JPH07255132A - Inverter for system interconnection - Google Patents

Inverter for system interconnection

Info

Publication number
JPH07255132A
JPH07255132A JP6042128A JP4212894A JPH07255132A JP H07255132 A JPH07255132 A JP H07255132A JP 6042128 A JP6042128 A JP 6042128A JP 4212894 A JP4212894 A JP 4212894A JP H07255132 A JPH07255132 A JP H07255132A
Authority
JP
Japan
Prior art keywords
power
inverter
transformer
current
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6042128A
Other languages
Japanese (ja)
Inventor
Tatsuaki Anpo
達明 安保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6042128A priority Critical patent/JPH07255132A/en
Publication of JPH07255132A publication Critical patent/JPH07255132A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To prevent the rush current into a transformer, when such a DC power as the ones of solar batteries or fuel cells whose output state is changed largely is converted into an AC power by an inverter and the output of the inverter which is insulated from the inverter by the transformer is interconnected to a power system, by making the breaker provided on the side of a power system when the interconnection condition is satisfied. CONSTITUTION:The output power of such a DC power supply 1 as a solar batteries and fuel cells whose variation is large is converted into an AC power by an inverter bridge 2, and the output power of the inverter bridge 2 is fed to an insulation transformer 6 via an inductor 3 and capacitor 4. Further, the output of a DC voltage sensor 10 and a power- system-voltage sensor 11 are inputted to an excitation-current-reference generator 24. Also, a current reference I2*sinwt associated with power factor equal to 1 and an excitation current reference I1*sin(wt-pi/2) of the transformer 6 which is sensed by a CT 12 are added to each other and are inputted to a current amplifier 22, and further, the output of the amplifier 22 is inputted to a PWM generator 23, and by the output of the PWM generator 23, the inverter bridge 2 is controlled. When an output voltage EV of the excitation-current-reference generator 24 and an output voltage VX of the power-system-voltage sensor 11 are confined within predetermined ranges respectively, a breaker driver 8 is turned on, and the inverter bridge 2 is operated so as to interconnected to a power system. Thereby, the rush current into the transformer 6 is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、系統連系用のインバー
タに係わり、特に、変換効率/稼働効率等の総合効率が
重要な太陽電池発電設備などに使用される系統連系用イ
ンバータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter for system interconnection, and more particularly to an inverter for system interconnection used in solar cell power generation equipment where total efficiency such as conversion efficiency / operation efficiency is important. Is.

【0002】[0002]

【従来の技術】近年、太陽電池や燃料電池等から得た直
流電力を商用周波数の交流電力に変換して商用交流系統
に給電する系統連系システムが用いられている。このよ
うな系統連系システムの一例として図3に示すものがあ
る。同図に示すように、太陽電池のような直流電源1か
らの電力は、インバータブリッジ2により交流電力に変
換され、リアクトル3とコンデンサ4とから成るフィル
タによりPWM制御による高周波成分を除去し、遮断器
5の接点、商用周波トランス6を介して系統電源7に接
続されている。
2. Description of the Related Art In recent years, a grid interconnection system has been used in which DC power obtained from a solar cell, a fuel cell or the like is converted into AC power having a commercial frequency to supply power to a commercial AC system. An example of such a system interconnection system is shown in FIG. As shown in the figure, electric power from a DC power supply 1 such as a solar cell is converted into AC power by an inverter bridge 2, and a filter including a reactor 3 and a capacitor 4 removes a high frequency component by PWM control and cuts it off. It is connected to the system power supply 7 through the contacts of the device 5 and the commercial frequency transformer 6.

