JPH09324297A - Method for estimating concentration of plating liquid for continuous electroplating equipment - Google Patents

Method for estimating concentration of plating liquid for continuous electroplating equipment

Info

Publication number
JPH09324297A
JPH09324297A JP14543896A JP14543896A JPH09324297A JP H09324297 A JPH09324297 A JP H09324297A JP 14543896 A JP14543896 A JP 14543896A JP 14543896 A JP14543896 A JP 14543896A JP H09324297 A JPH09324297 A JP H09324297A
Authority
JP
Japan
Prior art keywords
concentration
equipment
plating
plating solution
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14543896A
Other languages
Japanese (ja)
Other versions
JP3627081B2 (en
Inventor
Yuji Ikenaga
雄二 池永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14543896A priority Critical patent/JP3627081B2/en
Publication of JPH09324297A publication Critical patent/JPH09324297A/en
Application granted granted Critical
Publication of JP3627081B2 publication Critical patent/JP3627081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To exactly estimate the average concn. over the entire part of a plating liquid necessary for adequately controlling the connection. of the plating liquid with continuous electroplating equipment. SOLUTION: The method for estimating the concns. of the plating liquid of the continuous electroplating equipment is constituted to have plating cells 1 to 3 for continuously plating a transported strip, circulating tanks 4 to 6 for replenishing these plating cells with plating liquid components while circulating the plating liquid to the cells and ancillary equipment 7 to 9 for supplying zinc, nickel and sulfuric acid respectively to the circulating tanks 4 to 6. In such a case, the continuous electroplating equipment is divided to nine pieces of equipment blocks. The concn. estimation models based on the material balance models taking the expenditure of the plating liquid components by plating and the income of the plating liquid component by the supply of the component materials into consideration are built for each of the respective equipment blocks. The plating liquid concns. of the respective equipment blocks are estimated by using these concn. estimation models.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、連続電気めっきに
おけるめっき液濃度推定方法、特に連続電気めっき設備
でのめっき液濃度を適切に制御する際に適用して好適
な、連続電気めっきにおけるめっき液濃度推定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the concentration of a plating solution in continuous electroplating, and particularly to a plating solution in continuous electroplating suitable for appropriately controlling the concentration of the plating solution in continuous electroplating equipment. Concerning the concentration estimation method.

【0002】[0002]

【従来の技術】連続電気めっき設備で鋼板に高精度でめ
っきをするためには、該めっき設備でのめっき液濃度、
例えばpH(又はH2 SO4 濃度)、金属イオン濃度を
目標値に正確に制御することが極めて重要である。
2. Description of the Related Art In order to plate a steel sheet with high precision in continuous electroplating equipment, the concentration of plating solution in the plating equipment must be
For example, it is extremely important to accurately control the pH (or H2 SO4 concentration) and the metal ion concentration to target values.

【0003】従来のめっき液濃度制御方法としては、例
えばpH(又はH2 SO4 濃度)を測定し、pH(又は
H2 SO4 濃度)が一定となるように金属薬剤を投入す
る技術が、特開昭51−97543、特開昭58−12
3890、特開昭62−4900に開示されている。
As a conventional plating solution concentration control method, for example, there is a technique of measuring pH (or H2 SO4 concentration) and introducing a metal chemical so that the pH (or H2 SO4 concentration) becomes constant. -97543, JP-A-58-12
3890 and JP-A-62-4900.

【0004】又、金属イオン濃度を測定し、金属イオン
濃度が一定となるように金属薬剤を投入する技術が、特
開昭60−48598に開示されている。
Further, Japanese Patent Laid-Open No. 60-48598 discloses a technique for measuring the metal ion concentration and introducing a metal chemical so that the metal ion concentration is constant.

【0005】又、金属イオンを目標濃度に制御するため
に、その予測消費と金属イオン濃度偏差の総和から求ま
る量の金属薬剤を投入する技術が、特開昭61−198
00、特開昭61−91396、特開昭62−4664
0、特開昭62−222099、特開平1−2988
0、特開平1−234599に開示されている。
Further, in order to control the metal ion to a target concentration, a technique of introducing an amount of a metal agent obtained from the sum of the predicted consumption and the deviation of the metal ion concentration is disclosed in JP-A-61-198.
00, JP-A-61-91396, JP-A-62-4664
0, JP-A-62-222099, JP-A-1-2988.
No. 0, disclosed in JP-A-1-234599.

【0006】又、同じく金属イオンを目標濃度に制御す
るために、その予測消費と金属イオンの濃度偏差の総和
から求まる量の金属薬剤を投入すると共に、H2 SO4
濃度(又はpH)偏差から求まる量の硫酸薬剤を投入す
る技術が、特開昭59−116400、特公昭61−1
6440、特開平2−217499、特開平4−567
96に開示されている。
Similarly, in order to control the metal ion to a target concentration, an amount of the metal agent obtained from the sum of the predicted consumption of the metal ion and the concentration deviation of the metal ion is added, and H 2 SO 4 is added.
A technique for adding a sulfuric acid chemical in an amount determined from the concentration (or pH) deviation is disclosed in JP-A-59-116400 and JP-B-61-1.
6440, JP-A-2-217499, JP-A-4-567
96.

【0007】更に、金属イオンの予測消費と金属イオン
濃度、金属イオン濃度比偏差の総和から決定された金属
薬剤投入量に、H2 SO4 濃度(又はpH)の測定値か
ら補正を行って制御する技術が、特開平5−32099
7に開示されている。
Further, a technique for controlling the amount of metal drug input determined from the sum of the predicted consumption of metal ions, the metal ion concentration, and the metal ion concentration ratio deviation, by correcting from the measured value of the H2 SO4 concentration (or pH). JP-A-5-32099
7 is disclosed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前述し
た従来の濃度制御技術には、めっき液成分の予測消費を
考慮するか否かの違いはあるものの、いずれもめっき液
濃度としては、測定箇所を限定して実測した濃度測定値
そのものを使用して制御を実施しているため、以下の問
題がある。
However, in the above-mentioned conventional concentration control techniques, there is a difference whether or not the estimated consumption of the components of the plating solution is taken into consideration. Since the control is performed using the measured concentration value itself which is actually limited, there are the following problems.

【0009】不溶性陽極を使用する連続電気めっき設備
は、一般に鋼板に対して電気めっきするためのめっきセ
ル、該めっきセルにめっき液を循環供給するための循環
タンク、及びめっき液濃度(金属イオン濃度、合金めっ
きの場合は金属イオン濃度比、H2 SO4 濃度又はp
H)を調整するための付帯設備で構成されている。
Continuous electroplating equipment using an insoluble anode is generally a plating cell for electroplating a steel sheet, a circulation tank for circulating and supplying a plating solution to the plating cell, and a plating solution concentration (metal ion concentration). In the case of alloy plating, metal ion concentration ratio, H2 SO4 concentration or p
H) is included in the auxiliary equipment for adjusting.

【0010】以下、金属材料として炭酸亜鉛(ZnCO
3 )、炭酸ニッケル(NiCO3 )を用いるZn−Ni
合金系電気めっきの場合を例に、上記電気めっき設備に
おけるめっきについて説明する。前記めっきセルでは、
(A)〜(C)式で示される鋼板への電気めっき(電
析)反応によって、金属イオンの減少及びH2 SO4 の
増加(又はpHの低下)が発生する。
Hereinafter, zinc carbonate (ZnCO) is used as a metal material.
3), Zn-Ni using nickel carbonate (NiCO3)
Plating in the above electroplating equipment will be described by taking the case of alloy-based electroplating as an example. In the plating cell,
The electroplating (electrodeposition) reaction on the steel sheet represented by the formulas (A) to (C) causes a decrease in metal ions and an increase in H2 SO4 (or a decrease in pH).

【0011】 電析反応: Zn2 +2e- →Zn↓ (鋼板上) …(A) Ni2 +2e- →Ni↓ (鋼板上) …(B) H2 O+SO4 2-→H2 SO4 +O2 ↑+2e- (陽極上) …(C)Electrodeposition reaction: Zn 2 + 2e → Zn ↓ (on the steel plate) (A) Ni 2 + 2e → Ni ↓ (on the steel plate) (B) H 2 O + SO 4 2- → H 2 SO 4 + O 2 ↑ + 2e (anode Above) (C)

【0012】逆に、前記付帯設備では、下記(D)、
(E)式で示される金属材料の溶解反応によって、金属
イオンの増加及びH2 SO4 の減少(又はpHの上昇)
が発生する。
On the contrary, in the above-mentioned auxiliary equipment, the following (D),
Due to the dissolution reaction of the metal material represented by the formula (E), an increase in metal ions and a decrease in H2 SO4 (or an increase in pH)
Occurs.

