. can get. Even when the voltage of the power supply 3 to be tested is AC, each transformer can be made small by directly converting the AC voltage into a high frequency voltage without converting the AC voltage into a DC voltage with an inverter composed of an AC switch. FIG. 1- (d) relates to the load device of the second aspect of the invention, in which the DC test power E1 × I1 is converted into AC power E3 × I3 by the inverter 4 and the auxiliary power source 2 and the impedance Z of the power source 3 under test are used. It is returned to the input side. The test current I1 is {E0- (E3-E2)} / Z or {E0-
It is determined by (E3 + E2)} / Z and can be adjusted by the voltage E2. FIG. 1- (e) relates to the load device of the second invention when the power source 3 to be tested is a battery, and the test power E1 × I1 of the battery 5 is E3 × of the AC power in the inverter 4.
It is converted to I0 and regenerated as a commercial power source through the auxiliary power source 2 and the impedance Z. The test current I1 is {E0-
(E3-E2)} / Z or {E0- (E3 + E2)}
Although it can be adjusted by / Z and adjusted by the voltage E2, the auxiliary power supply 2 can be omitted when the output voltage E3 is varied by the inverter itself.

【0008】[0008]

【実施例】次に本発明の実施例について、図面を用いて
詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0009】(第1実施例)第1実施例の負荷装置は、
第1発明の実施例であり図2−(a)に示すように被試
験電源装置3の入力に電源1を接続し、電源1と電圧バ
ランスをとって電力帰還をしながら被試験電源装置3の
出力電流I1を調整するために被試験電源装置3の出力
端子に補助電源として直列変圧器T1の2次側を接続
し、電源1の電圧E0と直列変圧器T1から成る補助電
源2の出力電圧E3の差の電圧が印加されるようにイン
ピーダンス素子Zを接続して成るものである。
(First Embodiment) The load device of the first embodiment is
As shown in FIG. 2- (a), which is an embodiment of the first invention, the power source 1 is connected to the input of the power source device 3 under test, and the power source device 3 under test is fed back while maintaining a voltage balance with the power source 1. Output of the auxiliary power supply 2 consisting of the voltage E0 of the power supply 1 and the series transformer T1 by connecting the secondary side of the series transformer T1 as an auxiliary power supply to the output terminal of the power supply device under test 3 in order to adjust the output current I1 of The impedance element Z is connected so that a voltage having a difference of the voltage E3 is applied.

