JPH09323252A - Profile polishing method and device - Google Patents

Profile polishing method and device

Info

Publication number
JPH09323252A
JPH09323252A JP14392296A JP14392296A JPH09323252A JP H09323252 A JPH09323252 A JP H09323252A JP 14392296 A JP14392296 A JP 14392296A JP 14392296 A JP14392296 A JP 14392296A JP H09323252 A JPH09323252 A JP H09323252A
Authority
JP
Japan
Prior art keywords
polishing
polishing tool
tool
predetermined
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14392296A
Other languages
Japanese (ja)
Inventor
Takekazu Shiotani
剛和 塩谷
Kimihiro Wakabayashi
公宏 若林
Kazutoshi Hamada
和敏 浜田
Takaaki Sakakibara
崇晃 榊原
Toshimasa Fujisawa
寿政 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP14392296A priority Critical patent/JPH09323252A/en
Priority to US08/869,217 priority patent/US5895311A/en
Publication of JPH09323252A publication Critical patent/JPH09323252A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve in the accuracy of finishing as well as to aim at the promotion of a decrease in cost. SOLUTION: A pressing direction of an abrasive tool 52 is accorded with the normal of a work surface 34A through this nearly spherical abrasive tool 52 while a turning shaft 51A of this abrasive tool 52 is scanned on the work surface 34A as maintaining a specified angle to the normal of this work surface 34A and thereby polishing work is made so as to be done. Successively, in time of polishing, at least a rotational speed in the abrasive tool 52, or pressing force of this abrasive tool is made so as to be controlled according to a polishing position of the abrasive tool 52.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は曲面形状、特に、回
転対称軸を持たない非球面形状を有したレンズ、ミラー
等の光学素子や、これらを射出成形するための成形金型
等を研磨する曲面研磨方法、及び曲面研磨装置に関し、
特に、加工精度の向上、及びコストダウンを図った曲面
研磨方法、及び曲面研磨装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended for polishing optical elements such as lenses and mirrors having a curved surface, in particular, an aspherical shape having no axis of rotational symmetry, and a molding die for injection molding these. Regarding a curved surface polishing method and a curved surface polishing apparatus,
In particular, the present invention relates to a curved surface polishing method and a curved surface polishing apparatus that improve the processing accuracy and reduce the cost.

【0002】[0002]

【従来の技術】曲面形状、特に、回転対称軸を持たない
非球面形状を有したレンズ、ミラー等の光学素子や、こ
れらを射出成形するための成形金型を研磨する、従来の
曲面研磨装置として、例えば、特開平5−57606号
公報に開示されるものがある。
2. Description of the Related Art A conventional curved surface polishing apparatus for polishing optical elements such as lenses and mirrors having a curved surface shape, particularly an aspherical shape having no axis of rotational symmetry, and a molding die for injection molding these. For example, there is one disclosed in JP-A-5-57606.

【0003】図8には、上記曲面研磨装置が示されてい
る。この曲面研磨装置は、定盤2上において加工物3に
所定の水平運動を行わせる水平駆動部1Aと、水平駆動
部1Aによって移動されてきた加工物3の加工面3Aの
面形状を計測する形状計測部1Bと、形状計測部1Bの
計測によって得られた加工面3Aの面形状データに基づ
いて水平駆動部1Aによって移動されてきた加工物3の
加工面3Aの研磨加工を行う研磨加工部1Cを備えて構
成されている。
FIG. 8 shows the curved surface polishing apparatus. This curved surface polishing apparatus measures a horizontal drive unit 1A that causes a workpiece 3 to perform a predetermined horizontal motion on a surface plate 2, and a surface shape of a processed surface 3A of the workpiece 3 that has been moved by the horizontal drive unit 1A. The shape measuring unit 1B and a polishing processing unit for performing a polishing process on the processing surface 3A of the workpiece 3 moved by the horizontal driving unit 1A based on the surface shape data of the processing surface 3A obtained by the measurement of the shape measuring unit 1B. 1C.

【0004】水平駆動部1Aは、定盤2上にY軸方向に
移動可能に設けられたY軸テーブル4と、Y軸方向に沿
って配置され、Y軸テーブル4のナット(図示せず)と
螺合したボールネジ5と、ボールネジ5を回転させてY
軸テーブル4をY軸方向に移動させるモータ6と、Y軸
テーブル4上にX軸方向に移動可能に設けられたX軸テ
ーブル7と、X軸方向に沿って配置され、X軸テーブル
7のナット(図示せず)と螺合したボールネジ8と、ボ
ールネジ8を回転させてX軸テーブル7をX軸方向に移
動させるモータ9と、X軸テーブル7上に配置され、図
示しないモータによって回転するθテーブル10を有し
て構成されている。
[0004] The horizontal drive unit 1A is provided on a surface plate 2 so as to be movable in the Y-axis direction, and is disposed along the Y-axis direction. A nut (not shown) of the Y-axis table 4 is provided. The ball screw 5 screwed with the
A motor 6 for moving the axis table 4 in the Y-axis direction, an X-axis table 7 movably provided in the X-axis direction on the Y-axis table 4, and an X-axis table 7 A ball screw 8 screwed to a nut (not shown), a motor 9 for rotating the ball screw 8 to move the X-axis table 7 in the X-axis direction, and arranged on the X-axis table 7 and rotated by a motor (not shown) It has a θ table 10.

【0005】研磨加工部1Cは、定盤2に設けられたL
字形の研磨フレーム11A、11B、11Cと、研磨フ
レーム11A、11B、11Cの先端に取付板12を介
して取り付けられたZチルティング装置13と、Zチル
ティング装置13の下部に取り付けられた研磨ヘッド1
4を有している。
[0005] The polishing portion 1C is provided with an L
V-shaped polishing frames 11A, 11B and 11C, a Z tilting device 13 attached to the tips of the polishing frames 11A, 11B and 11C via a mounting plate 12, and a polishing head attached to the bottom of the Z tilting device 13. 1
Four.

【0006】図9には、Zチルティング装置13の構成
が示されている。Zチルティング装置13は、3つの角
15aが取付板12にそれぞれ固定される三角取付板1
5と、三角取付板15上に各辺にそれぞれ平行に固着さ
れた軸16A〜16C(16Cは図示せず)と、軸16
A〜16Cにそれぞれ回動自在に取り付けられたブロッ
ク17A〜17Cと、ブロック17A〜17CのZ軸方
向に伸びる一対の側部に、Z軸方向に伸びる一対の内側
部がそれぞれスライド自在に係合したロ字形の研磨アー
ム18A〜18Cと、それぞれZ軸方向に伸びて、研磨
アーム18A〜18Cに軸支されると共に、ブロック1
7A〜17Cのナット(図示せず)に螺合したボールネ
ジ19A〜19Cと、ボールネジ19A〜19Cを回転
させて研磨アーム18A〜18CをZ軸方向に移動させ
るモータ20A〜20Cと、研磨アーム18A〜18C
の下端にユニバーサルジョイント21A〜21Cを介し
て取り付けられた三角形の研磨ヘッド取付板22を有し
て構成されている。
FIG. 9 shows the structure of the Z tilting device 13. The Z tilting device 13 includes a triangular mounting plate 1 in which three corners 15a are fixed to the mounting plate 12, respectively.
5, shafts 16A to 16C (16C not shown) fixed parallel to each side on the triangular mounting plate 15;
A pair of inner portions extending in the Z-axis direction are slidably engaged with a pair of side portions extending in the Z-axis direction of the blocks 17A to 17C rotatably attached to the blocks A to 16C, respectively. The polishing arms 18A to 18C each having a rectangular shape, each extending in the Z-axis direction, being supported by the polishing arms 18A to 18C,
Ball screws 19A to 19C screwed into nuts (not shown) of 7A to 17C, motors 20A to 20C for rotating the ball screws 19A to 19C to move the polishing arms 18A to 18C in the Z-axis direction, and the polishing arms 18A to 18C. 18C
Has a triangular polishing head attachment plate 22 attached to the lower end of the head via universal joints 21A to 21C.