【0013】 溶解反応: ZnCO3 +H2 SO4 →ZnSO4 +H2 O+CO2 ↑ …(D) NiCO3 +H2 SO4 →NiSO4 +H2 O+CO2 ↑ …(E)Dissolution reaction: ZnCO3 + H2SO4 → ZnSO4 + H2O + CO2 ↑ (D) NiCO3 + H2SO4 → NiSO4 + H2O + CO2 ↑ (E)

【0014】従って、濃度計による濃度測定(金属イオ
ン濃度、H2 SO4 濃度又はpH)をめっきセルで行う
と、めっき設備に存在しているめっき液全体の平均濃度
に対して、金属イオン濃度は低めの測定値となり、H2
SO4 濃度は高め(又はpHは低め)の測定値となる。
逆に、付帯設備で同様の濃度測定を行うと、めっき液全
体の平均濃度に対して、金属イオン濃度は高めの測定値
となり、H2 SO4 濃度は低め(又はpHは高め)の測
定値となる。更に、連続電気めっき設備の場合は、電析
速度の違い(ライン速度、付着量、板幅等)によって影
響度が異なる。
Therefore, when the concentration measurement by the densitometer (metal ion concentration, H2 SO4 concentration or pH) is performed in the plating cell, the metal ion concentration is lower than the average concentration of the whole plating solution existing in the plating equipment. Becomes the measured value of H2
The SO4 concentration is a high (or pH is low) measurement value.
On the contrary, if the same concentration measurement is performed with the auxiliary equipment, the metal ion concentration becomes a higher measurement value and the H2 SO4 concentration becomes a lower measurement value (or the pH is higher) with respect to the average concentration of the entire plating solution. . Furthermore, in the case of continuous electroplating equipment, the degree of influence varies depending on the difference in the electrodeposition rate (line speed, amount of adhesion, plate width, etc.).

【0015】従って、連続電気めっき設備では、上記の
ような限定された位置で得られた測定値を基にしては、
めっき液濃度を目標値に正確に制御することができな
い。
Therefore, in the continuous electroplating equipment, based on the measured values obtained at the limited positions as described above,
The plating solution concentration cannot be accurately controlled to the target value.

【0016】本発明は、前記従来の問題点を解決するべ
くなされたもので、連続電気めっき設備でめっき液の濃
度を適切に制御するために必要なめっき液全体の平均濃
度を正確に推定することができる技術を提供することを
課題とする。
The present invention has been made to solve the above-mentioned conventional problems, and accurately estimates the average concentration of the entire plating solution necessary for appropriately controlling the concentration of the plating solution in continuous electroplating equipment. It is an object to provide a technology capable of doing so.

【0017】[0017]

【課題を解決するための手段】本発明は、搬送されるス
トリップを連続的にめっきする1以上のめっきセルと、
該めっきセルにめっき液を循環させながらめっき液成分
を補給する付帯設備とを備えた連続電気めっき設備にお
けるめっき液濃度推定方法において、連続電気めっき設
備を複数の設備ブロックに分割し、各設備ブロック毎に
めっきによるめっき液成分の支出と、成分材料の供給に
よるめっき液成分の収入の影響を考慮した物質収支モデ
ルを基本とする濃度推定モデルを構築し、該濃度推定モ
デルを用いて、各設備ブロックのめっき液濃度を推定す
ることにより、前記課題を解決したものである。
SUMMARY OF THE INVENTION The present invention comprises one or more plating cells for continuously plating a strip to be conveyed.
In a plating solution concentration estimating method in a continuous electroplating equipment comprising auxiliary equipment for supplying a plating solution component while circulating the plating solution in the plating cell, the continuous electroplating equipment is divided into a plurality of equipment blocks, and each equipment block is divided. For each facility, a concentration estimation model based on a mass balance model that considers the effects of the plating solution component expenditure for plating and the income of the plating solution component due to the supply of component materials is constructed. The above problem is solved by estimating the plating solution concentration of the block.

【0018】即ち、本発明においては、連続電気めっき
設備を複数の任意の設備ブロックに分割すると共に、め
っきセルでの電析反応、付帯設備での金属材料(成分材
料)の溶解反応等を考慮した物質収支モデルを基本とす
る濃度推定モデルにより、各ブロックの濃度を連続的に
推定できるようにしたので、濃度計は1台でも設備全体
の濃度バランスを常時監視することができると共に、例
えば、請求項3のように、各設備ブロックの推定濃度と
その浴量から設備全体の平均濃度を推定することができ
る。又、このように平均濃度を推定する場合には、測定
場所による濃度測定値のばらつきに影響されることがな
くなるため、高精度なめっき液濃度のフィードバック
(FB)制御ができるようになる。
That is, in the present invention, the continuous electroplating equipment is divided into a plurality of arbitrary equipment blocks, and the electrodeposition reaction in the plating cell and the dissolution reaction of the metal material (component material) in the auxiliary equipment are taken into consideration. With the concentration estimation model based on the material balance model described above, the concentration of each block can be continuously estimated. Therefore, even with one densitometer, the concentration balance of the entire facility can be constantly monitored. According to the third aspect, the average concentration of the entire facility can be estimated from the estimated concentration of each facility block and the bath amount thereof. Further, in the case of estimating the average concentration in this way, since it is not affected by the variation of the concentration measurement value depending on the measurement place, it becomes possible to perform the feedback (FB) control of the plating solution concentration with high accuracy.

【0019】[0019]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0020】図1は、本発明に係る一実施形態に適用さ
れる連続電気めっき設備の概略構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing a schematic configuration of continuous electroplating equipment applied to one embodiment according to the present invention.

【0021】この連続電気めっき設備は、符号1〜3を
付した3つのめっきセルが1列に配置され、これらめっ
きセル1〜3で鋼板Sが矢印方向に搬送されながら、連
続的に電気めっきが行われるようになっている。
In this continuous electroplating equipment, three plating cells denoted by reference numerals 1 to 3 are arranged in one row, and the steel plate S is conveyed in the direction of the arrow in these plating cells 1 to 3 while continuously performing electroplating. Is to be done.

【0022】又、上記めっき設備には、それぞれ矢印方
向にめっき液を循環させるための付帯設備である符号4
〜6を付した循環タンクと、めっき液成分の材料を供給
するための符号7〜9を付した付属設備A〜Cとが備え
られている。付帯設備A7は、亜鉛材料をZnCO3 と
して供給する設備に、付帯設備B8は、ニッケル材料を
NiCO3 として供給する設備に、付帯設備C9は、硫
酸を供給する設備にそれぞれ当る。
Further, the above-mentioned plating equipment is an accessory equipment for circulating a plating solution in the direction of the arrow 4, respectively.
6 to 6, and auxiliary equipments A to C having reference numerals 7 to 9 for supplying the material of the plating solution component are provided. The auxiliary equipment A7 corresponds to equipment for supplying zinc material as ZnCO3, the auxiliary equipment B8 corresponds to equipment for supplying nickel material as NiCO3, and the auxiliary equipment C9 corresponds to equipment for supplying sulfuric acid.

【0023】又、上記めっき設備では、循環タンク4〜
6のそれぞれにレベル計10が付設され、又、めっきセ
ル1〜3と対応する循環タンク4〜6との間に配設され
た供給用の配管、及び、循環タンク4から付帯設備A7
〜C9への送り配管に、それぞれ流量計11が付設さ
れ、更に、循環タンク6のみに濃度計12が付設されて
いる。
Further, in the above plating equipment, the circulation tanks 4 to
6, a level meter 10 is attached to each of the pipes 6, a supply pipe arranged between the plating cells 1 to 3 and the corresponding circulation tanks 4 to 6, and the circulation tank 4 to auxiliary equipment A7.
A flow meter 11 is attached to each of the feed pipes to C9, and a concentration meter 12 is attached only to the circulation tank 6.

【0024】本実施形態においては、上記連続電気めっ
き設備を、符号1〜9を付した上記各部分設備に相当す
る9個の設備ブロックに分割すると共に、各設備ブロッ
ク毎にめっきによるめっき液成分の支出と、成分材料の
供給によるめっき液成分の収入の影響を考慮した物質収
支モデルを基本とする濃度推定モデルを構築し、該濃度
推定モデルを用いて、各設備ブロックのめっき液濃度を
推定する。
In the present embodiment, the continuous electroplating equipment is divided into nine equipment blocks corresponding to the above-mentioned partial equipment with reference numerals 1 to 9, and the plating solution components for plating are provided for each equipment block. Of concentration and the concentration estimation model based on a mass balance model that takes into account the effects of the supply of component materials on the income of the components of the plating solution, and the concentration estimation model is used to estimate the concentration of the plating solution of each equipment block. To do.

【0025】まず、この濃度推定モデルについて、設備
ブロック(以下、単にブロックとも言う)の分割数がm
であるとして以下に説明する。
First, in this concentration estimation model, the number of divisions of equipment blocks (hereinafter also simply referred to as blocks) is m.
Will be described below.