【0010】図2−(a)の負荷装置は、原理説明図の
図1−(b)の実施例であり図2−(a)の回路構成に
おいて電源電流I0は条件によっては試験電流I1に比
べて極めて小さくなり、全装置の回路損失分の消費電力
のみで所定の試験が行える。補助電源用変圧器T1の2
次電圧をE2、変圧器T1の1次巻線の巻数をN1、2
次巻線の巻数をN2、変圧器T1の巻線比をa=N1/
N2、被試験電源装置の出力電圧をE1、電源電圧をE
0とすると被試験電源装置の出力電流I1は次式で与え
られる。 I1=(E1+E2−E0)/Z=(E1+E0/a−E0)/Z ={E1+(1/a−1)×E0}/Z 但し、E2=E0/a この式から被試験電源装置の出力電流I1は被試験電源
装置の出力電圧E1とは無関係に電圧E2または巻線比
aによって調整できることがわかる。また、実効巻線比
aは変圧器T2のタップ切り換えまたは巻線の組合せ変
更または摺動式により可変することができる。他の実施
例として、図2−(b)のように直列変圧器T1の1次
巻線を外部補助電源6に接続した場合も同様の効果が得
られる。他の実施例として、図3のようにしても同様の
効果が得られる。図3の負荷装置は、原理説明図の図1
−(c)の実施例であり図3−(a)の回路構成におい
ては補助電源用変圧器T2のタップ切り換えまたは巻線
の組合せ変更または摺動式による実効巻線比の調整で変
圧器T2の電圧E2を変え電流I1を調整する。I1は
次式で与えられる。 I1=(E2/E1)×I3=(E2/E1)×(E2
−E0)/Z この回路構成においても電源電流I0は条件によっては
試験電流I1に比べて極めて小さくなり、全装置の回路
損失分の消費電力のみで所定の試験が行える。図3−
(b)のように補助電源2として単巻変圧器を使用して
も同様の効果が得られる。他の実施例として、図4は変
圧器を試験運転する場合の負荷装置である。図4−
(a)は被試験変圧器が1台の場合で、図4−(b)と
図4−(c)の場合は2台の被試験変圧器T4の2次側
と2次側が互いに接続された複合変圧器7を一つの被試
験変圧器として効率よく試験できる。この場合、組変圧
器7を複数個縦続接続して複数個の変圧器を同時に試験
及びエージングすることもできる。複合変圧器7は2台
の被試験変圧器T4の1次側と1次側が互いに接続され
たものであっても構わない。また、複合変圧器7に使わ
れる2台の変圧器は同じものでなくても類似の効果が得
られる。また、単相三線式電源や三相四線式電源や三相
電源用の負荷装置としても同様の効果が得られる。
The load device of FIG. 2- (a) is an embodiment of the principle explanatory diagram of FIG. 1- (b), and in the circuit configuration of FIG. 2- (a), the power supply current I0 becomes the test current I1 depending on the conditions. This is much smaller than the above, and a predetermined test can be performed only with the power consumption of the circuit loss of all devices. 2 of transformer T1 for auxiliary power supply
The next voltage is E2, the number of turns of the primary winding of the transformer T1 is N1, 2
The number of turns of the next winding is N2, and the winding ratio of the transformer T1 is a = N1 /
N2, the output voltage of the power supply unit under test is E1, the power supply voltage is E
When set to 0, the output current I1 of the power supply device under test is given by the following equation. I1 = (E1 + E2-E0) / Z = (E1 + E0 / a-E0) / Z = {E1 + (1 / a-1) * E0} / Z where E2 = E0 / a From this formula, the output of the power supply device under test It can be seen that the current I1 can be adjusted by the voltage E2 or the winding ratio a regardless of the output voltage E1 of the power supply device under test. Further, the effective winding ratio a can be varied by switching the tap of the transformer T2, changing the combination of windings, or sliding. As another embodiment, the same effect can be obtained when the primary winding of the series transformer T1 is connected to the external auxiliary power source 6 as shown in FIG. As another embodiment, the same effect can be obtained by using the configuration shown in FIG. The load device shown in FIG. 3 is the same as the load device shown in FIG.
In the circuit configuration of FIG. 3- (a), the transformer T2 is changed by tapping the auxiliary power transformer T2, changing the combination of windings, or adjusting the effective winding ratio by a sliding method. The voltage I2 is changed to adjust the current I1. I1 is given by the following equation. I1 = (E2 / E1) × I3 = (E2 / E1) × (E2
-E0) / Z Even in this circuit configuration, the power supply current I0 becomes extremely smaller than the test current I1 depending on the conditions, and the predetermined test can be performed only by the power consumption of the circuit loss of all the devices. Figure 3-
Similar effects can be obtained by using an autotransformer as the auxiliary power supply 2 as shown in (b). As another example, FIG. 4 shows a load device when a transformer is tested. Figure 4-
(A) shows the case where there is one transformer under test, and in the case of FIG. 4- (b) and FIG. 4- (c), the secondary side and the secondary side of the two transformers under test T4 are connected to each other. The combined transformer 7 can be efficiently tested as one transformer under test. In this case, a plurality of transformers 7 may be connected in cascade to test and age a plurality of transformers at the same time. The composite transformer 7 may be one in which the primary side and the primary side of two transformers under test T4 are connected to each other. Further, the two transformers used for the composite transformer 7 can obtain similar effects even if they are not the same. The same effect can be obtained as a single-phase three-wire power supply, a three-phase four-wire power supply, or a load device for a three-phase power supply.

【0011】(第2実施例)第2実施例の負荷装置は、
第2発明の実施例であり、図5に示すように第1発明の
実施例の被試験電源3の出力側に周波数変換または直流
を交流に変換することを目的としたインバータ4を設置
したものである。
(Second Embodiment) A load device according to the second embodiment is
It is an embodiment of the second invention, and as shown in FIG. 5, an inverter 4 for the purpose of frequency conversion or conversion of direct current to alternating current is installed on the output side of the power source 3 under test of the first invention. Is.