【0007】図10には、研磨ヘッド14の構成が示さ
れている。研磨ヘッド14は、加工物3の加工面3Aを
研磨する円柱状の研磨工具23と、研磨工具23を保持
する研磨工具保持装置24と、荷重軸25を介して研磨
工具23に押付け力を付加する定圧装置26と、研磨工
具23を矢印D方向に往復運動させる揺動装置27を有
して構成されている。
FIG. 10 shows the configuration of the polishing head 14. The polishing head 14 applies a pressing force to the polishing tool 23 via a load shaft 25, a cylindrical polishing tool 23 that polishes the processed surface 3A of the workpiece 3, a polishing tool holding device 24 that holds the polishing tool 23, and a load shaft 25. And a rocking device 27 that reciprocates the polishing tool 23 in the direction of arrow D.

【0008】定圧装置26は、荷重軸25に取り付けら
れたボイスコイルモータ、板ばね、及び荷重センサ(何
れも図示せず)によって常に設定された押付け力を保つ
ように構成されている。また、荷重軸25には、荷重軸
25の軸方向の変位量を検出する変位センサ(図示せ
ず)が取り付けられている。
The constant pressure device 26 is constructed so as to always maintain a pressing force set by a voice coil motor attached to the load shaft 25, a leaf spring, and a load sensor (none of which is shown). A displacement sensor (not shown) that detects the amount of axial displacement of the load shaft 25 is attached to the load shaft 25.

【0009】揺動装置27は、モータ28の回転軸28
Aに接続されたクランク29と、クランク29の回転運
動を往復運動に変換するコンロッド30と、定圧装置2
6のケーシングに固着され、コンロッド30から往復運
動を入力してスライド軸31上をスライドするスライダ
32を有して構成されている。
The oscillating device 27 includes a rotating shaft 28 of a motor 28.
A, a connecting rod 30 for converting the rotational motion of the crank 29 into a reciprocating motion, a constant pressure device 2
6 and has a slider 32 that slides on a slide shaft 31 by inputting a reciprocating motion from a connecting rod 30.

【0010】以上の構成において、加工物3の研磨加工
を行う場合には、まず、加工物3の加工面3Aに研磨剤
を塗布し、Zチルティング装置14によって研磨ヘッド
13を下降させて研磨工具23を加工面3Aに接触させ
る。次に、揺動装置27により研磨工具23を矢印D方
向に往復運動させると共に、定圧装置26により研磨工
具23に所定の押付け力を加え、研磨工具23の研磨面
と加工物3の加工面3Aとで摺擦を行わせる。このと
き、研磨工具23の加圧方向と加工面3Aの法線方向が
常に一致するように、また、変位センサによって計測さ
れる荷重軸25の変位量が一定になるように、走査パタ
ーン、及び後述する走査速度分布に従ってY軸テーブル
4、X軸テーブル7、θテーブル10、及びZチルティ
ング装置14が同期制御され、これによって研磨ヘッド
13が加工面3Aの形状に倣った走査を行って加工面3
Aの研磨加工を行う。ここで、研磨量は、研磨工具23
の押付け力、加工物との相対速度、滞留時間に比例し、
加工面3Aの形状を目標面形状に近づけるための滞留時
間分布、つまり、研磨工具23の走査速度分布は、研磨
工具23の押付け力と相対速度を一定に保ったときに研
磨工具23が加工面3Aを単位時間あたり除去する単位
除去形状と、形状計測部1Bで計測した加工面3Aの形
状と目標面形状との差から求められる。
In the above-described configuration, when the workpiece 3 is polished, first, an abrasive is applied to the processing surface 3A of the workpiece 3, and the polishing head 13 is lowered by the Z tilting device 14 to polish the workpiece. The tool 23 is brought into contact with the processing surface 3A. Next, the rocking device 27 reciprocates the polishing tool 23 in the direction of the arrow D, and a constant pressure device 26 applies a predetermined pressing force to the polishing tool 23 to polish the polishing surface of the polishing tool 23 and the processed surface 3A of the workpiece 3. Use and to rub. At this time, the scanning pattern, and the pressing direction of the polishing tool 23 and the normal direction of the processing surface 3A always match, and the displacement amount of the load shaft 25 measured by the displacement sensor becomes constant. The Y-axis table 4, the X-axis table 7, the θ table 10, and the Z tilting device 14 are synchronously controlled in accordance with a scanning velocity distribution described later, whereby the polishing head 13 performs scanning in accordance with the shape of the processing surface 3A to perform processing. Surface 3
A polishing is performed. Here, the polishing amount is determined by the polishing tool 23.
Proportional to the pressing force of, the relative speed with the work piece, the residence time,
The residence time distribution for bringing the shape of the processing surface 3A closer to the target surface shape, that is, the scanning speed distribution of the polishing tool 23 is determined by the polishing tool 23 when the pressing force and relative speed of the polishing tool 23 are kept constant. It is obtained from the unit removal shape for removing 3A per unit time, and the difference between the shape of the processed surface 3A measured by the shape measuring unit 1B and the target surface shape.

【0011】[0011]

【発明が解決しようとする課題】しかし、従来の曲面研
磨装置によると、以下のような問題がある。 (1) 研磨工具が円柱状になっているため、加工面との接
触面積が大きく、研磨ヘッドの走査と共に研磨工具が接
触する加工面の曲率が変化すると、研磨工具の押付け力
を一定に保っていても研磨工具下の押付け力分布が変化
してしまう。また、近似曲率半径が小さい位置において
は、研磨ヘッドの走査と共に研磨工具が接触する加工面
の法線方向も大きく変化し、研磨工具の接触箇所が変化
して研磨工具下の相対速度分布や押付け力分布が変化し
てしまう。このため、押付け力、相対速度、滞留時間の
積である単位除去形状が位置により変化して、加工精度
が低下する。 (2) 研磨ヘッドの走査を6軸の駆動機構で行うため、構
成が複雑化してコストアップになる。 (3) 研磨ヘッドを加工面の形状に倣わせた走査を行うた
め、研磨ヘッドの駆動制御に短い走査距離で多数の制御
データが必要になり、演算時間の増加等によって研磨ヘ
ッドの走査速度が遅くなってしまう。従って、研磨ヘッ
ドの走査速度を制御して研磨量の調整を行うことができ
ず、加工精度が低下する。 (4) 加工面全面にわたって各駆動軸を同期制御して研磨
ヘッドの走査を制御するため、制御データ量が膨大にな
り、駆動制御部のメモリ容量の増加等からコストアップ
になる。
However, the conventional curved surface polishing apparatus has the following problems. (1) Since the polishing tool has a columnar shape, the contact area with the processing surface is large, and if the curvature of the processing surface with which the polishing tool contacts changes as the polishing head scans, the pressing force of the polishing tool is kept constant. However, the pressing force distribution under the polishing tool will change. Also, at a position where the approximate radius of curvature is small, the direction of the normal to the processing surface with which the polishing tool contacts changes significantly with the scanning of the polishing head, and the contact point of the polishing tool changes, and the relative velocity distribution and pressing under the polishing tool The force distribution changes. Therefore, the unit removal shape, which is the product of the pressing force, the relative speed, and the residence time, changes depending on the position, and the processing accuracy decreases. (2) Since the scanning of the polishing head is performed by the 6-axis driving mechanism, the structure is complicated and the cost is increased. (3) Since the polishing head scans according to the shape of the processed surface, a large number of control data are required for the drive control of the polishing head at a short scanning distance, and the scanning speed of the polishing head is increased due to the increase in calculation time. It will be late. Therefore, the scanning speed of the polishing head cannot be controlled to adjust the polishing amount, and the processing accuracy is reduced. (4) Since the scanning of the polishing head is controlled by synchronously controlling each drive axis over the entire surface to be machined, the amount of control data becomes enormous and the cost increases due to an increase in the memory capacity of the drive control unit.

【0012】従って、本発明の目的は加工精度の向上、
及びコストダウンを図ることができる曲面研磨方法、及
び曲面研磨装置を提供することである。
Therefore, the object of the present invention is to improve the machining accuracy,
Another object of the present invention is to provide a curved surface polishing method and a curved surface polishing apparatus that can reduce the cost.