【0003】直流電圧検出器10はインバータブリッジ
2に給電される直流電源の電圧を検出し、直流電圧帰還
信号EFBと、所定レベル以上となると出力される信号E
Xを出力する。系統電圧検出器11は商用周波トランス
6のインバータ側の電圧を検出し、系統電圧帰還信号V
FB(Vsinωt)と、系統電圧が所定の範囲内にある
と出力される信号VXを出力する。また、電流検出器1
2はインバータブリッジ2の出力電流を検出し、電流帰
還信号IFBを出力する。
The DC voltage detector 10 detects the voltage of the DC power source supplied to the inverter bridge 2, and outputs the DC voltage feedback signal E FB and the signal E output when the voltage exceeds a predetermined level.
Output X. The system voltage detector 11 detects the voltage on the inverter side of the commercial frequency transformer 6 and outputs the system voltage feedback signal V
FB (Vsinωt) and a signal VX that is output when the system voltage is within a predetermined range are output. In addition, the current detector 1
2 detects the output current of the inverter bridge 2 and outputs a current feedback signal I FB .

【0004】系統電圧が正常でかつ所定の範囲内で、直
流電圧が所定のレベル以上あり、系統への発電が可能と
判断された場合、すなわち、信号EXと信号VXがとも
に成立すると、遮断器5のドライバ8を駆動し、遮断器
5は閉路する。
If the system voltage is normal and within a predetermined range, the DC voltage is above a predetermined level, and it is determined that power can be generated in the system, that is, if both the signal EX and the signal VX are established, the circuit breaker is activated. The driver 8 of No. 5 is driven, and the circuit breaker 5 is closed.

【0005】また、太陽電池等の直流電源1を最大出力
で駆動するための直流電圧指令E*と直流電圧帰還信号
FBが制御増幅器20に入力され、制御増幅器20から
交流電流波高値指令I*が出力される。この交流電流波
高値指令I*は、基準発生器21で系統電圧帰還信号V
FB(Vsinωt)に同期したインバータ出力電流基準
*sinωtに変換され、インバータ出力電流帰還信
号IFBとともに電流制御増幅器22に入力され、PWM
発生器23を介してインバータブリッジ2を制御する。
Further, the DC voltage command E * for driving the DC power source 1 such as a solar cell at the maximum output and the DC voltage feedback signal E FB are input to the control amplifier 20, and the AC current peak value command I is output from the control amplifier 20. * Is output. This AC current peak value command I * is applied to the system voltage feedback signal V by the reference generator 21.
It is converted into an inverter output current reference I * sinωt synchronized with FB (Vsinωt), and is input to the current control amplifier 22 together with the inverter output current feedback signal I FB.
The inverter bridge 2 is controlled via the generator 23.

【0006】上記したように、インバータ装置の制御電
源はインバータの直流部から取られており、直流電源が
発電を開始し、直流電圧がある程度確立するとインバー
タ装置の制御電源が確立したことになる。このように従
来の系統連系システムの制御では、出力電流は直流電源
の発生量に応じた振幅で、系統電圧位相に同期して力率
1で制御される。
As described above, the control power supply of the inverter device is taken from the DC portion of the inverter, and when the DC power supply starts power generation and the DC voltage is established to some extent, the control power supply of the inverter device is established. As described above, in the conventional control of the system interconnection system, the output current is controlled with a power factor of 1 in synchronization with the system voltage phase with an amplitude according to the generation amount of the DC power supply.

【0007】[0007]

【発明が解決しようとする課題】太陽電池は非常に高価
なため稼働中の変換効率ばかりでなく、稼動時間や停止
中の無負荷損失等も考慮した総合運転効率が重要なポイ
ントである。ところで、上記したように従来技術では、
インバータは出力電流の力率1制御を行うため商用周波
トランス6の励磁電流は系統側から給電されており、商
用周波トランス6は常に系統電源に接続されている。こ
れは、太陽電池が発電をしていない夜間等も系統電源が
トランスに励磁電流を給電し続けることとなり、総合運
転効率を低下させる原因となっている。
Since the solar cell is very expensive, not only the conversion efficiency during operation but also the overall operation efficiency in consideration of operating time and no-load loss during stop are important points. By the way, as described above, in the conventional technology,
Since the inverter performs the power factor 1 control of the output current, the exciting current of the commercial frequency transformer 6 is supplied from the system side, and the commercial frequency transformer 6 is always connected to the system power supply. This causes the system power supply to continue supplying the exciting current to the transformer even at night when the solar cell is not generating power, which causes a decrease in overall operation efficiency.