【0012】被試験電源装置3が直流であってもインバ
ータ4で交流に変換されるので第1発明の負荷装置と同
様の効果が得られる。また被試験電源装置3が交流の場
合であっても交流スイッチから成るインバータで交流電
圧を直流に変換することなく直接高周波電圧に変換する
ことによって各変圧器を小さくすることができる。他の
実施例として、図6−(a)に示すようにインバータ4
に電圧制御機能をもたせ図5−(a)の補助電源2を省
略しても同様の効果が得られる。他の実施例として、図
6−(b)に示すように被試験電源3が電池の場合、電
池5の試験電力E1×I1がインバータ4で交流電力E
3×I0に変換されてインピーダンスZを通して商用電
源に回生される。また商用電源と同等の独立した電源と
しても使用することができる。試験電流I1は(E0−
E3)/Zで決まりインバータの出力電圧E3によって
調整することができる。またこの方式によれば太陽電
池、燃料電池、熱電変換や圧電変換、風力発電、波力発
電等各種物理現象から得られる電力を商用電源に回生し
たり独立した電源として使用したりすることができる。
Even if the power source device 3 to be tested is a direct current, it is converted into an alternating current by the inverter 4, so that the same effect as the load device of the first invention can be obtained. Further, even when the power supply device 3 to be tested is an alternating current, each transformer can be made small by directly converting the alternating current voltage into a high frequency voltage without converting it into a direct current by an inverter composed of an alternating current switch. As another embodiment, as shown in FIG.
Even if the auxiliary power supply 2 of FIG. 5 (a) is omitted by providing a voltage control function to the above, the same effect can be obtained. As another embodiment, when the power source 3 to be tested is a battery as shown in FIG. 6- (b), the test power E1 × I1 of the battery 5 is AC power E by the inverter 4.
It is converted to 3 × I0 and regenerated to a commercial power source through the impedance Z. It can also be used as an independent power source equivalent to a commercial power source. The test current I1 is (E0-
It is determined by E3) / Z and can be adjusted by the output voltage E3 of the inverter. Further, according to this method, electric power obtained from various physical phenomena such as solar cells, fuel cells, thermoelectric conversion, piezoelectric conversion, wind power generation, wave power generation can be regenerated to a commercial power source or used as an independent power source. .

【発明の効果】上記作用を奏する第1発明、第2発明は
いずれも補助電源またはインバータをを用いることによ
って被試験電源装置の試験電力を消費せずにそのほとん
どを被試験電源装置の入力側または元電源に回生するの
で電気の再利用が可能な負荷装置を構成することができ
る。
According to the first and second aspects of the invention, the auxiliary power source or the inverter is used to consume most of the test power of the power supply unit under test without inputting the test power of the power supply unit under test. Alternatively, since the power is regenerated to the original power source, a load device capable of reusing electricity can be configured.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1発明に関わる負荷装置の原理を示す回路図
である。
FIG. 1 is a circuit diagram showing a principle of a load device according to a first invention.

【図2】第1発明に関わる負荷装置の実施例を示す回路
図である。
FIG. 2 is a circuit diagram showing an embodiment of a load device according to the first invention.

【図3】第1発明に関わる負荷装置の他の実施例を示す
回路図である。
FIG. 3 is a circuit diagram showing another embodiment of the load device according to the first invention.

【図4】第1発明に関わる負荷装置の実施例を示す回路
図である。
FIG. 4 is a circuit diagram showing an embodiment of a load device according to the first invention.

【図5】第2発明に関わる負荷装置の実施例を示す回路
図である。
FIG. 5 is a circuit diagram showing an embodiment of a load device according to a second invention.

【図6】第2発明に関わる負荷装置の他の実施例を示す
回路図である。
FIG. 6 is a circuit diagram showing another embodiment of the load device according to the second invention.

【符号の説明】[Explanation of symbols]

1,2は交流又は直流電源 3は交流又は直流の被試験電源 4はインバータ又は周波数変換器 5は電池または太陽電池、燃料電池、熱電変換や圧電変
換、風力発電、波力発電等各種物理現象から得られる電
源 6は交流電源 7は2台の変圧器の1次側と1次側または2次側と2次
側が互いに接続された2台で一組になった変圧器 T1,T2,T3,T4は巻数比固定の変圧器またはタ
ップ切換や巻線の組合せか摺動式による実効巻数比が調
整可能な変圧器 Zは抵抗またはコンデンサまたはリアクトル
1 and 2 are AC or DC power sources 3 are AC or DC power sources to be tested 4 are inverters or frequency converters 5 are batteries or solar cells, fuel cells, thermoelectric conversion and piezoelectric conversion, wind power generation, wave power generation, and other physical phenomena AC power supply 6 is an AC power supply 7 is a transformer consisting of two transformers whose primary side and primary side or secondary side and secondary side are connected to each other. , T4 is a transformer with a fixed turn ratio, or a transformer with adjustable taps or a combination of windings or a sliding type whose effective turn ratio can be adjusted. Z is a resistor, a capacitor, or a reactor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電源に入力端子が接続された被試験電源
装置と、 前記電源と電圧バランスをとって電力帰還をしながら前
記被試験電源装置の出力電流を調整するために前記被試
験電源装置の出力端子に接続された補助電源と、 前記電源の電圧と前記補助電源の出力電圧の差の電圧が
印加されるように接続されたインピーダンス素子と、か
ら成ることを特徴とする負荷装置。
1. A power supply device under test having an input terminal connected to a power supply; and a power supply device under test for adjusting an output current of the power supply device under test while feeding back power while balancing the voltage with the power supply. A load device, comprising: an auxiliary power supply connected to an output terminal of the power supply; and an impedance element connected so that a voltage having a difference between a voltage of the power supply and an output voltage of the auxiliary power supply is applied.
【請求項2】 請求項1に記載の第1発明で記述した前
記被試験電源装置の出力端子と前記補助電源の入力端子
との間に周波数変換または直流を交流に変換することを
目的としたインバータを挿入した、ことを特徴とする負
荷装置。
2. An object of the present invention is to convert frequency or convert direct current into alternating current between the output terminal of the power source device under test described in the first aspect of the present invention and the input terminal of the auxiliary power source. A load device in which an inverter is inserted.
JP8178412A 1996-06-03 1996-06-03 Load device Pending JPH09325823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8178412A JPH09325823A (en) 1996-06-03 1996-06-03 Load device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8178412A JPH09325823A (en) 1996-06-03 1996-06-03 Load device