【0026】前回計算されたt時刻での1〜mブロック
のZn濃度:CZ(t) 、Ni濃度:CN(t) 、H2 SO
4 濃度:CA(t) を、以下の行列で記述する。なお、行
列の要素であるCZ1(t)〜CZm(t)、CN1(t)〜CNm
(t)、CA1(t)〜CAm(t)は、t時刻での1〜mブロッ
クのそれぞれの対応する濃度であり、Tは転置行列を表
わす。
Zn concentration: CZ (t), Ni concentration: CN (t), H 2 SO of 1 to m blocks at time t calculated last time
4 Concentration: CA (t) is described by the following matrix. The matrix elements CZ1 (t) to CZm (t) and CN1 (t) to CNm
(t) and CA1 (t) to CAm (t) are the corresponding densities of 1 to m blocks at time t, and T represents the transposed matrix.

【0027】 CZ(t) =(CZ1(t),・・・,CZm(t))T …(1) CN(t) =(CN1(t),・・・,CNm(t))T …(2) CA(t) =(CA1(t),・・・,CAm(t))T …(3)CZ (t) = (CZ1 (t), ..., CZm (t)) T ... (1) CN (t) = (CN1 (t), ..., CNm (t)) T. (2) CA (t) = (CA1 (t), ..., CAm (t)) T ... (3)

【0028】又、t〜t+1時刻の間の1〜mブロック
のZn収支量:Uz、Ni収支量:Un、H2 SO4 収
支量:Uaを、以下の行列で記述する。これら行列は、
物質収支モデルに当る。なお、行列の要素であるUz1
〜Uzm 、Un1 〜Unm 、Ua1 〜Uam は、t〜t
+1時刻間での1〜mブロックのそれぞれ対応する収支
量である。
Further, the Zn balance amount: Uz, Ni balance amount: Un, H2 SO4 balance amount: Ua of the 1-m blocks from time t to time t + 1 are described by the following matrix. These matrices are
It corresponds to the mass balance model. Note that Uz1 which is an element of the matrix
˜Uzm, Un1 ˜Unm, Ua1 ˜Uam are t˜t
It is the income and expenditure amount corresponding to each of 1 to m blocks during +1 time.

【0029】 Uz=(Uz1 ,・・・,Uz1 )T …(4) Un=(Un1 ,・・・,Unm )T …(5) Ua=(Ua1 ,・・・,Uam )T …(6)Uz = (Uz1, ..., Uz1) T (4) Un = (Un1, ..., Unm) T (5) Ua = (Ua1, ..., Uam) T (6) )

【0030】その結果、t+1時刻での1〜mブロック
のZn濃度:CZ(t+1) 、Ni濃度:CN(t+1) 、H2
SO4 濃度:CA(t+1) は、下記(7)、(8)、
(9)式により求めることができる。
As a result, Zn concentration of 1 to m blocks at time t + 1: CZ (t + 1), Ni concentration: CN (t + 1), H2
SO4 concentration: CA (t + 1) is the following (7), (8),
It can be obtained by the equation (9).

【0031】 CZ(t+1) =(I−A/2)-1×{(I+A/2−VA )×CZ(t) +UZ} …(7) CN(t+1) =(I−A/2)-1×{(I+A/2−VA )×CN(t) +UN} …(8) CA(t+1) =(I−A/2)-1×{(I+A/2−VA )×CA(t) +UA} …(9) 但し、I:m次単位行列 A=V-1×F×Δt V-1:ブロック浴量対角逆行列(m×m) F:ブロック間液流速行列(m×m) Δt:t〜t+1経過時間 VA =V-1×Vd Vd :t〜t+1間のブロック変化浴量対角行列(m×
m) UZ=V-1×Uz×Δt UN=V-1×Un×Δt NA=V-1×Ua×Δt
CZ (t + 1) = (IA−2) −1 × {(I + A / 2−VA) × CZ (t) + UZ} (7) CN (t + 1) = (IA / 2) -1 x {(I + A / 2-VA) x CN (t) + UN} (8) CA (t + 1) = (I-A / 2) -1 x {(I + A / 2-VA) × CA (t) + UA} (9) where I: m-th unit matrix A = V −1 × F × Δt V −1 : Block bath volume diagonal inverse matrix (m × m) F: Interblock liquid flow velocity Matrix (m × m) Δt: t to t + 1 elapsed time VA = V −1 × Vd Vd: block change bath amount diagonal matrix (m × m) between t and t + 1
m) UZ = V −1 × Uz × Δt UN = V −1 × Un × Δt NA = V −1 × Ua × Δt

【0032】上記のようにブロック分けの数をmとする
場合、上記(7)〜(9)式からなる濃度推定モデルを
構築することにより、各ブロックのZnイオン濃度(Z
n濃度に同じ)、Niイオン濃度(Ni濃度に同じ)、
H2 SO4 濃度の分布を予測することができる。
When the number of blocks is m, as described above, the Zn ion concentration (Z) of each block (Z can be obtained by constructing the concentration estimation model consisting of the equations (7) to (9).
n concentration), Ni ion concentration (same as Ni concentration),
The distribution of H2 SO4 concentration can be predicted.

【0033】以下、前記濃度計算モデルの導出方法につ
いて詳細に説明する。ここでは、理解を容易にするため
に、図2に示すように設備ブロックを1〜3ブロックの
3つからなるめっき設備の場合を考える。
The method of deriving the concentration calculation model will be described in detail below. Here, in order to facilitate understanding, consider the case of a plating facility including three facility blocks, as shown in FIG.

【0034】図2のブロック内の記号は、t時刻におけ
る値を表わし、又、この図に用いられている記号は、そ
れぞれ以下の意味で用いられている。
The symbols in the blocks in FIG. 2 represent values at time t, and the symbols used in this figure have the following meanings.

【0035】即ち、i,j=1,2,3について、 Vi [m3 ] :iブロックの浴量 CZi[g/l]:iブロックのZn濃度 CNi[g/l]:iブロックのNi濃度 CAi[g/l]:iブロックのH2 SO4 濃度 Usi [m3 /h] :iブロックの循環系外との水収支の速
度 Uzi[kg/h] :iブロックの循環系外とのZn収支速度 Uni[kg/l] :iブロックの循環系外とのNi収支速度 Uai[kg/l] :iブロックの循環系外とのH2 SO4 収
支速度 Fij[m3 /h] :iブロックからjブロックへの液移動速
度(流速)
That is, for i, j = 1, 2, 3, Vi [m 3 ]: bath amount of i block CZi [g / l]: Zn concentration of i block CNi [g / l]: Ni of i block Concentration CAi [g / l]: Concentration of H2SO4 in i block Usi [m 3 / h]: Water balance velocity of i block outside the circulation system Uzi [kg / h]: Zn of i block outside the circulation system Balance speed Uni [kg / l]: Ni balance speed of i-block outside the circulation system Uai [kg / l]: H2SO4 balance speed of i-block outside the circulation system Fij [m 3 / h]: From i block Liquid movement speed (flow velocity) to block j

【0036】便宜上、Zn濃度の変化を例に説明する
と、t〜t+1時刻間(Δt(h) )の浴量の変化量(Δ
Vi [m3 ] )は、1ブロックの場合、次式で記述でき
る。
For the sake of convenience, the Zn concentration change will be described as an example. The change amount (Δt (h)) of the bath amount (Δt (h)) between t and t + 1.
Vi [m 3 ]) can be described by the following equation in the case of one block.

【0037】 ΔV1 =(F31−F12)×Δt+Us1 ×Δt[m3 ] …(10)ΔV1 = (F31−F12) × Δt + Us1 × Δt [m 3 ] (10)

【0038】この式で、F31×Δtは、3ブロックから
1ブロックへ流入する量であり、F12×Δtは、1ブロ
ックから2ブロックへ流出する量、Us1 ×Δtは、1
ブロックへ系外から流入する水の量である。
In this equation, F31 × Δt is the amount flowing from 3 blocks to 1 block, F12 × Δt is the amount flowing from 1 block to 2 blocks, and Us1 × Δt is 1
This is the amount of water that flows into the block from outside the system.

【0039】2、3ブロックについても、同様に以下の
式で記述できる。
Similarly, the following equations can be used for a few blocks.

【0040】 ΔV2 =(F12−F23)×Δt+Us2 ×Δt[m3 ] …(11) ΔV3 =(F23−F31)×Δt+Us3 ×Δt[m3 ] …(12)[0040] ΔV2 = (F12-F23) × Δt + Us2 × Δt [m 3] ... (11) ΔV3 = (F23-F31) × Δt + Us3 × Δt [m 3] ... (12)

【0041】t時刻から浴量がΔVi 変化したt+1時
刻までにおいて、t〜t+1時刻間(Δt[h] )のZn
濃度変化(ΔCZi[g/l])によるZn移動量は、1ブロ
ックの場合、次式で記述できる。
From the time t to the time t + 1 when the bath amount changes by ΔVi, the Zn between t and t + 1 time (Δt [h])
The Zn movement amount due to the change in concentration (ΔCZi [g / l]) can be described by the following equation in the case of one block.