【0008】また、遮断器5を商用周波トランス6の系
統側に接続し、インバータの運転により開閉を行った場
合には、この開閉の度毎にトランス6へ定格の20倍程
度の突入電流が流れ、系統への頻繁な擾乱を誘起する。
これを防ぐため初期充電抵抗等の追加が必要であった。
Further, when the circuit breaker 5 is connected to the system side of the commercial frequency transformer 6 and opened / closed by the operation of the inverter, an inrush current of about 20 times the rated value is supplied to the transformer 6 each time the circuit is opened / closed. Induces frequent disturbances to the flow and system.
In order to prevent this, it was necessary to add an initial charging resistance.

【0009】本発明は、上記事情に鑑みてなされたもの
で、その目的は、変換効率/稼働効率の変動が大きく広
い動作範囲が求められる系統連系用のインバータを提供
することにある。本発明の他の目的はインバータ側から
トランスの励磁電流を供給することによりインバータの
総合運転効率を向上させる系統連系用インバータを提供
することにある。本発明のさらに他の目的は総合運転効
率が高く、トランスへの突出電流のない系統連系用イン
バータを実現する。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an inverter for system interconnection which has a large fluctuation in conversion efficiency / operation efficiency and is required to have a wide operation range. Another object of the present invention is to provide a grid interconnection inverter that improves the overall operation efficiency of the inverter by supplying the exciting current of the transformer from the inverter side. Still another object of the present invention is to realize a grid interconnection inverter having high overall operation efficiency and no protruding current to the transformer.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の発明は、太陽電池や燃料電池等の諸
条件により発電電力/出力電圧等の変動の大きい直流電
源をインバータにより交流電力に変換し、トランスで絶
縁して電力系統に連系する系統連系用インバータにおい
て、前記トランスの系統側に遮断器を設け、前記直流電
源が発電していない状態では前記遮断器を開路し、前記
直流電源が系統連系に十分な電力を発電可能な状態では
前記遮断器を閉路することを特徴とする。
To achieve the above object, the invention according to claim 1 uses an inverter to convert a direct current power source, which has a large fluctuation in generated power / output voltage, etc., depending on various conditions such as a solar cell and a fuel cell. In a system interconnection inverter that converts to electric power, isolates it with a transformer and connects it to the power system, a circuit breaker is provided on the system side of the transformer, and the circuit breaker is opened when the DC power source is not generating power. The circuit breaker is closed when the DC power source is capable of generating sufficient power for grid interconnection.

【0011】請求項2記載の発明は、請求項1記載の系
統連系用インバータにおいて、前記インバータの制御電
源は前記直流電源より供給され、前記直流電源が発電を
開始し、また前記遮断器より系統側の系統電圧を検出器
により検出して、系統交流電圧に応じた前記トランスの
励磁電流を前記インバータから給電可能となった状態で
前記遮断器を閉路し、前記トランスの励磁電流が給電不
可となった状態で前記遮断器を開路することを特徴とす
る。
According to a second aspect of the present invention, in the grid interconnection inverter according to the first aspect, the control power source of the inverter is supplied from the DC power source, the DC power source starts power generation, and the breaker. The system voltage on the system side is detected by the detector, and the circuit breaker is closed while the excitation current of the transformer corresponding to the system AC voltage can be supplied from the inverter, and the excitation current of the transformer cannot be supplied. In this state, the circuit breaker is opened.

【0012】請求項3記載の発明は、請求項2記載の系
統連系用インバータにおいて、前記インバータの電流制
御基準を、前記トランスの励磁電流基準と前記直流電源
からの系統への給電電流基準のベクトル和とし、前記直
流電源側の電源確立に応じて、前記トランスの励磁電流
基準を所定のレイトでソフトスタートさせ、系統電圧に
応じた前記トランスの励磁が確立したことを条件に前記
遮断器を閉路させ、また前記直流電源の発電量が低下し
て前記給電電流基準が0となり、励磁電流を維持できな
くなった場合に前記遮断器を開路することを特徴とす
る。
According to a third aspect of the present invention, in the grid interconnection inverter according to the second aspect, the current control reference of the inverter is the excitation current reference of the transformer and the power supply current reference to the system from the DC power source. Vector sum, in accordance with the power supply establishment of the DC power supply side, the excitation current reference of the transformer is soft-started at a predetermined rate, the circuit breaker on the condition that the excitation of the transformer according to the system voltage is established. The circuit breaker is closed, and the circuit breaker is opened when the amount of power generated by the DC power supply is reduced and the power supply current reference becomes 0 and the exciting current cannot be maintained.