【0013】[0013]

【課題を解決するための手段】本発明は上記問題点に鑑
み、加工精度の向上、及びコストダウンを図るため、弾
性を有する略球形状の研磨工具を準備し、表面形状に応
じて変化する加工物の加工面の法線と研磨工具の押付け
方向を一致させて所定の押付け力で研磨工具を加工面に
押付けると共に研磨工具を所定の回転軸を中心にして回
転させ、且つ、法線と研磨工具の所定の回転軸との角度
を所定の角度に維持しながら研磨工具で加工面を走査し
て加工面を研磨するようにした曲面研磨方法を提供する
ものである。
In view of the above problems, the present invention prepares a substantially spherical polishing tool having elasticity and changes it depending on the surface shape in order to improve the processing accuracy and reduce the cost. Match the normal of the work surface of the work with the pressing direction of the polishing tool, press the polishing tool against the work surface with a predetermined pressing force, rotate the polishing tool around a predetermined rotation axis, and The present invention provides a curved surface polishing method for polishing a machined surface by scanning the machined surface with the abrasive tool while maintaining the angle between the machine tool and a predetermined rotation axis of the machine tool at a predetermined angle.

【0014】上記研磨工具の準備は、直径50mm以下
で弾性率1kgf/mm2 以下の略球形状の弾性体の表
面にポリッシャーを設けることによって行うことが望ま
しい。
The polishing tool is preferably prepared by providing a polisher on the surface of a substantially spherical elastic body having a diameter of 50 mm or less and an elastic modulus of 1 kgf / mm 2 or less.

【0015】上記研磨工具の準備は、表面にポリッシャ
ーを有する弾性材料からなる袋状部材に流体を供給して
所定のサイズの球形状に膨らませることによって行うこ
とが望ましい。
The polishing tool is preferably prepared by supplying a fluid to a bag-shaped member made of an elastic material having a polisher on its surface to expand it into a spherical shape having a predetermined size.

【0016】上記法線に対する研磨工具の押付け方向の
一致、及び法線に対する研磨工具の所定の回転軸の所定
の角度の維持は、所定の姿勢に保持された研磨工具に対
して水平面上の直交する2軸を中心に加工物を回転させ
ることによって行うことが望ましい。
The matching of the pressing direction of the polishing tool with respect to the normal line and the maintenance of the predetermined angle of the predetermined rotation axis of the polishing tool with respect to the normal line are orthogonal to each other on the horizontal plane with respect to the polishing tool held in the predetermined posture. It is desirable to do this by rotating the workpiece about two axes.

【0017】上記加工面の研磨は、所定の角度を0より
大なる角度に設定して行う粗研磨と、所定の角度を0に
設定して行う仕上げ研磨を含むことが望ましい。
The polishing of the processed surface preferably includes rough polishing performed by setting a predetermined angle to an angle greater than 0 and finish polishing performed by setting a predetermined angle to 0.

【0018】上記加工物は、加工面の周囲に加工捨て部
分となるヤトイを有し、上記加工面の研磨は、ヤトイ上
で分割された複数の走査パターンに従って行うことが望
ましい。
It is desirable that the above-mentioned workpiece has a toy which is a portion to be discarded around the processed surface, and the polishing of the processed surface is preferably performed according to a plurality of scanning patterns divided on the toy.

【0019】また、上記曲面研磨方法において、加工面
の研磨時に、研磨工具の走査位置に応じて研磨工具の回
転速度、或いは研磨工具の押付け力の少なくとも1つを
制御するようにしても良い。
Further, in the above-mentioned curved surface polishing method, at the time of polishing the processed surface, at least one of the rotation speed of the polishing tool and the pressing force of the polishing tool may be controlled according to the scanning position of the polishing tool.

【0020】また、本発明は上記目的を達成するため、
弾性を有した略球形状の研磨工具と、研磨工具を加工物
の加工面に所定の押付け力で所定の押付け方向に押付け
る押付け手段と、研磨工具を所定の回転軸で回転させる
回転手段と、加工物と研磨工具の水平方向の相対的位置
を変位させる水平方向変位手段と、加工物の加工面の法
線と研磨工具の所定の回転軸、及び所定の押付け方向の
相対的角度を変化させる角度変化手段と、水平方向変位
手段を制御して研磨工具に加工面の走査を行わせると共
に、角度変化手段を制御して法線と研磨工具の押付け方
向を一致させ、且つ、法線と研磨工具の所定の回転軸と
の角度を所定の角度に維持させて加工面を研磨する制御
手段を備えた曲面研磨装置を提供するものである。
Further, the present invention achieves the above object,
A substantially spherical polishing tool having elasticity, a pressing means for pressing the polishing tool against a processing surface of a workpiece in a predetermined pressing direction with a predetermined pressing force, and a rotating means for rotating the polishing tool on a predetermined rotation axis. , Horizontal displacement means for displacing the relative position of the work piece and the polishing tool in the horizontal direction, and changing the relative angle between the normal line of the work surface of the work piece, the predetermined rotation axis of the polishing tool, and the predetermined pressing direction Controlling the angle changing means and the horizontal displacing means to cause the polishing tool to scan the processing surface, and controlling the angle changing means to match the normal line with the pressing direction of the polishing tool, and A curved surface polishing apparatus provided with a control means for polishing a machined surface while maintaining an angle with a predetermined rotation axis of a polishing tool at a predetermined angle.

【0021】上記研磨工具は、直径50mm以下で弾性
率1kgf/mm2 以下の略球形状の弾性体と、その表
面に設けられたポリッシャーより構成されていることが
望ましい。
It is desirable that the polishing tool comprises a substantially spherical elastic body having a diameter of 50 mm or less and an elastic modulus of 1 kgf / mm 2 or less, and a polisher provided on the surface thereof.

【0022】上記研磨工具は、弾性材料からなる袋状部
材と、この袋状部材の表面に設けられたポリッシャーを
有し、前記袋状部材に流体を供給して所定のサイズの略
球形状に膨らませて構成されることが望ましい。
The polishing tool has a bag-shaped member made of an elastic material and a polisher provided on the surface of the bag-shaped member, and supplies a fluid to the bag-shaped member to form a substantially spherical shape of a predetermined size. It is desirable that it is inflated.

【0023】上記角度変化手段は、水平面上の直交する
2軸を中心にして加工物を回転させる加工物回転手段に
よって構成されることが望ましい。
The angle changing means is preferably constituted by a work piece rotating means for rotating the work piece about two axes orthogonal to each other on a horizontal plane.

【0024】上記回転手段は、粗研磨工程の時、前記所
定の角度を0より大なる角度に設定し、仕上げ研磨工程
の時、前記所定の角度を0に設定する構成を有すること
が望ましい。
It is preferable that the rotating means has a structure in which the predetermined angle is set to an angle larger than 0 in the rough polishing step, and the predetermined angle is set to 0 in the finish polishing step.

【0025】上記加工物は、加工面の周囲に加工捨て部
分となるヤトイを有し、上記制御手段は、研磨工具の加
工面の研磨を、ヤトイ上で分割された複数の走査パター
ンに従って行わせることが望ましい。
The work piece has a tool to be a part to be discarded around the work surface, and the control means causes the work surface of the polishing tool to be polished in accordance with a plurality of scanning patterns divided on the tool. Is desirable.

【0026】上記押付け手段は、研磨工具の垂直方向の
位置に関係なく所定の押付け力を付与する押付け力付与
手段を有する構成が望ましい。
The pressing means preferably has a pressing force applying means for applying a predetermined pressing force regardless of the vertical position of the polishing tool.

【0027】上記押付け力付与手段は、研磨工具、及び
研磨工具を支持する支持体の重量との差に基づいて所定
の押付け力を発生させる重量バランス機構である構成が
望ましい。
It is desirable that the pressing force applying means is a weight balance mechanism that generates a predetermined pressing force based on the difference between the weight of the polishing tool and the weight of the support that supports the polishing tool.

【0028】上記押付け力付与手段は、研磨工具が加工
面から受ける反力に応じた内圧を発生するシリンダ機構
である構成が望ましい。
It is desirable that the pressing force applying means is a cylinder mechanism that generates an internal pressure according to the reaction force that the polishing tool receives from the processing surface.