【0042】 (V1 +ΔV1 )×(CZ1(t)+ΔCZ1 )−V1 ×CZ1(t) =(F31×CZ3 −F12×CZ1 )×Δt+Uz1 ×Δt[kg] …(13)(V1 + ΔV1) × (CZ1 (t) + ΔCZ1) −V1 × CZ1 (t) = (F31 × CZ3−F12 × CZ1) × Δt + Uz1 × Δt [kg] (13)

【0043】この式で、左辺は、1ブロックのt+1時
刻でのZn総量からt時刻でのZn総量を引いたもので
あり、右辺は、F31×CZ3 ×Δtが3ブロックから1
ブロックへ流入するZn量、F12×CZ1 ×Δtが1ブ
ロックから2ブロックへ流出するZn量、Uz1 ×Δt
が1ブロックに供給されるZn量である。
In this equation, the left side is obtained by subtracting the total amount of Zn at the time t + 1 from the total amount of Zn at the time t + 1, and the right side is F31 × CZ3 × Δt from 3 blocks to 1
Zn amount flowing into the block, F12 × CZ1 × Δt, Zn amount flowing out from one block to two blocks, Uz1 × Δt
Is the amount of Zn supplied to one block.

【0044】2、3ブロックについても、同様に以下の
式で記述できる。
Similarly, the following equations can be used to describe a few blocks.

【0045】 (V2 +ΔV2 )×(CZ2(t)+ΔCZ2 )−V2 ×CZ2(t) =(F12×CZ1 −F23×CZ2 )×Δt+Uz2 ×Δt[kg] …(14) (V3 +ΔV3 )×(CZ3(t)+ΔCZ3 )−V3 ×CZ3(t) =(F23×CZ2 −F31×CZ3 )×Δt+Uz3 ×Δt[kg] …(15)(V2 + ΔV2) × (CZ2 (t) + ΔCZ2) −V2 × CZ2 (t) = (F12 × CZ1−F23 × CZ2) × Δt + Uz2 × Δt [kg] (14) (V3 + ΔV3) × (CZ3 (t) + ΔCZ3) -V3 × CZ3 (t) = (F23 × CZ2−F31 × CZ3) × Δt + Uz3 × Δt [kg] (15)

【0046】但し、CZi はt〜t+1時刻間の中間値
(後述する(28)式)であり、CZi(t)はt時刻での
値である。
However, CZi is an intermediate value between time t and time t + 1 (Equation (28) described later), and CZi (t) is a value at time t.

【0047】従って、前記(13)式より、 (V1 +ΔV1 )×ΔCZ1 =(F31×CZ3 −F12×CZ1 +Uz1 )×Δt−ΔV1 ×CZ1(t) …(16) 前記(14)式より、 (V2 +ΔV2 )×ΔCZ2 =(F12×CZ1 −F23×CZ2 +Uz2 )×Δt−ΔV2 ×CZ2(t) …(17) 前記(15)式より、 (V3 +ΔV3 )×ΔCZ3 =(F23×CZ2 −F31×CZ3 +Uz3 )×Δt−ΔV3 ×CZ3(t) …(18) の各式がそれぞれ求まる。Therefore, from the equation (13), (V1 + ΔV1) × ΔCZ1 = (F31 × CZ3−F12 × CZ1 + Uz1) × Δt−ΔV1 × CZ1 (t) (16) From the equation (14), V2 + ΔV2) × ΔCZ2 = (F12 × CZ1−F23 × CZ2 + Uz2) × Δt−ΔV2 × CZ2 (t) (17) From the equation (15), (V3 + ΔV3) × ΔCZ3 = (F23 × CZ2−F31 ×) Each formula of CZ3 + Uz3) .times..DELTA.t-.DELTA.V3.times.CZ3 (t) (18) is obtained.

【0048】前記(16)〜(18)式を行列表現でま
とめると、次の(19)式になる。
The above equations (16) to (18) can be summarized by matrix expression as the following equation (19).

【0049】[0049]

【数1】 [Equation 1]

【0050】この(19)式に対して、3×3行列V、
Vd 、Fと3列ベクトルCZ、Uzをそれぞれ以下の
(20)〜(24)式のようにおくと、下記(25)式
が得られる。
For this equation (3), a 3 × 3 matrix V,
When Vd, F and the three-column vectors CZ, Uz are set as in the following equations (20) to (24), the following equation (25) is obtained.

【0051】 V=diag.(V1 +ΔV1 ,V2 +ΔV2 ,V3 +ΔV3 ) …(20) Vd =diag.(ΔV1 ,ΔV2 ,ΔV3 ) …(21) CZ=(CZ1 ,CZ2 ,CZ3 )T …(22) Uz=(Uz1 ,Uz2 ,Uz3 )T …(23)V = diag. (V1 + ΔV1, V2 + ΔV2, V3 + ΔV3) (20) Vd = diag. (ΔV1, ΔV2, ΔV3) (21) CZ = (CZ1, CZ2, CZ3) T (22) Uz = (Uz1, Uz2, Uz3) T (23)

【0052】[0052]

【数2】 [Equation 2]

【0053】 V・ΔCZ=F・CZ・Δt+Uz・Δt−Vd ・CZ(t) …(25)V · ΔCZ = F · CZ · Δt + Uz · Δt−Vd · CZ (t) (25)

【0054】なお、前記(20)、(21)式における
記号で、A=diag.(a,b,c)は、対角要素がa、
b、cで、その他の要素が0の対角行列を表わす。又、
Aの逆行列は、A-1=diag.(1/a,1/b,1/
c)である。
The symbols in the equations (20) and (21) are A = diag. (A, b, c) has diagonal elements a,
b and c represent a diagonal matrix in which the other elements are 0. or,
The inverse matrix of A is A −1 = diag. (1 / a, 1 / b, 1
c).

【0055】又、前記(22)式で、CZ=(CZ1 ,
CZ2 ,CZ3 )T は、転値行列で、
In the above equation (22), CZ = (CZ1,
CZ2, CZ3) T is a transposed matrix,

【数3】 の意味である。(Equation 3) Is the meaning of.

【0056】次いで、上記(25)式の両辺にV-1をか
けて、次の(26)式を得る。
Then, V -1 is applied to both sides of the equation (25) to obtain the following equation (26).

【0057】 V-1・V・ΔCZ =V-1・F・CZ・Δt+V-1・Uz・Δt−V-1・Vd ・CZ(t) …(26)V −1 · V · ΔCZ = V −1 · F · CZ · Δt + V −1 · Uz · Δt −V −1 · Vd · CZ (t) (26)

【0058】上記(26)式の左辺を整理すると、次の
(27)式となる。
When the left side of the above equation (26) is rearranged, the following equation (27) is obtained.

【0059】 ΔCZ=V-1・F・CZ・Δt+V-1・Uz・Δt−V-1・Vd ・CZ(t) …(27)ΔCZ = V −1 · F · CZ · Δt + V −1 · Uz · Δt−V −1 · Vd · CZ (t) (27)

【0060】次いで、t+1時刻のZnの濃度CZi(t+
1)とt時刻のZn濃度CZi(t)を用いてCZi 、ΔCZ
i を表わすため、trapezoidal 法による離散時間表現を
行う。なお、このtrapezoidal 法は、t〜t+1時刻で
変化する状態変数xを、x=(x(t) +x(t+1) )/2
として数値平均する方法である。これは、x=x(t+1)
とする方法と同様に陰関数法であり安定性が高く、又、
t時刻とt+1時刻の中間値を使用するため、積分時間
t〜t+1を広くとり易い利点がある。
Then, the Zn concentration CZi (t +
1) and Zn concentration CZi (t) at time t, CZi, ΔCZ
To express i, we use discrete time representation by the trapezoidal method. In this trapezoidal method, the state variable x that changes from time t to time t + 1 is expressed as x = (x (t) + x (t + 1)) / 2.
It is a method of averaging numerical values. This is x = x (t + 1)
The method is an implicit function method and has high stability, and
Since an intermediate value between the time t and the time t + 1 is used, there is an advantage that the integration time t to t + 1 can be widened easily.

【0061】即ち、この離散時間表現を使うと、 CZi ={CZi(t+1)+CZi(t)}/2 …(28) あり、又、t〜t+1時刻間でのiブロックのZn濃度
変化ΔCZi[g/l]は、 ΔCZi =CZi(t+1)−CZi(t) …(29) であるから、(28)、(29)式を上記(27)式に
代入すると、次の(30)式が得られる。
That is, using this discrete time expression, CZi = {CZi (t + 1) + CZi (t)} / 2 (28), and the change in the Zn concentration of the i block between time t and time t + 1. Since ΔCZi [g / l] is ΔCZi = CZi (t + 1) -CZi (t) (29), substituting the equations (28) and (29) into the equation (27) gives the following ( Equation (30) is obtained.