【0013】[0013]

【作用】本発明によれば、インバータの出力電流基準に
トランスの励磁電流をベクトル加算し、インバータから
トランスの励磁電流を供給すると同時に、トランスの励
磁が確立したことを条件にトランスを含めたインバータ
装置を系統に接続するので、総合運転効率が高く、トラ
ンスへの突出電流のない系統連系用インバータを提供で
きる。また、変換効率/稼働効率の変動が大きく広い動
作範囲が求められる系統連系用のインバータを提供でき
る。
According to the present invention, the exciting current of the transformer is vector-added to the output current reference of the inverter, and the exciting current of the transformer is supplied from the inverter, and at the same time, the inverter including the transformer is provided on condition that the excitation of the transformer is established. Since the device is connected to the grid, it is possible to provide a grid interconnection inverter with high overall operation efficiency and no protruding current to the transformer. Further, it is possible to provide an inverter for system interconnection, which is required to have a wide operation range with large fluctuations in conversion efficiency / operation efficiency.

【0014】[0014]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は、本発明の一実施例のブロック構成図であ
り、本実施例が既に説明した図3の従来の系統連系シス
テムと異なる構成は、以下の3点である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the present invention. The present embodiment is different from the conventional system interconnection system of FIG. 3 described above in the following three points.

【0015】(1)遮断器5と系統電圧検出器11が商
用周波トランス6側の系統側に移動する点。 (2)励磁電流基準発生器24が追加され、電流基準が
従来の直流電圧制御から決まる力率1の電流基準I2 *
sinωtと、トランス6の励磁電流基準I1 *sin
(ωt−π/2)の和となる点。
(1) A point at which the circuit breaker 5 and the system voltage detector 11 move to the system side of the commercial frequency transformer 6 side. (2) the exciting current reference generator 24 are added, the current reference power factor 1 current reference is determined from a conventional DC voltage control I 2 *
sinωt and the excitation current reference I 1 * sin of the transformer 6
A point that is the sum of (ωt−π / 2).

【0016】(3)遮断器5の閉路条件が系統電圧正常
とトランス励磁確立となる点。上記した以外の構成は図
3の従来の系統連系システムと同一であるので、同一部
分には同一符号を付して説明する。
(3) The circuit closing condition of the circuit breaker 5 is that the system voltage is normal and the transformer excitation is established. Since the configuration other than the above is the same as that of the conventional system interconnection system of FIG. 3, the same parts are designated by the same reference numerals and described.

【0017】次に、本実施例の作用について説明する。
励磁電流基準発生器24は、予め与えられた商用周波ト
ランス6の励磁特性をパラメターとして、系統電圧帰還
信号VFB(VACsinωt)に応じて系統電圧による励
磁と見合う励磁を与える励磁電流基準I1 *sin(ω
t−π/2)を発生する。その詳細な機能ブロックを図
2に示す。
Next, the operation of this embodiment will be described.
Excitation current reference generator 24, the excitation characteristics of the commercial frequency transformer 6 previously given as Parameta gives excitation commensurate with excitation by the system voltage depending on the system voltage feedback signal V FB (V AC sinωt) excitation current reference I 1 * sin (ω
t-π / 2) is generated. The detailed functional block is shown in FIG.