【0029】また、上記曲面研磨装置において、制御手
段は、加工面の研磨時に研磨工具の走査位置に応じて研
磨工具の回転速度、或いは研磨工具の押付け力の少なく
とも1つを制御する構成であっても良い。その場合、上
記押付け力付与手段は、研磨工具が加工面から受ける反
力に応じた内圧を発生するシリンダ機構である構成が望
ましい。
Further, in the above curved surface polishing apparatus, the control means controls at least one of the rotation speed of the polishing tool or the pressing force of the polishing tool according to the scanning position of the polishing tool when polishing the work surface. May be. In that case, it is desirable that the pressing force applying means is a cylinder mechanism that generates an internal pressure according to the reaction force that the polishing tool receives from the processing surface.

【0030】[0030]

【発明の実施の形態】以下、本発明の曲面研磨方法、及
び曲面研磨装置を添付図面を参照しながら詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a curved surface polishing method and a curved surface polishing apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

【0031】図1には、本発明の第1の実施の形態にお
ける曲面研磨装置の構成が示されている。この曲面研磨
装置は、支持定盤33上に設けられ、加工物34に所定
の運動を行わせるテーブル駆動駆動部35と、加工物3
4の加工面34Aに位置させられ、加工面34Aの研磨
加工を行う研磨ヘッド36と、X軸方向の任意の位置に
おいて研磨ヘッド36を支持すると共に、被加工面34
Aの形状に応じて研磨ヘッド36を上下動させる支持機
構部37と、各駆動機構部を同期制御する駆動制御部3
3Aを備えて構成されている。
FIG. 1 shows the structure of a curved surface polishing apparatus according to the first embodiment of the present invention. This curved surface polishing apparatus is provided on a support surface plate 33, and has a table drive drive unit 35 for causing the work piece 34 to perform a predetermined motion, and the work piece 3.
No. 4, which is located on the processing surface 34A, and which polishes the processing surface 34A, supports the polishing head 36 at an arbitrary position in the X-axis direction, and holds the surface 34 to be processed.
A support mechanism section 37 for vertically moving the polishing head 36 according to the shape of A, and a drive control section 3 for synchronously controlling each drive mechanism section.
It is configured with 3A.

【0032】テーブル機構部35は、加工物34にY軸
方向の水平運動を行わせるY軸機構部38と、Y軸機構
部38上に設けられ、加工物34にX軸と平行な軸を中
心とした円弧方向(以下、α軸方向という)の回転運動
を行わせるα軸機構部39と、α軸機構部51上に設け
られ、加工物34にY軸と平行な軸を中心とした円弧方
向(以下、β軸方向という)の回転運動を行わせるβ軸
機構部40と、β軸機構部40上に加工物34を位置決
め固定する固定治具41を有して構成されている。
The table mechanism portion 35 is provided on the Y-axis mechanism portion 38 for causing the workpiece 34 to horizontally move in the Y-axis direction, and the table mechanism portion 35 has an axis parallel to the X-axis for the workpiece 34. An α-axis mechanism unit 39 that performs rotational movement in a circular arc direction (hereinafter, referred to as an α-axis direction) and an α-axis mechanism unit 51 that are provided on the workpiece 34 with an axis parallel to the Y-axis as the center. It is configured to have a β-axis mechanism portion 40 that performs a rotational motion in an arc direction (hereinafter, β-axis direction), and a fixing jig 41 that positions and fixes the workpiece 34 on the β-axis mechanism portion 40.

【0033】Y軸機構部38は、支持定盤33上にY軸
方向に伸びて配置された2本の平行なガイド42A、4
2Bと、ガイド42A、42Bにスライド自在に係合し
たY軸テーブル43と、ガイド42A、42B間に平行
に配置され、Y軸テーブル43に設けられたナット(図
示ぜす)と螺合したボールネジ44と、出力軸にボール
ネジ44の一端が接続され、ボールネジ44を回転させ
てY軸テーブル43をY軸方向に移動させ、且つ、所定
の位置で停止させて位置決めするサーボモータ45より
構成されている。
The Y-axis mechanism section 38 includes two parallel guides 42A and 4A arranged on the support surface plate 33 and extending in the Y-axis direction.
2B, a Y-axis table 43 slidably engaged with the guides 42A and 42B, and a ball screw that is arranged in parallel between the guides 42A and 42B and is screwed with a nut (a screw shown in the drawing) provided on the Y-axis table 43. 44, and one end of a ball screw 44 connected to the output shaft, and a servo motor 45 for rotating the ball screw 44 to move the Y-axis table 43 in the Y-axis direction and stopping and positioning the Y-axis table 43 at a predetermined position. There is.

【0034】α軸機構部39は、Y軸テーブル43上に
設けられ、X軸と平行な軸を曲率中心とした凹状の円弧
面46Aが形成された円弧ガイド46と、X軸と平行な
軸を曲率中心とした凸状の凸状の円弧面47Aが形成さ
れ、円弧ガイド46にα軸方向の回転ができるように係
合したα軸テーブル47と、α軸テーブル47に設けら
れたナット(図示せず)と螺合したボールネジ(図示せ
ず)と、出力軸にボールネジの一端が接続され、ボール
ネジを回転させてα軸テーブル47をY軸方向に回動さ
せ、且つ、所定の位置で停止させて位置決めするサーボ
モータ(図示せず)より構成されている。
The α-axis mechanism section 39 is provided on the Y-axis table 43, and has an arc guide 46 having a concave arc surface 46A whose center of curvature is an axis parallel to the X axis, and an axis parallel to the X axis. A convex convex arc surface 47A with the center of curvature as the center of curvature is formed, and the α-axis table 47 engaged with the arc guide 46 so as to be rotatable in the α-axis direction and the nut (provided on the α-axis table 47 ( A ball screw (not shown) screwed together with one end of the ball screw is connected to the output shaft, the ball screw is rotated to rotate the α-axis table 47 in the Y-axis direction, and at a predetermined position. It is composed of a servo motor (not shown) for stopping and positioning.

【0035】β軸機構部40は、α軸テーブル47上に
設けられ、Y軸と平行な軸を曲率中心とした凹状の円弧
面48Aが形成された円弧ガイド48と、Y軸と平行な
軸を曲率中心とした凸状の円弧面49Aが形成され、円
弧ガイド48にα軸方向の回転ができるように係合した
β軸テーブル49と、β軸テーブル49に設けられたナ
ット(図示せず)と螺合したボールネジ(図示せず)
と、出力軸にボールネジの一端が接続され、ボールネジ
を回転させてβ軸テーブル49をX軸方向に回動させ、
且つ、所定の位置で停止させて位置決めするサーボモー
タ50より構成されている。
The β-axis mechanism section 40 is provided on the α-axis table 47, and has an arc guide 48 having a concave arc surface 48A whose center of curvature is an axis parallel to the Y axis, and an axis parallel to the Y axis. A convex arc surface 49A having a center of curvature is formed, and a β-axis table 49 engaged with the arc guide 48 so as to be rotatable in the α-axis direction and a nut (not shown) provided on the β-axis table 49. ) Ball screw (not shown)
And one end of a ball screw is connected to the output shaft, the ball screw is rotated to rotate the β-axis table 49 in the X-axis direction,
In addition, it is composed of a servo motor 50 that stops and positions at a predetermined position.

【0036】研磨ヘッド37は、図示しないドライバに
よって駆動されることにより、回転トルクを発生するス
ピンドル51と、スピンドル51の回転軸51Aの先端
に取り付けられ、スピンドル51から回転トルクを入力
して加工面34Aの研磨加工を行う研磨工具52より構
成されている。
The polishing head 37 is attached to the spindle 51 that generates a rotational torque by being driven by a driver (not shown) and the tip of the rotary shaft 51A of the spindle 51. It is composed of a polishing tool 52 for polishing 34A.

【0037】支持機構部37は、研磨ヘッド37にX軸
方向の水平運動を行わせるX軸機構部53と、被加工面
34Aの形状に応じて研磨ヘッド36を上下動させる垂
直機構部54を備えて構成されている。
The support mechanism portion 37 includes an X-axis mechanism portion 53 that causes the polishing head 37 to move horizontally in the X-axis direction and a vertical mechanism portion 54 that moves the polishing head 36 up and down according to the shape of the surface 34A to be processed. It is equipped with.