Publications (1)

Publication Number Publication Date
JPH09325823A true JPH09325823A (en) 1997-12-16

Family

ID=16048050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8178412A Pending JPH09325823A (en) 1996-06-03 1996-06-03 Load device

Country Status (1)

Country Link
JP (1) JPH09325823A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101361620B1 (en) * 2012-07-23 2014-04-22 (주)지이에스티 Low voltage DC-DC Converter testing device, testing method and recording medium thereof
TWI470253B (en) * 2012-10-02 2015-01-21 Chang Mei Ling A dc power source test system with energy recycle
JPWO2018037499A1 (en) * 2016-08-24 2019-01-17 東芝三菱電機産業システム株式会社 Energization evaluation test equipment for input filter for PWM converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101361620B1 (en) * 2012-07-23 2014-04-22 (주)지이에스티 Low voltage DC-DC Converter testing device, testing method and recording medium thereof
TWI470253B (en) * 2012-10-02 2015-01-21 Chang Mei Ling A dc power source test system with energy recycle
JPWO2018037499A1 (en) * 2016-08-24 2019-01-17 東芝三菱電機産業システム株式会社 Energization evaluation test equipment for input filter for PWM converter

Similar Documents

Publication Publication Date Title
Liu et al. Voltage balance control based on dual active bridge DC/DC converters in a power electronic traction transformer
KR19990067046A (en) AC-DC power
Won et al. Auxiliary power supply for medium-voltage power converters: Topology and control
Varzaneh et al. A high step-up dual-source three-phase inverter topology with decoupled and reliable control algorithm
Sun et al. Modeling and analysis of data center power system stability by impedance methods
Kurm et al. Dual active bridge based reduced stage multiport dc/ac converter for pv-battery systems
Jagabar Sathik et al. Improved “K” type seven‐level switched capacitor inverter topology with Self‐voltage balancing
Karthikeyan et al. Distributed power flow control using cascaded multilevel isolated bidirectional DC–DC converter with multi‐phase shift modulation
Zhu et al. Asymmetrical bidirectional DC–DC converter with limited reverse power rating in smart transformer
Dworakowski et al. 3-phase medium frequency transformer for a 100kW 1.2 kV 20kHz Dual Active Bridge converter
Bae et al. Series stacked modular DC–DC converter using simple voltage balancing method
JPH0564376A (en) Parallel operation of chargers
Debela et al. Switched capacitor based single DC source boost multilevel inverter (S2-MLI) featuring isolation based soft charging with minimum device count
Rajasekaran et al. Implementation of an A-source DC–DC boost combination phase-shifting full-bridge converter for electric car rapid charging applications
JPH09325823A (en) Load device
Li et al. An optimized design method of phase-shift angle in DPS modulation scheme for LCL-type resonant DAB DC-DC converters
KR102554948B1 (en) Bi-directional power conversion system with wide DC bus control range
Kurm et al. Current fed dual active bridge based multi-port DC/AC converter for standalone solar PV fed systems with battery backup
JPH07255132A (en) Inverter for system interconnection
Song et al. Operation method for input‐series‐output‐parallel AC–DC–DC converter
JP2000241477A (en) Operation method for direct current power supply device to be tested
Hirachi et al. A feasible high-performance single-phase UPS incorporating switched mode rectifier with high-frequency transformer link
RU2404439C1 (en) Two-stage electronic load
Swamy et al. A comparison of parallel resonant converters operating in lagging power factor mode
Guan et al. A High Step-Down Partial Power Processing Switched-Capacitor Converter for Wide Input Voltage Range Medium Voltage DC Applications