【0018】図2の機能ブロックにおいて、系統電圧帰
還信号VFBはトランス励磁振幅基準発生器30で、トラ
ンスの励磁特性によって決定される関数f(VAC,ω)
によって系統電圧/周波数に応じた励磁電流振幅指令I
0 *を発生し、励磁電流ソフトスタート回路31に出力
される。
In the functional block of FIG. 2, the system voltage feedback signal V FB is the transformer excitation amplitude reference generator 30, and the function f (V AC , ω) is determined by the excitation characteristic of the transformer.
Excitation current amplitude command I according to system voltage / frequency
0 * is generated and output to the exciting current soft start circuit 31.

【0019】前記ソフトスタート回路31では、直流電
圧帰還信号EFBが運転範囲の下限値EL 以上、すなわ
ち、EFB≧EL の条件で励磁電流振幅基準I1 *をソフ
トスタートで前記指令値に向かって立ち上げる。励磁電
流で負荷を取ることにより太陽電池は励磁損失分の電力
を供給するために直流電圧は低下する。ソフトスタート
の途中で下記条件のように運転範囲の下限より低下した
場合、すなわち、EFB<EL の場合、励磁振幅基準を減
少させる。ソフトスタートが完了し、励磁電流振幅指令
0 *と励磁電流振幅基準I1 *が一致した場合は、トラ
ンスの励磁が確立したと判断して、励磁確立信号EYを
出力する。
In the soft start circuit 31, the DC voltage feedback signal E FB is equal to or more than the lower limit value E L of the operating range, that is, the excitation current amplitude reference I 1 * is soft started under the condition of E FB ≧ E L Launch towards. By taking a load with the exciting current, the solar cell supplies electric power for the exciting loss, so that the DC voltage decreases. If lower than the lower limit of the operating range as in the middle under the following conditions of the soft start, i.e., if the E FB <E L, reduce the excitation amplitude reference. When the soft start is completed and the excitation current amplitude command I 0 * and the excitation current amplitude reference I 1 * match, it is determined that the transformer has been excited, and the excitation establishment signal EY is output.

【0020】一方、系統電圧帰還信号VFB(VACsin
ωt)は位相シフト回路32に入力され、位相π/2遅
らせた正規化された正弦波基準sin(ωt−π/2)
を発生し、励磁振幅基準I1 *を乗算し、励磁電流基準
1 *sin(ωt−π/2)を出力する。
On the other hand, the system voltage feedback signal V FB (V AC sin
ωt) is input to the phase shift circuit 32, and the normalized sine wave reference sin (ωt−π / 2) is delayed by π / 2.
Is generated, the excitation amplitude reference I 1 * is multiplied, and the excitation current reference I 1 * sin (ωt−π / 2) is output.

【0021】さて、本実施例では太陽電池が発電を開始
すると、直流電圧が立ち上がり始め、先ず制御電源が確
立する。そして、制御電源の確立後、直流電圧が運転範
囲の下限EL より高くなると励磁電流指令がソフトスタ
ートで立ち上がり始めトランスをインバータ側から励磁
し始める。このとき、インバータ電流基準は力率1の基
準I2 *sinωt=0のため励磁電流基準のI1 *si
n(ωt−π/2)のみとなる。
Now, in this embodiment, when the solar cell starts power generation, the DC voltage starts rising, and the control power supply is first established. Then, after the control power supply is established, when the DC voltage becomes higher than the lower limit E L of the operating range, the exciting current command starts to rise by soft start and the transformer starts to be excited from the inverter side. At this time, the inverter current reference I 2 * sin ωt = 0 with a power factor of 1, so I 1 * si of the excitation current reference
Only n (ωt−π / 2).

【0022】このようにしてソフトスタートが完了して
トランスの励磁が確立すると、遮断器5が投入され、系
統連系運転が開始される。発電能力が励磁分以上であれ
ば、直流電圧はさらに上昇し、太陽電池の最大電力制御
のための電圧制御により力率1の電流基準I2 *sin
ωtが立ち上がりはじめ、インバータの電流基準はそれ
らの和、すなわちI1 *sin(ωt−π/2)+I2 *
sinωtとなり、系統へ給電を開始する。
When the soft start is completed and the transformer excitation is established in this way, the circuit breaker 5 is turned on and the grid interconnection operation is started. If the power generation capacity is equal to or more than the exciting component, the DC voltage further rises, and the current reference I 2 * sin with a power factor of 1 is obtained by voltage control for maximum power control of the solar cell.
ωt starts to rise, and the current reference of the inverter is the sum of them, that is, I 1 * sin (ωt−π / 2) + I 2 *
sinωt is reached, and power supply to the grid is started.