【0038】X軸機構部53は、支持定盤33上に設け
られた支柱55A、55Bと、X軸方向に沿って配置さ
れように支柱55A、55Bに支持されたガイド56
と、ガイド56にスライド自在に係合したX軸スライダ
57と、X軸スライダ57に設けられたナット(図示せ
ず)と螺合したボールネジ(図示せず)と、出力軸にボ
ールネジの一端が接続され、ボールネジを回転させてX
軸スライダ55をX軸方向に移動させ、且つ、所定の位
置で停止させて位置決めするサーボモータ(図示せず)
を有して構成されている。
The X-axis mechanism section 53 includes columns 55A and 55B provided on the support surface plate 33, and guides 56 supported by the columns 55A and 55B so as to be arranged along the X-axis direction.
An X-axis slider 57 slidably engaged with the guide 56, a ball screw (not shown) screwed with a nut (not shown) provided on the X-axis slider 57, and one end of the ball screw on the output shaft. Connected and rotate the ball screw X
A servo motor (not shown) that moves the shaft slider 55 in the X-axis direction and stops at a predetermined position for positioning.
Is configured.

【0039】垂直機構部54は、スピンドル51が固定
された昇降自在なスライダ58Aを有し、研磨ヘッド3
6の昇降をガイドして研磨ヘッド36の姿勢を一定に保
持するスライド機構部58と、滑車59A、59Bに掛
けられ、一端にスライダ58Aが、他端にウェイト60
が接続されたワイヤ61より構成されている。ウェイト
58の重量は、スライダ58Aとスピンドル51と研磨
工具52の合計重量より所定の重量だけ小になってお
り、研磨工具52が加工面34Aの形状に応じて下降し
たとき、その変位量に応じた距離だけウェイト60が上
昇し、研磨工具52が加工面34Aの形状に応じて上昇
したとき、ウェイト60の荷重によってその変位量に応
じた距離だけウェイト59が下降すると共に、研磨工具
52がスライダ58Aとスピンドル51と研磨工具52
の合計重量による力からウェイト60の荷重による力を
差し引いた力で研磨面34Aに押付けられるようになっ
ている。
The vertical mechanism 54 has a slider 58A to which the spindle 51 is fixed and which can move up and down.
6 is slid on a slide mechanism portion 58 that holds the polishing head 36 in a fixed posture by guiding the up and down movement of the polishing head 36, and pulleys 59A and 59B. A slider 58A is provided at one end and a weight 60 is provided at the other end.
Are connected to the wire 61. The weight of the weight 58 is smaller than the total weight of the slider 58A, the spindle 51, and the polishing tool 52 by a predetermined weight, and when the polishing tool 52 descends according to the shape of the processing surface 34A, the weight 58 depends on its displacement amount. When the weight 60 rises by a certain distance and the polishing tool 52 rises in accordance with the shape of the processing surface 34A, the weight 59 lowers by a distance corresponding to the amount of displacement of the weight 60 and the polishing tool 52 slides. 58A, spindle 51, and polishing tool 52
The force of the weight 60 minus the force of the weight 60 is pressed against the polishing surface 34A.

【0040】駆動制御部33Aは、図示しない駆動計算
部によって計算された駆動データに基づいて水平駆動軸
であるY軸機構部38、及びX軸機構部53と傾斜駆動
軸であるα軸機構部39、及びβ軸機構部40の合計4
軸の駆動を同期制御して、研磨ヘッド36が加工面34
Aに対して常に一定の姿勢を保つように、つまり、研磨
工具52の押付け方向が加工面34Aの法線と一致し、
且つ、回転軸51Aが加工面34Aの法線に対して所定
の角度を維持するように研磨工具52の走査を行わせ
る。
The drive control unit 33A has a Y-axis mechanism unit 38, which is a horizontal drive shaft, an X-axis mechanism unit 53, and an α-axis mechanism unit, which is a tilt drive shaft, based on drive data calculated by a drive calculation unit (not shown). 39 and β-axis mechanism unit 40 in total 4
The drive of the shaft is synchronously controlled so that the polishing head 36 moves the machining surface 34
In order to always maintain a constant posture with respect to A, that is, the pressing direction of the polishing tool 52 matches the normal line of the processing surface 34A,
Further, the polishing tool 52 is caused to scan so that the rotary shaft 51A maintains a predetermined angle with respect to the normal line of the processing surface 34A.

【0041】ここで、水平駆動軸と傾斜駆動軸の駆動制
御について説明する。
Here, the drive control of the horizontal drive shaft and the tilt drive shaft will be described.

【0042】図2は、研磨工具52が接触する加工面3
4Aの位置を予め定められた走査速度に基づき移動する
時の走査パターンLを示す。走査パターンLは、所定の
方向に伸びる走査線と所定の方向と直交する方向に変化
した後所定の方向と反対方向に伸びる走査線の繰り返し
によって形成されている。駆動計算部は走査パターンL
上のポイントP1 、P2 、・・における加工面34Aの
傾斜を水平にするための傾斜駆動部の角度データと、傾
斜駆動軸の駆動による位置変化を補正して各ポイントP
1 、P2 、・・の位置を研磨工具52が接触する位置に
一致させるための水平駆動部の位置データと、各ポイン
トP1 、P2 、・・間を指定速度で移動させるための速
度データを計算する。駆動制御部33Aは、駆動計算部
によって計算された駆動データ(角度データ、位置デー
タ、及び速度データ)に基づいてY軸機構部38、X軸
機構部53、α軸機構部39、及びβ軸機構部40の合
計4軸の駆動を同期制御する。
FIG. 2 shows the work surface 3 with which the polishing tool 52 contacts.
4 shows a scanning pattern L when the position of 4A is moved based on a predetermined scanning speed. The scanning pattern L is formed by repeating a scanning line extending in a predetermined direction and a scanning line changing in a direction orthogonal to the predetermined direction and then extending in a direction opposite to the predetermined direction. The drive calculation unit scan pattern L
The angle data of the tilt drive unit for leveling the tilt of the machining surface 34A at the above points P 1 , P 2 , ...
The position data of the horizontal drive unit for matching the positions of 1 , P 2 , ..., With the position where the polishing tool 52 contacts, and the speed for moving between the points P 1 , P 2 ,. Calculate the data. The drive control unit 33A, based on the drive data (angle data, position data, and speed data) calculated by the drive calculation unit, the Y-axis mechanism unit 38, the X-axis mechanism unit 53, the α-axis mechanism unit 39, and the β-axis. Synchronous control of driving of a total of four axes of the mechanical unit 40 is performed.

【0043】図3には、研磨ヘッド36の断面構造が示
されている。スピンドル51は、図示しないドライバに
よって回転速度が制御されるサーボモータ62と、サー
ボモータ62の出力軸にカップリング63を介して接続
された回転軸51Aと、ハウジング64A、64Bによ
って固定され、回転軸51Aを軸支するベアリング65
A、65Bより構成されている。一方、研磨工具52
は、回転軸51Aと回転中心が同一となるように固定ピ
ン66を介して回転軸51Aに着脱可能に取り付けら
れ、加工物34の材質やサイズに応じて交換される工具
軸心67と、工具軸心67の先端の球状部67Aの周囲
に直径50mm以下の球状に形成され、シリコーンゴム
等の弾性率1kgf/mm2 以下の柔らかい材質からな
る弾性体68と、弾性体68の表面に形成され、研磨剤
を保持して研磨加工を行うポリッシャー69より構成さ
れている。
FIG. 3 shows a sectional structure of the polishing head 36. The spindle 51 is fixed by a servo motor 62 whose rotational speed is controlled by a driver (not shown), a rotary shaft 51A connected to the output shaft of the servo motor 62 via a coupling 63, and housings 64A and 64B. Bearing 65 supporting 51A
It is composed of A and 65B. On the other hand, the polishing tool 52
Is detachably attached to the rotary shaft 51A via a fixing pin 66 so that the center of rotation is the same as that of the rotary shaft 51A, and the tool shaft center 67 and the tool shaft 67 are exchanged according to the material and size of the workpiece 34. A spherical body having a diameter of 50 mm or less is formed around the spherical portion 67A at the tip of the shaft 67, and an elastic body 68 made of a soft material having an elastic modulus of 1 kgf / mm 2 or less such as silicone rubber is formed on the surface of the elastic body 68. The polishing machine 69 is configured by a polisher 69 that holds an abrasive and performs polishing.