【0062】 CZ(t+1) −CZ(t) =V-1・F・{(CZ(t+1) +CZ(t) )/2}・Δt +V-1・Uz・Δt−V-1・Vd ・CZ(t) …(30)CZ (t + 1) −CZ (t) = V −1 · F · {(CZ (t + 1) + CZ (t)) / 2} · Δt + V −1 · Uz · Δt −V −1・ Vd ・ CZ (t) (30)

【0063】ここで、3×3行列A、VA と3列ベクト
ルUZを、それぞれ A=V-1・F・Δt …(31) UZ=V-1・Uz・Δt …(32) VA =V-1・Vd …(33) とおくと、(30)式は、次の(34)式なる。
Here, the 3 × 3 matrices A, VA and the three-column vector UZ are respectively A = V −1 · F · Δt (31) UZ = V −1 · Uz · Δt (32) VA = V When −1 · Vd (33), the equation (30) becomes the following equation (34).

【0064】 CZ(t+1) −CZ(t) =A・(CZ(t+1) +CZ(t) )/2+UZ−VA ・CZ(t) …(34)CZ (t + 1) -CZ (t) = A. (CZ (t + 1) + CZ (t)) / 2 + UZ-VA.CZ (t) (34)

【0065】この(34)式で、左辺にCZ(t+1) の項
を集めると、 (I−A/2)・CZ(t+1) =(I+A/2−VA )・CZ(t) +UZ …(35) となり、CZ(t) からCZ(t+1) を求める式は、次の
(36)式となる。
In the equation (34), if the terms of CZ (t + 1) are collected on the left side, (I−A / 2) · CZ (t + 1) = (I + A / 2−VA) · CZ (t ) + UZ (35) and the formula for obtaining CZ (t + 1) from CZ (t) is the following formula (36).

【0066】CZ(t+1) =(I−A/2)-1・{(I+A/2−VA )・CZ(t) +UZ} …(36)CZ (t + 1) = (IA−2) −1 · {(I + A / 2−VA) · CZ (t) + UZ} (36)

【0067】これまでは、設備ブロックの数が3の簡単
な場合を例に説明したが、これを、設備ブロックがm個
からなる一般的な場合として表現すると、次のようにな
る。
Up to now, a simple case where the number of equipment blocks is 3 has been described as an example, but this can be expressed as follows in a general case where the number of equipment blocks is m.

【0068】t時刻でのi番目のブロックの浴量をVi
[m3 ] 、Zn濃度をCZi(t)[g/l]とし、i番目のブロ
ックからj番目のブロックへの液の流量をFij[m3 /h]
とする。
The bath volume of the i-th block at time t is Vi
[m 3 ], Zn concentration is CZi (t) [g / l], and the liquid flow rate from the i-th block to the j-th block is Fij [m 3 / h]
And

【0069】t時刻からΔt[h] 後のt+1時刻までに
おいて、i番目のブロックに、(1)Uzi[kg/h] の速
度で循環系外との間でZnの収支があり、(2)Usi
[m3/h] の速度で循環系外との間で水の収支があり、
(3)結果として、浴量Vi [m 3 ] がΔVi [m3 ] 増加
した時のt+1時刻でのZn濃度CZi(t+1)[g/l] は、
次のようになる。
From time t to time t + 1 after Δt [h]
In the i-th block, (1) Uzi [kg / h] speed
There is a balance of Zn between the outside of the circulation system and (2) Usi
[mThree/ h], there is a water balance between the outside and the circulation system,
(3) As a result, the bath volume Vi [m Three] Is ΔVi [mThree] Increase
Zn concentration CZi (t + 1) [g / l] at time t + 1 when
It looks like this:

【0070】但し、ここで用いられるF、V、Vd 、
A、VA 、Iは、m×m行列で、CZ、Uz、UZは、
m次元ベクトルであり、単位行列I以外は以下の(3
7)〜(44)式で表わされる。
However, F, V, Vd, and
A, VA and I are m × m matrices, and CZ, Uz and UZ are
m-dimensional vector, except for the unit matrix I
It is represented by the formulas 7) to (44).

【0071】 F=(fij) …(37) (fijは、行列のi行j列要素を表わし、i=jのと
き、fij=−ΣFik(iブロックから流出する液流速の
和) i≠jのとき、fij=Fji(jブロックからiブロック
への液流速) (i=1,…,m;j=1,…,m;k=1,…,m)) V=diag.(V1 +ΔV1 ,…,Vm +ΔVm ) …(38) Vd =diag.(ΔV1 ,…,ΔVm ) …(39) A=V-1・F・Δt =(aij) …(40) (aijは、行列Aのi行j列要素を表わし、aij={f
ij/(Vi +ΔVi )}×Δtである。) VA =V-1・Vd =diag.(ΔV1 /(V1 +ΔV1 ),…,ΔVm /(Vm +ΔVm )) …(41) CZ(t) =(CZ1(t),…,CZm(t))T …(42) Uz=(Uz1 ,…,Uzm )T …(43) UZ=V-1・Uz・Δt =({Uz1 /(V1 +ΔV1 )}×Δt, …,{Uzm /(Vm +ΔVm )}×Δt)T …(44)
F = (fij) (37) (fij represents an element in the i-th row and j-th column of the matrix, and when i = j, fij = -ΣFik (sum of liquid flow velocities flowing out from the i block) i ≠ j , Fij = Fji (liquid flow velocity from the j block to the i block) (i = 1, ..., m; j = 1, ..., m; k = 1, ..., m)) V = diag. (V1 + ΔV1, ..., Vm + ΔVm) (38) Vd = diag. (ΔV1, ..., ΔVm) (39) A = V −1 · F · Δt = (aij) (40) (aij represents the i-th row and j-th column element of the matrix A, and aij = {f
ij / (Vi + ΔVi)} × Δt. ) VA = V -1 · Vd = diag. (ΔV1 / (V1 + ΔV1), ..., ΔVm / (Vm + ΔVm)) (41) CZ (t) = (CZ1 (t), ..., CZm (t)) T ... (42) Uz = (Uz1, ...) , Uzm) T (43) UZ = V −1 · Uz · Δt = ({Uz 1 / (V 1 + ΔV 1)} × Δt, ..., {Uzm / (Vm + ΔVm)} × Δt) T (44)

【0072】前記(37)〜(44)式を用いると、前
記(34)式の一般形は、次の(45)式となる。
Using the equations (37) to (44), the general form of the equation (34) becomes the following equation (45).

【0073】 CZ(t+1) −CZ(t) =A・(CZ(t+1) +CZ(t)/2+UZ・Δt−VA ・CZ(t) …(45)CZ (t + 1) −CZ (t) = A · (CZ (t + 1) + CZ (t) / 2 + UZ · Δt−VA · CZ (t) (45)

【0074】前記(34)式の場合と同様に、上記(4
5)式でCZ(t+1) を左辺に集めると、前記(7)式で
表わされるZn濃度推定モデルが得られる。従って、求
めるべきt+1時刻のZn濃度CZ(t+1)[g/l]は、t時
刻のZn濃度CZ(t) とt〜t+1時刻間の系外とのZ
nの収支Uz、t+1時刻での浴量などから、前記
(7)式により求めることができる。
As in the case of the equation (34), the above (4
By collecting CZ (t + 1) on the left side of the equation (5), the Zn concentration estimation model represented by the equation (7) can be obtained. Therefore, the Zn concentration CZ (t + 1) [g / l] at the time t + 1 to be obtained is the Z concentration between the Zn concentration CZ (t) at the time t and the outside of the system between the times t and t + 1.
It can be obtained from the equation (7) from the balance Uz of n, the bath amount at the time t + 1, and the like.

【0075】同様の計算原理をNi濃度CN[g/l] 、H
2 SO4 濃度CA[g/l] に対しても適用すると、前記
(8)式、(9)式で表わされるそれぞれの濃度推定モ
デルが得られる。
The same calculation principle is applied to the Ni concentration CN [g / l], H
When applied to the 2 SO4 concentration CA [g / l], the respective concentration estimation models represented by the equations (8) and (9) can be obtained.

【0076】次に、前記(7)〜(9)式からなる濃度
推定モデルを用いて行う計算手順について、図3を参照
しながら詳述する。
Next, the calculation procedure using the concentration estimation model consisting of the equations (7) to (9) will be described in detail with reference to FIG.

【0077】濃度推定モデルの計算は、図3に示したフ
ローチャートに従って、例えば30秒周期で実行する。
The calculation of the concentration estimation model is executed, for example, in a cycle of 30 seconds according to the flowchart shown in FIG.

【0078】まず、ステップ1でt+1時刻でのブロッ
ク浴量の編集計算を行う。このステップでは、t+1時
刻におけるブロック浴量を、原則として実績値により、
モデルを構成する1〜mの各ブロック毎に集計し、編集
する。
First, in step 1, edit calculation of the block bath amount at time t + 1 is performed. In this step, in principle, the block bath volume at time t + 1 is
Each block of 1 to m that composes the model is aggregated and edited.