【0023】太陽電池の発電電力が低下してくると、力
率1の電流基準I2 *sinωtが低下し始め、EFB
*となるとI2 *sinωt=0となり、励磁電流のみ
で連系し、EFB<EL となった段階で遮断器5を開路す
る。
As the power generated by the solar cell decreases, the current reference I 2 * sinωt with a power factor of 1 begins to decrease, and E FB <
E * become the I 2 * sinωt = 0, and the and interconnection only by the excitation current to open the circuit breaker 5 at the stage of a E FB <E L.

【0024】上述したように、本実施例では太陽電池の
発電能力に応じてトランス励磁電流を含んだインバータ
の出力電流を制御し、トランスの励磁が確立し発電可能
な状態でトランスを含めたインバータシステムを系統に
連系させるため、発電していない状態でのトランス励磁
損失が発生せず、且つトランス投入時にも系統電源に同
期してトランスの励磁が確立しているため突入電流も流
れない。
As described above, in this embodiment, the output current of the inverter including the transformer exciting current is controlled according to the power generation capacity of the solar cell, and the inverter including the transformer is established in the state where the excitation of the transformer is established and the power can be generated. Since the system is connected to the system, no transformer excitation loss occurs when power is not being generated, and inrush current does not flow because the transformer excitation is established in synchronization with the system power supply even when the transformer is turned on.

【0025】[0025]

【発明の効果】以上説明してきたように、本発明によれ
ばインバータの出力電流基準にトランスの励磁電流をベ
クトル加算し、インバータからトランスの励磁電流を供
給すると同時に、トランスの励磁が確立したことを条件
にトランスを含めたインバータ装置を系統に接続するの
で、総合運転効率が高く、トランスへの突出電流のない
系統連系用インバータを提供できる。したがって、系統
擾乱を起こさない商用周波絶縁の系統連系インバータを
提供できる。
As described above, according to the present invention, the excitation current of the transformer is vector-added to the output current reference of the inverter, and the excitation current of the transformer is supplied from the inverter, and the excitation of the transformer is established at the same time. Since the inverter device including the transformer is connected to the system under the condition, it is possible to provide a system interconnection inverter with high overall operation efficiency and no protruding current to the transformer. Therefore, it is possible to provide a commercial-frequency-insulated system interconnection inverter that does not cause system disturbance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック構成図。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】図1の励磁電流基準発生器の機能ブロック図。FIG. 2 is a functional block diagram of the excitation current reference generator shown in FIG.

【図3】従来の商用周波絶縁形の系統連系インバータの
ブロック構成図。
FIG. 3 is a block configuration diagram of a conventional commercial frequency isolated type grid-connected inverter.

【符号の説明】[Explanation of symbols]