【0044】以下、上記曲面研磨装置を用いた曲面研磨
方法を説明する。
A curved surface polishing method using the curved surface polishing apparatus will be described below.

【0045】まず、加工物34の加工面34A上に研磨
剤を塗布し、ウェイト60の荷重を調整して研磨工具5
2を微小な力で加工面34A上に押し付ける。そして、
スピンドル51のモータ62を駆動して研磨工具52を
回転させ、加工物34の加工面34Aの研磨加工を行
う。また同時に、駆動制御部33Aが予め駆動計算部で
計算された駆動データに基づいて、サーボモータ45、
X軸機構部53のサーボモータ、α軸機構部39のサー
ボモータ、及びサーボモータ50の各ドライバに所定の
制御信号を出力して、Y軸テーブル43、及びX軸スラ
イダ57の水平方向位置とα軸テーブル47、及びβ軸
テーブル49の回転位置を制御することにより、研磨ヘ
ッド36が加工面34Aに対して常に一定方向を向くよ
うに、つまり、研磨工具52の押付け方向が加工面34
Aの法線と一致し、且つ、回転軸51Aが加工面34A
の法線に対して所定の角度を維持するように研磨工具5
2で加工面34Aを走査する。このとき、走査パターン
Lの各ポイントP1 、P2 、・・によって研磨工具52
が押付けられる高さは変動するが、スライド機構部58
におけるスライダ58Aの昇降によって研磨工具52が
その高さに応じて上下動するため、常にスライダ58A
とスピンドル51と研磨工具52の合計重量による力か
らウェイト59の荷重による力を差し引いた一定の押付
け力で研磨加工を行うことができる。
First, an abrasive is applied to the processed surface 34A of the workpiece 34, and the load of the weight 60 is adjusted to adjust the polishing tool 5
2 is pressed against the processed surface 34A with a small force. And
The motor 62 of the spindle 51 is driven to rotate the polishing tool 52 to polish the processing surface 34A of the workpiece 34. At the same time, the drive control unit 33A causes the servo motor 45, based on the drive data previously calculated by the drive calculation unit.
A predetermined control signal is output to each driver of the servo motor of the X-axis mechanism unit 53, the servo motor of the α-axis mechanism unit 39, and the servo motor 50 to set the horizontal position of the Y-axis table 43 and the X-axis slider 57. By controlling the rotational positions of the α-axis table 47 and the β-axis table 49, the polishing head 36 always faces a fixed direction with respect to the processing surface 34A, that is, the pressing direction of the polishing tool 52 is the processing surface 34.
It coincides with the normal line of A, and the rotary shaft 51A has a processed surface 34A.
Polishing tool 5 to maintain a predetermined angle with respect to the normal
The machining surface 34A is scanned at 2. At this time, the polishing tool 52 is moved by the points P 1 , P 2 , ... Of the scanning pattern L.
Although the height at which is pressed varies, the slide mechanism 58
Since the polishing tool 52 moves up and down according to the height of the slider 58A when the slider 58A moves up and down,
The polishing process can be performed with a constant pressing force obtained by subtracting the force due to the load of the weight 59 from the force due to the total weight of the spindle 51 and the polishing tool 52.

【0046】以上述べたように、第1の実施の形態で
は、略球形状で、且つ、弾性を有した研磨工具52を、
その押付け方向が加工面34Aの法線と一致し、且つ、
回転軸51Aが加工面34Aの法線に対して所定の角度
を維持するように走査して研磨している。このような研
磨方法では、研磨工具の走査によって加工面34Aの曲
率が変化しても、研磨工具52の加工面34Aとの接触
部以外の部分が加工面34Aに接触し難く、また、接触
しても弾性体68が加工面34Aの形状変化を吸収する
ため、研磨工具52の接触面積や押付け力の分布を一定
に保つことができる。また、加工面34Aの曲率が方向
によって異なっている場合でも、同様の理由によって押
付け力の分布を均等に保つことができる。
As described above, in the first embodiment, the polishing tool 52 having a substantially spherical shape and elasticity is
The pressing direction coincides with the normal line of the processed surface 34A, and
The rotating shaft 51A is scanned and polished so as to maintain a predetermined angle with respect to the normal line of the processing surface 34A. In such a polishing method, even if the curvature of the processing surface 34A changes due to the scanning of the polishing tool, the portion of the polishing tool 52 other than the contact portion with the processing surface 34A is hard to contact the processing surface 34A, and does not contact the processing surface 34A. However, since the elastic body 68 absorbs the shape change of the processing surface 34A, the contact area of the polishing tool 52 and the distribution of the pressing force can be kept constant. Further, even when the curvature of the machined surface 34A is different depending on the direction, the pressing force distribution can be kept uniform for the same reason.

【0047】図4の(a),(b) は、平均研磨深さと加工面
の曲率変化の関係を測定した結果を示し、(a) は直径1
0mmの円柱状の研磨工具を用いて研磨を行った時の結
果を、(b) は直径40mmの球形状の研磨工具を用いて
研磨を行った時の結果をそれぞれ示す。測定条件は、両
者ともに研磨工具の押付け力を2N、研磨工具の回転速
度を600rpm、研磨工具の移動速度を200mm/
min、走査パターンのピッチを0.2mmに統一して
いる。加工面は曲率の異なる円筒加工面とし、加工面ご
とに測定している。研磨工具の回転軸は加工面の法線方
向と常に一致するようにし、加工回数は曲率0m−1
(平面)の時の平均研磨深さが3μmになるように調整
している。この結果から判るように、(a) では加工面の
曲率が変化すると平均研磨深さも変化し、均一な研磨深
さが得られないが、(b) では加工面の曲率にかかわらず
略一定の平均研磨深さが得られている。これにより回転
対称軸を持たない非球面形状をした加工物でも単位除去
形状に一定に保つことができ、良好な形状精度で研磨加
工することが判る。
4 (a) and 4 (b) show the results of measuring the relationship between the average polishing depth and the change in the curvature of the machined surface, and (a) shows the diameter 1
The result when polishing was performed using a 0 mm cylindrical polishing tool, and (b) shows the result when polishing was performed using a spherical polishing tool having a diameter of 40 mm. The measurement conditions were as follows: the pressing force of the polishing tool was 2N, the rotation speed of the polishing tool was 600 rpm, and the moving speed of the polishing tool was 200 mm /
min and the scanning pattern pitch are unified to 0.2 mm. The machined surface is a cylindrical machined surface having different curvatures, and each machined surface is measured. The axis of rotation of the polishing tool is always aligned with the normal to the machined surface, and the number of machining is 0 m-1
The average polishing depth at the time of (planar) is adjusted to be 3 μm. As can be seen from this result, in (a), when the curvature of the machined surface changes, the average polishing depth also changes and uniform polishing depth cannot be obtained, but in (b), it is almost constant regardless of the curvature of the machined surface. The average polishing depth is obtained. As a result, it can be seen that even a workpiece having an aspherical shape without a rotational symmetry axis can be kept constant in the unit removal shape, and polishing processing can be performed with good shape accuracy.