【0079】その際、各ブロックの浴量については、レ
ベル計による測定が可能な部分はレベル計により測定す
る。配管内の浴量については、運転状況に応じて、予め
決定されている定数による切換えで対応し、配管内浴量
は各設備ブロックの浴量に含める。
At this time, the bath amount of each block is measured by the level meter at the portion where the level meter can be measured. The amount of bath in the pipe can be changed by a predetermined constant according to the operating conditions, and the amount of bath in the pipe is included in the amount of bath in each equipment block.

【0080】又、t時刻におけるブロック浴量を用い
て、各ブロック毎のt〜t+1時刻間の浴量変化速度を
計算する。その際、水の収支がある場合には、各ブロッ
クの浴量変化にそれを考慮すればよい。
Further, using the block bath amount at time t, the bath amount change speed for each block from time t to t + 1 is calculated. At that time, if there is a balance of water, it may be taken into consideration in the change in the bath volume of each block.

【0081】次いで、ステップ2で、t〜t+1時刻間
の液流速の編集計算を行う。
Next, in step 2, edit calculation of the liquid flow velocity between time t and time t + 1 is performed.

【0082】この液流速の計算は、各ブロックについ
て、予め作成してある液流要素計算表に基づいて実行さ
れる。その際、ブロック間液流速は、基本的には流量計
により測定するが、流量変動の無い部分については、運
転状況に応じて予め決定してある定数切換えで対応して
もよい。このようにすることにより、設備コストを削減
することも可能である。
The calculation of the liquid flow velocity is executed for each block based on the liquid flow element calculation table prepared in advance. At that time, the inter-block liquid flow velocity is basically measured by a flow meter, but for a portion where there is no flow rate fluctuation, a constant switching that is determined in advance according to the operating condition may be used. By doing so, it is possible to reduce the equipment cost.

【0083】次いで、ステップ3〜6で、Zn、Ni及
びH2 SO4 のぞれぞれについて、t〜t+1時刻間の
収支計算を行う。この計算は、収支の関係する設備ブロ
ック毎に実施する。
Then, in steps 3 to 6, the balance between t to t + 1 time is calculated for each of Zn, Ni and H2 SO4. This calculation is performed for each equipment block related to the balance.

【0084】各ブロック毎に関係する成分について収支
計算を行うに際し、基本となるZnイオン、Niイオ
ン、H2 SO4 の収支計算の例を以下に示す。
An example of the basic Zn ion, Ni ion, and H 2 SO 4 balance calculation when calculating the balance for the components related to each block is shown below.

【0085】めっきセルでの収支は、前記(A)、
(B)式で示した電析反応によるZnイオンの支出をG
z、Niイオンの支出をGnとし、前記(C)式で示し
たH2 SO4 の収入をGaとすると、それぞれ以下のよ
うに求めることができる。
The balance in the plating cell is (A),
The expenditure of Zn ions by the electrodeposition reaction represented by the equation (B) is defined as G
Assuming that the expenditure of z and Ni ions is Gn and the income of H2 SO4 shown in the above equation (C) is Ga, the following can be obtained respectively.

【0086】 Gz=J×(η/kF)×(1−εN)×(Mz/2)×3600[kg/h] …(46) Gn=J×(η/kF)×εN×(Mn/2)×3600[kg/h] …(47) Ga=J×(η/kF)×εA×(Ma/2)×3600[kg/h] …(48) 但し、J:めっき電流[KA] η:めっき効率 kF:ファラデー定数 εN:めっき層のNi含有率 εA:アノード水分解率 Mz:Zn原子量 Mn:Ni原子量 Ma:H2 SO4 分子量Gz = J × (η / kF) × (1-εN) × (Mz / 2) × 3600 [kg / h] (46) Gn = J × (η / kF) × εN × (Mn / 2) × 3600 [kg / h] (47) Ga = J × (η / kF) × εA × (Ma / 2) × 3600 [kg / h] (48) where J: plating current [KA] η: Plating efficiency kF: Faraday constant εN: Ni content of the plating layer εA: Anode water decomposition rate Mz: Zn atomic weight Mn: Ni atomic weight Ma: H2 SO4 molecular weight

【0087】付帯設備A(Zn供給設備)での収支は、
前記(D)式で示したZn溶解によるZn収入をSz、
H2 SO4 支出をDazとすると、それぞれ以下のように
なる。
The balance of incidental equipment A (Zn supply equipment) is
Zn income from the Zn dissolution shown in the formula (D) is Sz,
If H2 SO4 expenditure is Daz, it becomes as follows.

【0088】 Sz=Szc×λzc[kg/h] …(49) Daz=(Sz/Mz)×Ma[kg/h] …(50) 但し、Szc:ZnCO3 供給速度[kg/h] λzc:ZnCO3 のZn含有率Sz = Szc × λzc [kg / h] (49) Daz = (Sz / Mz) × Ma [kg / h] (50) However, Szc: ZnCO3 supply rate [kg / h] λzc: ZnCO3 Zn content of

【0089】付帯設備B(Ni供給設備)での収支は、
前記(E)式で示したNi溶解によるNi収入をSn、
H2 SO4 支出をDanとすると、それぞれ以下のように
なる。
The balance of incidental equipment B (Ni supply equipment) is
The Ni income by the Ni dissolution shown in the formula (E) is Sn,
If H2 SO4 expenditure is Dan, it becomes as follows respectively.

【0090】 Sn=Snc×λnc[kg/h] …(51) Dan=(Sn/Mn)×Ma[kg/h] …(52) 但し、Snc:NiCO3 供給速度[kg/h] λnc:NiCO3 のNi含有率Sn = Snc × λnc [kg / h] (51) Dan = (Sn / Mn) × Ma [kg / h] (52) where Snc: NiCO3 supply rate [kg / h] λnc: NiCO3 Ni content of

【0091】付帯設備C(H2 SO4 供給設備)での収
支は、H2 SO4 供給によるH2 SO4 収入をSaとす
ると、以下のようになる。
The balance of the incidental equipment C (H2 SO4 supply equipment) is as follows, where H2 SO4 income from the supply of H2 SO4 is Sa.

【0092】 Sa=Fa×λa[kg/h] …(53) 但し、Fa:H2 SO4 供給速度[m3 /h] λa:H2 SO4 濃度[g/l]Sa = Fa × λa [kg / h] (53) However, Fa: H 2 SO 4 supply rate [m 3 / h] λa: H 2 SO 4 concentration [g / l]

【0093】その後、ステップ6で、上述したステップ
1〜5で実行した計算結果を基に、前記(7)〜(9)
式の濃度推定モデルによる計算を実行する。
Then, in step 6, based on the calculation results executed in steps 1 to 5 described above, (7) to (9)
The calculation by the concentration estimation model of the formula is executed.

【0094】その際、本実施形態においては、任意のセ
クションで濃度計による濃度測定を実施し、下記(5
4)式によりフィルタリング計算を行うことによって、
濃度計本体の測定誤差による影響を抑え、安定した予測
濃度を提供することができる。
At this time, in the present embodiment, the concentration measurement is performed by a densitometer in an arbitrary section, and the following (5
By performing the filtering calculation by the equation 4),
It is possible to suppress the influence of the measurement error of the densitometer body and provide a stable predicted concentration.

【0095】即ち、濃度測定においては、一般的にめっ
き液サンプリング時の時刻と測定完了時の時刻に時間差
が発生する。従って、この時間差に起因する誤差を、測
定対象について得られる実測値を基に補正する必要があ
る。この補正がフィルタリング計算であり、これを、便
宜上、測定対象の循環タンクのブロックNoが3である
とし、めっき液サンプリング時の時刻をt1 、測定完了
時の時刻をt2 とした場合のZnイオン濃度を例に説明
する。
That is, in the concentration measurement, a time difference generally occurs between the time when the plating solution is sampled and the time when the measurement is completed. Therefore, it is necessary to correct the error caused by this time difference based on the actual measurement value obtained for the measurement target. This correction is a filtering calculation, and for convenience sake, assuming that the block No. of the circulation tank to be measured is 3, the Zn ion concentration when the plating solution sampling time is t1 and the measurement completion time is t2 Will be described as an example.

【0096】3ブロック(i=3)におけるフィルタリ
ング後のt2 時刻のZnイオン濃度推定値:CZCi(t
2) は、次の(54)式によって求めることができる。
Estimated value of Zn ion concentration at time t2 after filtering in three blocks (i = 3): CZCi (t
2) can be obtained by the following equation (54).