1…直流電源、2…インバータブリッジ、3…リアクト
ル、4…コンデンサ、5…遮断器、6…商用周波絶縁ト
ランス、7…系統電源、8…遮断器ドライバ、10…直
流電圧検出器、11…系統電圧検出器、12…電流検出
器、20…直流電圧制御増幅器、21…電流基準発生
器、22…電流制御増幅器、23…PWM発生器、24
…励磁電流基準発生器、30…トランス励磁振幅指令発
生器、31…励磁電流基準ソフトスタート回路、32…
位相シフト回路。
DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... Inverter bridge, 3 ... Reactor, 4 ... Capacitor, 5 ... Circuit breaker, 6 ... Commercial frequency isolation transformer, 7 ... System power supply, 8 ... Circuit breaker driver, 10 ... DC voltage detector, 11 ... System voltage detector, 12 ... Current detector, 20 ... DC voltage control amplifier, 21 ... Current reference generator, 22 ... Current control amplifier, 23 ... PWM generator, 24
... excitation current reference generator, 30 ... transformer excitation amplitude command generator, 31 ... excitation current reference soft start circuit, 32 ...
Phase shift circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池や燃料電池等の諸条件により発
電電力/出力電圧等の変動の大きい直流電源をインバー
タにより交流電力に変換し、トランスで絶縁して電力系
統に連系する系統連系用インバータにおいて、前記トラ
ンスの系統側に遮断器を設け、前記直流電源が発電して
いない状態では前記遮断器を開路し、前記直流電源が系
統連系に十分な電力を発電可能な状態では前記遮断器を
閉路することを特徴とする系統連系用インバータ。
1. A grid interconnection system in which a DC power source, which has a large fluctuation in generated power / output voltage, etc. depending on various conditions such as a solar cell and a fuel cell, is converted into AC power by an inverter and insulated by a transformer to be connected to a power system. In the inverter for inverter, a circuit breaker is provided on the system side of the transformer, the circuit breaker is opened when the DC power supply is not generating power, and the circuit breaker is generated when the DC power supply is capable of generating sufficient power for grid connection. An inverter for system interconnection characterized by closing a circuit breaker.
【請求項2】 請求項1記載の系統連系用インバータに
おいて、前記インバータの制御電源は前記直流電源より
供給され、前記直流電源が発電を開始し、また前記遮断
器より系統側の系統電圧を検出器により検出して、系統
交流電圧に応じた前記トランスの励磁電流を前記インバ
ータから給電可能となった状態で前記遮断器を閉路し、
前記トランスの励磁電流が給電不可となった状態で前記
遮断器を開路することを特徴とする系統連系用インバー
タ。
2. The system interconnection inverter according to claim 1, wherein the control power supply of the inverter is supplied from the DC power supply, the DC power supply starts power generation, and a system voltage on the system side of the circuit breaker is supplied. Detected by the detector, closing the circuit breaker in a state where the exciting current of the transformer according to the system AC voltage can be fed from the inverter,
An inverter for grid interconnection, wherein the circuit breaker is opened in a state where the exciting current of the transformer cannot supply power.
【請求項3】 請求項2記載の系統連系用インバータに
おいて、前記インバータの電流制御基準を、前記トラン
スの励磁電流基準と前記直流電源からの系統への給電電
流基準のベクトル和とし、前記直流電源側の電源確立に
応じて、前記トランスの励磁電流基準を所定のレイトで
ソフトスタートさせ、系統電圧に応じた前記トランスの
励磁が確立したことを条件に前記遮断器を閉路させ、ま
た前記直流電源の発電量が低下して前記給電電流基準が
0となり、励磁電流を維持できなくなった場合に前記遮
断器を開路することを特徴とする系統連系用インバー
タ。
3. The system interconnection inverter according to claim 2, wherein the current control reference of the inverter is a vector sum of an excitation current reference of the transformer and a power supply current reference to the system from the DC power source, and the DC According to the power supply on the power supply side, the excitation current reference of the transformer is soft-started at a predetermined rate, and the circuit breaker is closed on the condition that the excitation of the transformer according to the system voltage is established. An inverter for system interconnection, characterized in that the circuit breaker is opened when the amount of power generation of the power source decreases and the power supply current reference becomes 0 and the exciting current cannot be maintained.
JP6042128A 1994-03-14 1994-03-14 Inverter for system interconnection Pending JPH07255132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6042128A JPH07255132A (en) 1994-03-14 1994-03-14 Inverter for system interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6042128A JPH07255132A (en) 1994-03-14 1994-03-14 Inverter for system interconnection

Publications (1)

Publication Number Publication Date
JPH07255132A true JPH07255132A (en) 1995-10-03

Family

ID=12627310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6042128A Pending JPH07255132A (en) 1994-03-14 1994-03-14 Inverter for system interconnection

Country Status (1)