【0048】図5には、本発明の第2の実施の形態の曲
面研磨装置として研磨ヘッド36の構成が示されてい
る。この実施の形態の形態において、他の構成は第1の
実施の形態と同一のため、その説明を省略する。スピン
ドル51は、貫通孔51Bを中心に有し、研磨工具52
と反対側の端部にジョイント70を介してエアポンプが
接続される回転軸51Aと、ハウジング71A、71
B、71Cによって固定され、回転軸51Aを軸支する
ベアリング72A、72Bと、図示しないドライバによ
って回転速度が制御されるサーボモータ73と、サーボ
モータ73の出力軸73Aと回転軸51Aに掛け渡され
た駆動ベルト74より構成されている。一方、研磨工具
52は、回転軸51Aの先端にリング75を介して固定
され、外表面にポリッシャー76を有した弾性材料より
成る袋状部材77より構成され、袋状部材77は回転軸
51Aの貫通孔51Bを介してエアポンプからエアが送
り込まれることにより膨らむようになっている。
FIG. 5 shows the structure of a polishing head 36 as a curved surface polishing apparatus according to the second embodiment of the present invention. In the form of this embodiment, the other structure is the same as that of the first embodiment, and therefore its explanation is omitted. The spindle 51 has a through hole 51B at the center, and a polishing tool 52
A rotary shaft 51A to which an air pump is connected via a joint 70 at an end portion on the opposite side to the housing 71A, 71
Bearings 72A and 72B that are fixed by B and 71C and support the rotating shaft 51A, a servo motor 73 whose rotation speed is controlled by a driver (not shown), an output shaft 73A of the servo motor 73, and the rotating shaft 51A. Drive belt 74. On the other hand, the polishing tool 52 is fixed to the tip of the rotary shaft 51A via a ring 75, and is made up of a bag-shaped member 77 made of an elastic material having a polisher 76 on the outer surface thereof. When the air is sent from the air pump through the through hole 51B, the air is expanded.

【0049】このような構成でも、加工物34の加工面
34Aの曲率の変化を、袋状部材77が吸収するため、
研磨工具52の接触面積や押付け力分布を一定に保つこ
とができる。従って、回転対称軸を持たない非球面形状
をした加工物でも単位除去形状を一定に保つことがで
き、良好な形状精度で研磨加工を行うことができる。
Even with such a configuration, since the bag-shaped member 77 absorbs the change in the curvature of the processed surface 34A of the workpiece 34,
The contact area of the polishing tool 52 and the pressing force distribution can be kept constant. Therefore, the unit removal shape can be kept constant even for a workpiece having an aspherical shape without a rotational symmetry axis, and polishing processing can be performed with good shape accuracy.

【0050】図6には、本発明の第3の実施の形態の曲
面研磨装置の構成が示されている。この図において図1
と同一の部分には同一の引用数字、符号を付したので、
重複する説明は省略する。この曲面研磨装置は、第1の
実施の形態において垂直機構部54を、X軸スライダ5
7に固定され、図示しない電空変換レギュレータとドラ
イバにより空気圧を制御されることによりシリンダ部7
8Aを昇降させるエアシリンダ機構79と、シリンダ部
78上において研磨工具52の中心を回転中心としてス
ピンドル51を矢印γ方向に回転できるように支持した
円弧ガイド79より構成している。
FIG. 6 shows the structure of a curved surface polishing apparatus according to the third embodiment of the present invention. In this figure
Since the same reference numerals and signs have been used for the same parts as
Duplicate description will be omitted. In this curved surface polishing apparatus, in the first embodiment, the vertical mechanism unit 54 is attached to the X-axis slider 5.
The cylinder portion 7 is fixed to the cylinder portion 7 by controlling the air pressure by an electropneumatic conversion regulator and a driver (not shown).
It is composed of an air cylinder mechanism 79 for raising and lowering 8A, and an arc guide 79 which is supported on the cylinder portion 78 so that the spindle 51 can be rotated about the center of the polishing tool 52 in the arrow γ direction.

【0051】円弧ガイド79は、研磨工具52が接触す
る加工面34Aにおける法線方向に対するスピンドル5
1の回転軸51Aの角度を手動調整できるように構成さ
れ、研磨量が必要な粗研磨工程では、回転軸51Aと研
磨工具52が接触した加工面34Aにおける法線方向と
の間に角度を持たせ、表面粗さを良好にする仕上げ研磨
工程では、回転軸51Aと加工面34Aにおける法線方
向とを一致させるようにスピンドル51の姿勢を変化さ
せることができる。
The arc guide 79 is provided on the spindle 5 in the normal direction to the machining surface 34A with which the polishing tool 52 comes into contact.
In the rough polishing process in which the angle of the rotary shaft 51A of No. 1 is manually adjustable, and a polishing amount is required, there is an angle between the rotary shaft 51A and the normal to the machining surface 34A with which the polishing tool 52 contacts. In the final polishing step for improving the surface roughness, the posture of the spindle 51 can be changed so that the rotation axis 51A and the normal line direction of the processing surface 34A coincide with each other.

【0052】駆動制御部33Aは、駆動計算部によって
計算された駆動データに基づいて水平駆動軸であるY軸
機構部38、及びX軸機構部53と傾斜駆動軸であるα
軸機構部39、及びβ軸機構部40の合計4軸の駆動を
同期制御すると共に、エアシリンダ機構78の空気圧、
つまり、研磨工具52の押付け力を制御するようになっ
ている。一方、駆動計算部は、押付け力の制御データ
が、加工面34Aの位置毎の目標形状に近づけるための
研磨加工量に応じて基準となる押付け力の値に重みづけ
した値になるように計算を行う。
The drive control unit 33A, based on the drive data calculated by the drive calculation unit, the Y-axis mechanism unit 38, which is the horizontal drive axis, the X-axis mechanism unit 53, and the tilt drive axis α.
The drive of the four shafts of the shaft mechanism 39 and the β shaft mechanism 40 is synchronously controlled, and the air pressure of the air cylinder mechanism 78 is controlled.
That is, the pressing force of the polishing tool 52 is controlled. On the other hand, the drive calculation unit calculates the pressing force control data so as to be a value obtained by weighting the reference pressing force value in accordance with the polishing processing amount for bringing the processing surface 34A closer to the target shape for each position. I do.

【0053】以下、本発明の第3の実施の形態の曲面研
磨装置を用いた曲面研磨方法を説明する。
A curved surface polishing method using the curved surface polishing apparatus according to the third embodiment of the present invention will be described below.

【0054】まず、加工物34の粗研磨工程を行うため
に、加工物34の加工面34A上に研磨剤を均等に塗布
し、手動でスピンドル51を円弧ガイド79に沿って動
かし、研磨ヘッド36をその回転軸51Aと研磨工具5
2が接触する加工面34Aにおける法線方向との間に所
定の角度を有するような姿勢にする。そして、駆動制御
部33Aのエアシリンダ機構78のドライバの制御によ
り、エアシリンダ機構78の空気圧が制御されてそのシ
リンダ部78Aが下降し、研磨工具52が駆動データに
基づく力で加工面34A上に押付けられる。この後、駆
動制御部33Aがスピンドル51のサーボモータを制御
して研磨工具52を回転させ、加工物34の加工面34
Aの粗研磨加工を行う。また同時に、駆動制御部33A
が駆動データに基づいて、Y軸機構部38のサーボモー
タ45、X軸機構部53のサーボモータ、α軸機構部3
9のサーボモータ、及びβ軸機構部40のサーボモータ
50の各ドライバを制御して、Y軸テーブル43、及び
X軸スライダ57の水平方向位置と、α軸テーブル4
7、及びβ軸テーブル49の回転位置をそれぞれ調整す
ることにより、研磨ヘッド36が加工面34Aに対して
常に一定方向を向くように、つまり、研磨工具52の押
付け方向が加工面34Aの法線と一致し、且つ、回転軸
51Aが加工面34Aの法線に対して所定の角度を維持
するように研磨工具52で加工面34Aを走査する。こ
のとき、走査パターンLの各ポイントP 1 、P2 、・・
によって加工面34Aの高さが変動するが、駆動制御部
33Aが駆動データに基づいてエアシリンダ機構78の
ドライバを制御して、シリンダ部78Aを昇降させるた
め、研磨工具52を駆動データに応じた力で押付けるこ
とができる。次に、加工物34の仕上げ研磨工程を行う
ために、手動でスピンドル51を円弧ガイド79に沿っ
て動かし、研磨ヘッド36をその回転軸51Aが研磨工
具52が接触する加工面34Aにおける法線と一致する
ような姿勢にする。そして、粗研磨工程と同様な手順で
被加工面34Aの仕上げ研磨加工を行う。これにより、
回転する研磨工具52の加工面34Aにおける回転運動
を全方向にすることができ、方向性のない平滑な面に仕
上げることができる。
First, in order to perform the rough polishing step of the workpiece 34.
And apply the polishing agent evenly on the processed surface 34A of the processed object 34.
And manually move the spindle 51 along the arc guide 79.
However, the polishing head 36 is attached to the rotary shaft 51A and the polishing tool 5
Between the normal to the machined surface 34A where 2 contacts
Position it so that it has a certain angle. And drive control
By controlling the driver of the air cylinder mechanism 78 of the portion 33A.
The air pressure of the air cylinder mechanism 78 is controlled to
The binder 78A descends, and the polishing tool 52 receives the drive data.
It is pressed on the processing surface 34A by the force based on it. After this, drive
The dynamic control unit 33A controls the servo motor of the spindle 51.
Then, the polishing tool 52 is rotated to move the processing surface 34 of the workpiece 34.
The rough polishing of A is performed. At the same time, the drive control unit 33A
On the basis of the drive data.
45, X-axis mechanism 53 servo motor, α-axis mechanism 3
9 servomotor and β-axis mechanism 40 servomotor
By controlling each driver of 50, the Y-axis table 43, and
The horizontal position of the X-axis slider 57 and the α-axis table 4
7 and the rotation position of the β-axis table 49 are adjusted respectively.
As a result, the polishing head 36 is moved toward the processed surface 34A.
Always point in a certain direction, that is, push the polishing tool 52.
The mounting direction matches the normal to the machined surface 34A, and the rotation axis
51A maintains a predetermined angle with respect to the normal to the machined surface 34A
The processing surface 34A is scanned by the polishing tool 52 as described above. This
, Each point P of the scanning pattern L 1, PTwo, ...
The height of the machined surface 34A fluctuates due to the drive control unit.
33A of the air cylinder mechanism 78 based on the drive data.
The driver is controlled to raise and lower the cylinder portion 78A.
Therefore, press the polishing tool 52 with a force according to the drive data.
Can be. Next, a finish polishing step for the workpiece 34 is performed.
In order to manually move the spindle 51 along the arc guide 79,
The rotary head 51A with the rotary shaft 51A.
It coincides with the normal line of the processing surface 34A with which the tool 52 contacts.
Take a posture like this. Then, in the same procedure as the rough polishing step
Finish polishing of the work surface 34A is performed. This allows
Rotational motion of the rotating polishing tool 52 on the processing surface 34A
Can be set in all directions, providing a smooth surface with no directivity.
Can be raised.