【0097】 CZCi(t2) =CZi(t2) +kf(CZOi(t1) −CZi(t1) )…(54) 但し、CZOi(t1) :t1時刻のZn濃度測定値 CZi(t1) :t1時刻の(7)式によるZn濃度予測値 CZi(t2) :t2時刻(最新)の(7)式によるZn濃度
予測値 kf:フィルタリング定数
CZCi (t2) = CZi (t2) + kf (CZOi (t1) -CZi (t1)) (54) where CZOi (t1): Zn concentration measured value at time tCZi (t1): at time t1 Predicted Zn concentration according to formula (7) CZi (t2): Predicted Zn concentration according to formula (7) at time t2 (latest) kf: Filtering constant

【0098】又、その他のブロック(j=1,2,4,
・・・m)についても、上記測定対象での補正値を適用
する次の(55)式によって同様に求めることができ
る。
Further, other blocks (j = 1, 2, 4,
... m) can be similarly obtained by the following equation (55) to which the correction value for the measurement target is applied.

【0099】 CZCj(t2) =CZj(t2) +kf(CZOi(t1) −CZi(t1) )…(55)CZCj (t2) = CZj (t2) + kf (CZOi (t1) -CZi (t1)) (55)

【0100】このようにすることにより、1箇所での亜
鉛イオン濃度の測定値に基づいて各ブロックについてフ
ィルタリング後のめっき濃度を求めることができる。
By doing so, the plating concentration after filtering can be obtained for each block based on the measured value of the zinc ion concentration at one location.

【0101】このフィルタリング計算に用いる上記定数
kfは、0〜1の値であり、実績濃度が安定し、モデル
精度が悪い程1に近い値を、逆に実績濃度が不安定で、
モデル精度が良い程0に近い値を設定する。
The above-mentioned constant kf used in this filtering calculation is a value of 0 to 1, and a value close to 1 is obtained as the actual concentration is stable and the model accuracy is poor, and on the contrary, the actual concentration is unstable,
The closer to 0 the better the model accuracy is set.

【0102】又、Ni濃度、H2 SO4 濃度も同様のフ
ィルタリング方法で求めることが可能である。
The Ni concentration and the H2 SO4 concentration can also be obtained by the same filtering method.

【0103】以上詳述した本実施形態によれば、前記
(7)、(8)、(9)式の濃度推定モデルにより推定
した1〜mの各ブロックの濃度値を基に上記(54)、
(55)式、及びこれに対応した他の2成分に関する式
を用いて求めた、Znイオン、Niイオン、H2 SO4
の各フィルタリング計算濃度:CZCi 、CNCi 、C
ACi を用いて、下記(56)、(57)、(58)式
により、めっき設備全体の平均濃度を求めることができ
る。そして、この平均濃度値と目標値との偏差からフィ
ードバック(FB)制御量を決定することにより、反応
による濃度変化を考慮した上で、測定場所固有の濃度変
化からの誤ったFB制御操作を抑え、計算周期間隔での
高精度な濃度制御が実現できる。
According to this embodiment described in detail above, based on the density value of each block of 1 to m estimated by the density estimation model of the above equations (7), (8) and (9), the above (54) ,
Zn ion, Ni ion, H 2 SO 4 obtained by using the equation (55) and the equations for the other two components corresponding thereto.
Each filtering calculation density of: CZCi, CNCi, C
Using ACi, the average concentration of the entire plating facility can be calculated by the following equations (56), (57), (58). Then, by determining the feedback (FB) control amount from the deviation between the average concentration value and the target value, the FB control operation that is erroneous from the concentration change unique to the measurement location is suppressed while considering the concentration change due to the reaction. It is possible to realize highly accurate concentration control at calculation cycle intervals.

【0104】[0104]

【数4】 但し、Vall =各ブロックの部分浴量V1〜Vmの総和(Equation 4) However, Vall = sum of partial bath volumes V1 to Vm of each block

【0105】以上詳述した本実施形態によれば、測定場
所固有の濃度変化からの誤った制御操作を抑制すること
ができ、又、濃度計による測定値のばらつきを抑え、安
定した濃度測定値をめっき濃度制御に使用することがで
きる。又、めっき液濃度を高精度で制御することができ
ることより、めっき効率を安定させることができ、付着
量、Ni含有率共にその品質を向上することができる。
According to the present embodiment described in detail above, it is possible to suppress an erroneous control operation due to a change in concentration peculiar to the measurement location, suppress variation in the measurement values by the densitometer, and obtain a stable concentration measurement value. Can be used to control the plating concentration. Further, since the concentration of the plating solution can be controlled with high accuracy, the plating efficiency can be stabilized, and the quality of the deposited amount and the Ni content can be improved.

【0106】更に、本実施形態によれば、濃度計が異常
な測定値を計上した時に、予測濃度との比較によって、
濃度測定値の異常を監視することができる。又、予測精
度によって、濃度計の測定周期を延長することができ、
濃度計のランニングコストの削減もできる。
Further, according to the present embodiment, when the densitometer records an abnormal measured value, the densitometer compares with the predicted concentration,
It is possible to monitor abnormalities in concentration measurement values. Also, due to the prediction accuracy, the measurement cycle of the densitometer can be extended,
The running cost of the densitometer can also be reduced.

【0107】以上、本発明を具体的に説明したが、本発
明は、前記実施形態に示したものに限られるものでな
く、その要旨を逸脱しない範囲で種々変更可能である。
Although the present invention has been specifically described above, the present invention is not limited to the one shown in the above embodiment, and various modifications can be made without departing from the spirit of the invention.

【0108】例えば、前記実施形態では、めっきの具体
例をZn−Ni合金めっきとしたが、本発明はこれに限
られるものでなく、純Znめっきや鉄系めっき等、特に
制限されない。又、Zn−Ni合金めっきの場合でも、
使用する金属薬剤はZnCO3 、NiCO3 に限らず、
ZnO、金属Zn、金属Ni等であってもよい。
For example, in the above-mentioned embodiment, a specific example of plating is Zn-Ni alloy plating, but the present invention is not limited to this, and pure Zn plating or iron-based plating is not particularly limited. Even in the case of Zn-Ni alloy plating,
The metal agents used are not limited to ZnCO3 and NiCO3,
It may be ZnO, metallic Zn, metallic Ni, or the like.

【0109】又、具体的な連続電気めっき設備として
は、図1に9ブロックからなるものを示したが、これに
限定されないことはいうまでもない。
Further, as the concrete continuous electroplating equipment, although the equipment consisting of 9 blocks is shown in FIG. 1, it goes without saying that the equipment is not limited to this.

【0110】[0110]

【発明の効果】以上説明したとおり、本発明によれば、
連続電気めっき設備でめっき液の濃度を適切に制御する
ために必要なめっき液全体の平均の濃度を正確に推定す
ることができる。
As described above, according to the present invention,
It is possible to accurately estimate the average concentration of the entire plating solution necessary for appropriately controlling the concentration of the plating solution in the continuous electroplating equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施形態に適用される連続電気
めっき設備の概略構成を示すブロック図
FIG. 1 is a block diagram showing a schematic configuration of continuous electroplating equipment applied to one embodiment according to the present invention.

【図2】濃度推定モデルの導出に使用する説明図FIG. 2 is an explanatory diagram used to derive a concentration estimation model.

【図3】濃度推定モデルによる計算手順を示すフローチ
ャート
FIG. 3 is a flowchart showing a calculation procedure based on a concentration estimation model.

【符号の説明】[Explanation of symbols]