Country Link
JP (1) JPH07255132A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161902A (en) * 2009-01-09 2010-07-22 Daihen Corp Inverter control circuit and grid-connected inverter system with this inverter control circuit
JP2010161901A (en) * 2009-01-09 2010-07-22 Daihen Corp Inverter control circuit and grid-connected inverter system with this inverter control circuit
JP2011120396A (en) * 2009-12-04 2011-06-16 Fuji Electric Systems Co Ltd Synchronous input system of transformer
JP2013027072A (en) * 2011-07-15 2013-02-04 Kyocera Corp Power control apparatus and power control method
GB2493534A (en) * 2011-08-09 2013-02-13 Control Tech Ltd Renewable energy output monitoring
CN104767187A (en) * 2015-04-15 2015-07-08 西南交通大学 High-voltage direct-current breaker based on Sepic converter topology and fault removal method thereof
CN104901265A (en) * 2015-04-15 2015-09-09 西南交通大学 Cuk converter topology based high-voltage DC circuit breaker and fault eliminating method thereof
KR20220052687A (en) * 2020-10-21 2022-04-28 이현화 Apparatus and method for reducing powert loss of photovoltaic power generation system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161902A (en) * 2009-01-09 2010-07-22 Daihen Corp Inverter control circuit and grid-connected inverter system with this inverter control circuit
JP2010161901A (en) * 2009-01-09 2010-07-22 Daihen Corp Inverter control circuit and grid-connected inverter system with this inverter control circuit
JP2011120396A (en) * 2009-12-04 2011-06-16 Fuji Electric Systems Co Ltd Synchronous input system of transformer
JP2013027072A (en) * 2011-07-15 2013-02-04 Kyocera Corp Power control apparatus and power control method
GB2493534A (en) * 2011-08-09 2013-02-13 Control Tech Ltd Renewable energy output monitoring
CN102957165A (en) * 2011-08-09 2013-03-06 控制技术有限公司 Renewable energy output monitoring
GB2493534B (en) * 2011-08-09 2013-06-26 Control Tech Ltd Renewable energy output monitoring
CN104767187A (en) * 2015-04-15 2015-07-08 西南交通大学 High-voltage direct-current breaker based on Sepic converter topology and fault removal method thereof
CN104901265A (en) * 2015-04-15 2015-09-09 西南交通大学 Cuk converter topology based high-voltage DC circuit breaker and fault eliminating method thereof
KR20220052687A (en) * 2020-10-21 2022-04-28 이현화 Apparatus and method for reducing powert loss of photovoltaic power generation system

Similar Documents

Publication Publication Date Title
US5977659A (en) Inverter apparatus and solar power generation apparatus
EP1387462B1 (en) Co-generated power supply system
US20100237704A1 (en) Single-phase to n-phase converter and power conversion system
JPH07255132A (en) Inverter for system interconnection
JPH08191573A (en) Photovoltaic power generator
Song et al. A current-fed HF link direct DC/AC converter with active harmonic filter for fuel cell power systems
JPH08280136A (en) Method for controlling distributed power supply linked with power system
e Silva et al. Bidirectional DC-AC converter for isolated microgrids with voltage unbalance reduction capabilities
JPH09215205A (en) Power conversion apparatus
JP3217212B2 (en) Inverter
JPH10210685A (en) Controlling method for system-interconnected power converter for fuel cell
JPH08179841A (en) Photovoltaic power generation device
KR102274048B1 (en) Independent microgrid system and inverter device
JP2000241477A (en) Operation method for direct current power supply device to be tested
JPH08182343A (en) Photovoltaic power generation system
Han et al. Hybrid-mode cuk inverter with low-voltage ride-through capability under grid-faults
Arun A Voltage Modulated Direct Power Controlled Fuel Cell-Battery System Connected to a Weak AC Grid
JP3426947B2 (en) Solar power generator
JPH1118441A (en) Method of initially charging dc capacitor of inverter
JPH06225406A (en) Battery charging system for electric motor vehicle
Hirachi et al. A feasible high-performance single-phase UPS incorporating switched mode rectifier with high-frequency transformer link
JP2002165461A (en) Transformerless inverter power supply
JP2001218368A (en) Power converter and photovoltaic generation system
Kawabata et al. UPS systems using multi-functional inverters
EP3550703A1 (en) Dc-ac converter and method of dc-ac conversion