1〜3…めっきセル 4〜6…循環タンク 7…付帯設備A 8…付帯設備B 9…付帯設備C 10…レベル計 11…流量計 12…濃度計 S…鋼板 1-3 ... Plating cell 4-6 ... Circulation tank 7 ... Ancillary equipment A 8 ... Ancillary equipment B 9 ... Ancillary equipment C 10 ... Level meter 11 ... Flowmeter 12 ... Concentration meter S ... Steel plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】搬送されるストリップを連続的にめっきす
る1以上のめっきセルと、該めっきセルにめっき液を循
環させながらめっき液成分を補給する付帯設備とを備え
た連続電気めっき設備におけるめっき液濃度推定方法に
おいて、 連続電気めっき設備を複数の設備ブロックに分割し、 各設備ブロック毎にめっきによるめっき液成分の支出
と、成分材料の供給によるめっき液成分の収入の影響を
考慮した物質収支モデルを基本とする濃度推定モデルを
構築し、 該濃度推定モデルを用いて、各設備ブロックのめっき液
濃度を推定することを特徴とする連続電気めっき設備に
おけるめっき液濃度推定方法。
1. A plating in a continuous electroplating facility comprising one or more plating cells for continuously plating a conveyed strip, and ancillary equipment for supplying a plating solution component while circulating a plating solution in the plating cell. In the solution concentration estimation method, the continuous electroplating equipment is divided into multiple equipment blocks, and each equipment block considers the expenditure of plating solution components by plating and the substance balance considering the effect of the income of plating solution components due to the supply of component materials. A plating solution concentration estimation method for continuous electroplating equipment, characterized in that a concentration estimation model based on a model is constructed and the concentration estimation model is used to estimate the plating solution concentration of each equipment block.
【請求項2】請求項1において、 連続電気めっき設備をm個の設備ブロックに分割する場
合、前回計算のt時刻での1〜mブロックのZn濃度:
CZ(t) 、Ni濃度:CN(t) 、H2 SO4 濃度:CA
(t) を、各ブロックでの濃度値を要素とする以下の行列
で記述し、 CZ(t) =(CZ1(t),・・・,CZm(t))T CN(t) =(CN1(t),・・・,CNm(t))T CA(t) =(CA1(t),・・・,CAm(t))T t〜t+1時刻間の1〜mブロックのZn収支量:U
z、Ni収支量:Un、H2 SO4 収支量:Uaを、各
ブロックでの収支量を要素とする以下の行列で記述する
とした場合、 Uz=(Uz1 ,・・・,Uz1 )T Un=(Un1 ,・・・,Unm )T Ua=(Ua1 ,・・・,Uam )T t+1時刻での1〜mブロックのZn濃度:CZ(t+1)
、Ni濃度:CN(t+1) 、H2 SO4 濃度:CA(t+1)
を推定する濃度推定モデルが、 CZ(t+1) =(I−A/2)-1×{(I+A/2−VA )×CZ(t) +UZ} CN(t+1) =(I−A/2)-1×{(I+A/2−VA )×CN(t) +UN} CA(t+1) =(I−A/2)-1×{(I+A/2−VA )×CA(t) +UA} 但し、I:m次単位行列 A=V-1×F×Δt V-1:ブロック浴量対角逆行列(m×m) F:ブロック間液流速行列(m×m) Δt:t〜t+1経過時間 VA =V-1×Vd Vd :t〜t+1間のブロック変化浴量対角行列(m×
m) UZ=V-1×Uz×Δt UN=V-1×Un×Δt NA=V-1×Ua×Δt であることを特徴とする連続電気めっき設備におけるめ
っき液濃度推定方法。
2. When the continuous electroplating equipment is divided into m equipment blocks according to claim 1, Zn concentration of 1 to m blocks at time t of the previous calculation:
CZ (t), Ni concentration: CN (t), H2 SO4 concentration: CA
(t) is described by the following matrix having the density value in each block as an element, and CZ (t) = (CZ1 (t), ..., CZm (t)) T CN (t) = (CN1 (t), ..., CNm (t)) T CA (t) = (CA1 (t), ..., CAm (t)) T t-t + 1 Zn balance amount of 1 to m blocks during time: U
z, Ni balance amount: Un, H2 SO4 balance amount: Ua is described by the following matrix having the balance amount in each block as an element: Uz = (Uz1, ..., Uz1) T Un = ( Un1, ..., Unm) T Ua = (Ua1, ..., Uam) T t + 1 Zn concentration in 1 to m blocks at time: CZ (t + 1)
, Ni concentration: CN (t + 1), H2 SO4 concentration: CA (t + 1)
The concentration estimation model for estimating CZ (t + 1) = (IA−2) −1 × {(I + A / 2−VA) × CZ (t) + UZ} CN (t + 1) = (I− A / 2) -1 x {(I + A / 2-VA) x CN (t) + UN} CA (t + 1) = (I-A / 2) -1 x {(I + A / 2-VA) x CA ( t) + UA} where I: m-th order unit matrix A = V −1 × F × Δt V −1 : Block bath volume diagonal inverse matrix (m × m) F: Interblock liquid flow velocity matrix (m × m) Δt : T to t + 1 elapsed time VA = V -1 x Vd Vd: block change bath amount diagonal matrix (m x from t to t + 1)
m) UZ = V −1 × Uz × Δt UN = V −1 × Un × Δt NA = V −1 × Ua × Δt The plating solution concentration estimation method in continuous electroplating equipment.
【請求項3】請求項1において、 1以上の任意の設備ブロックで、めっき液をサンプリン
グした後、所定時間経過後に同めっき液の濃度測定が完
了した場合、 濃度測定完了時刻での前記モデルによる推定濃度を、実
測された上記濃度と、サンプリング時での同モデルによ
る推定濃度との差に基づくフィルタリング計算により補
正することを特徴とする連続電気めっき設備におけるめ
っき液濃度推定方法。
3. When the concentration measurement of the plating solution is completed after a predetermined time has elapsed after sampling the plating solution in one or more arbitrary equipment blocks according to claim 1, A method for estimating the concentration of a plating solution in a continuous electroplating facility, characterized in that the estimated concentration is corrected by filtering calculation based on the difference between the actually measured concentration and the estimated concentration of the same model at the time of sampling.
【請求項4】請求項1において、 各設備ブロックの推定めっき液濃度とブロック内浴量と
に基づいて、連続電気めっき設備全体におけるめっき液
の平均濃度を推定することを特徴とする連続電気めっき
設備におけるめっき液濃度推定方法。
4. The continuous electroplating according to claim 1, wherein the average concentration of the plating solution in the entire continuous electroplating equipment is estimated based on the estimated plating solution concentration of each equipment block and the bath amount in the block. Method for estimating plating solution concentration in equipment.
JP14543896A 1996-06-07 1996-06-07 Method for estimating plating solution concentration in continuous electroplating equipment Expired - Fee Related JP3627081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14543896A JP3627081B2 (en) 1996-06-07 1996-06-07 Method for estimating plating solution concentration in continuous electroplating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14543896A JP3627081B2 (en) 1996-06-07 1996-06-07 Method for estimating plating solution concentration in continuous electroplating equipment

Publications (2)

Publication Number Publication Date
JPH09324297A true JPH09324297A (en) 1997-12-16
JP3627081B2 JP3627081B2 (en) 2005-03-09

Family

ID=15385253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14543896A Expired - Fee Related JP3627081B2 (en) 1996-06-07 1996-06-07 Method for estimating plating solution concentration in continuous electroplating equipment

Country Status (1)

Country Link
JP (1) JP3627081B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816237A1 (en) * 2006-02-02 2007-08-08 Enthone, Inc. Process and apparatus for the coating of surfaces of substrate
CN114606559A (en) * 2022-03-29 2022-06-10 汇钻实业(深圳)有限公司 Electroplating pool-based dosing control method, automatic dosing equipment and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816237A1 (en) * 2006-02-02 2007-08-08 Enthone, Inc. Process and apparatus for the coating of surfaces of substrate
WO2007088008A3 (en) * 2006-02-02 2008-04-17 Enthone Method and device for coating substrate surfaces
CN114606559A (en) * 2022-03-29 2022-06-10 汇钻实业(深圳)有限公司 Electroplating pool-based dosing control method, automatic dosing equipment and storage medium

Also Published As

Publication number Publication date
JP3627081B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
KR100290616B1 (en) Method of controlling component concentration of plating solution in continuous electroplating
JP2641202B2 (en) Method of controlling supply of alumina to reducing electrolytic cell for aluminum production
JP2003013268A (en) Method and apparatus for continuous pickling
US20220406413A1 (en) Method for predicting yield of calcium in a calcium treatment process based on deep neural network
JP3627081B2 (en) Method for estimating plating solution concentration in continuous electroplating equipment
WO2014082189A1 (en) Method and apparatus for controlling acid concentration for pickling in cold rolling
Yao et al. State and parameter estimation in Hall-Héroult cells using iterated extended Kalman filter
CN112861360A (en) Maskyo flow calculation error correction method based on system response theory
Yang et al. Pulsed electrodeposition of copper/nickel multilayers on a rotating disk electrode: II. Potentiostatic deposition
JP5050410B2 (en) Acid concentration control method / apparatus for pickling process, and steel plate manufacturing method using them
JPH0331800B2 (en)
CN113136615A (en) Component control method and device for electro-deposition alloy film
US6235178B1 (en) Method and device for coating a metal strip
JP3834701B2 (en) Method for measuring dissolved amount of metal ion and method for controlling concentration of plating bath using insoluble anode
CN102929303B (en) Method and device for controlling concentration of acid for acid washing in production process of cold-rolled strip steel
JP3550896B2 (en) Concentration control method of insoluble anode zinc electroplating solution
KR100979024B1 (en) An APPARATUS FOR CONTROLLING THE AMOUNT OF THE DOUBLE ALLOY PLATING
Moreira et al. Observer Based Predictive Controller for Hall-Heroult Process
JP2002167698A (en) Plating equipment
JPH07316896A (en) Method for replenishing metal ions to plating liquid and device therefor
JPH03158500A (en) Method for adjusting electroplating bath
JPS61288100A (en) Method for controlling ph in electrolytic treatment of steel sheet
JPS60128295A (en) Device for automatic compensation and control of plating current
JPS60128293A (en) Device for automatic compensation and control of plating current
US20220333921A1 (en) In-mold solidified shell thickness estimation apparatus, in-mold solidified shell thickness estimation method, and continuous steel casting method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

RD01 Notification of change of attorney

Effective date: 20041112

Free format text: JAPANESE INTERMEDIATE CODE: A7426

A61 First payment of annual fees (during grant procedure)

Effective date: 20041122

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20071217

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081217

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101217

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20111217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20121217

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20131217

LAPS Cancellation because of no payment of annual fees