【0055】上記した本発明の第3の実施の形態では、
第1実施の形態と同様、加工物34の加工面34Aの曲
率にかかわらず研磨工具52の接触面積や押付け力分布
を一定に保つことができ、非球面形状の加工物を良好な
形状精度で研磨加工することができる。また、スピンド
ル51の傾斜姿勢を調整することで研磨量が調整できる
ため、効率良く研磨加工を行うことができる。更に、走
査速度が低速一定でも各走査位置で研磨工具52の押付
け力を制御して研磨量を調整しているため、加工精度の
低下を防ぐことができる。なお、研磨工具52の押付け
力を制御する代わりに、研磨工具52の回転速度を制御
するようにしても同様な効果を得ることができる。
In the above-described third embodiment of the present invention,
Similar to the first embodiment, the contact area of the polishing tool 52 and the pressing force distribution can be kept constant regardless of the curvature of the processing surface 34A of the workpiece 34, and the workpiece having an aspherical shape can be formed with good shape accuracy. It can be polished. Further, since the polishing amount can be adjusted by adjusting the inclination posture of the spindle 51, the polishing process can be efficiently performed. Furthermore, even if the scanning speed is constant at a low speed, the pressing force of the polishing tool 52 is controlled at each scanning position to adjust the polishing amount, so that it is possible to prevent a reduction in processing accuracy. The same effect can be obtained by controlling the rotation speed of the polishing tool 52 instead of controlling the pressing force of the polishing tool 52.

【0056】図7には、本発明の第4の実施の形態の曲
面研磨装置の走査パターンが示されている。この曲面研
磨装置は、第1の実施の形態において研磨ヘッド32の
加工面34A上の走査を分割された6つの走査パターン
1 〜L6 に従って行うように構成されている。加工物
34の周囲には、加工捨て部分となるヤトイ80A〜8
0Dが取り付けられ、加工精度が低い研磨開始点Ps
研磨終了点Pe 、更には折り返し点Pr が、ヤトイ80
B、80D上に位置している。また、加工面34Aの両
端は加工精度が低くなり易いので、走査パターンL1
6 の一部がヤトイ80A、80Cにかかるようになっ
ている。駆動制御部33Aと駆動計算部は、走査パター
ンL1 〜L6 を順番に実行して研磨加工面をつなぎ合わ
せる。
FIG. 7 shows a scanning pattern of the curved surface polishing apparatus according to the fourth embodiment of the present invention. This curved surface polishing apparatus is configured to perform scanning on the processing surface 34A of the polishing head 32 according to the six divided scanning patterns L 1 to L 6 in the first embodiment. Around the workpiece 34, the toys 80A to 8A to be discarded
0D is attached, and the polishing start point P s with low processing accuracy is
The polishing end point P e and the turning point P r are
It is located on B and 80D. Further, since the processing accuracy tends to be low at both ends of the processed surface 34A, the scanning pattern L 1 ,
A part of L 6 is adapted to cover the toy 80A and 80C. The drive control unit 33A and the drive calculation unit sequentially execute the scanning patterns L 1 to L 6 to connect the polishing surfaces.

【0057】上記した本発明の第4の実施の形態では、
加工面34Aの走査パターンが分割されているため、駆
動計算部から一度に出力される駆動データ量が少なくな
り、駆動制御部のメモリ容量の低減が図れ、コストダウ
ンを図ることができる。
In the above-described fourth embodiment of the present invention,
Since the scanning pattern of the processed surface 34A is divided, the amount of drive data output at one time from the drive calculation unit is reduced, the memory capacity of the drive control unit can be reduced, and the cost can be reduced.

【0058】[0058]

【発明の効果】以上説明した通り、本発明の曲面研磨方
法、及び曲面研磨装置によると、弾性を有する略球形状
の研磨工具で、研磨工具の押付け方向を加工面の法線に
一致させると共に研磨工具の回転軸を加工面の法線に対
して所定の角度に維持しながら加工面を走査して研磨加
工するようにしたため、非球面形状の加工物の加工精度
を向上させることができる。
As described above, according to the curved surface polishing method and the curved surface polishing apparatus of the present invention, the pressing direction of the polishing tool is made to coincide with the normal line of the machined surface with a substantially spherical polishing tool having elasticity. Since the polishing surface is scanned and polished while maintaining the rotation axis of the polishing tool at a predetermined angle with respect to the normal to the processing surface, it is possible to improve the processing accuracy of the aspherical workpiece.

【0059】また、研磨工具の垂直方向の位置に関係な
く研磨工具を加工面に一定の押付け力で押付けられるよ
うにして、研磨走査時における垂直方向の駆動制御を不
要にしたため、構成の簡素化することができ、コストダ
ウンを図ることができる。
Further, the polishing tool can be pressed against the work surface with a constant pressing force irrespective of the position of the polishing tool in the vertical direction, and the drive control in the vertical direction at the time of polishing scanning is not required, so that the structure is simplified. Therefore, the cost can be reduced.

【0060】更に、加工面の研磨時に、研磨工具の走査
位置に応じて研磨工具の回転速度、或いは研磨工具の押
付け力の少なくとも1つを同期制御するようにすれば、
走査速度に起因する加工精度の低下を防ぐことができ
る。
Furthermore, at the time of polishing the machined surface, at least one of the rotation speed of the polishing tool or the pressing force of the polishing tool is synchronously controlled according to the scanning position of the polishing tool.
It is possible to prevent a reduction in processing accuracy due to the scanning speed.

【0061】更にまた、加工物の加工面の周囲に加工捨
て部分となるヤトイを取り付け、加工面の研磨をヤトイ
上で分割された複数の走査パターンに従って行うように
すれば、駆動制御部のメモリ容量の低減が図れ、コスト
ダウンを図ることができる。
Furthermore, if a tool to be abandoned is attached around the machined surface of the workpiece and the machined surface is polished in accordance with a plurality of divided scanning patterns on the machine, the memory of the drive controller will be described. The capacity can be reduced and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態を示す説明図。FIG. 1 is an explanatory diagram showing a first embodiment of the present invention.

【図2】第1の実施の形態に係る走査パターンを示す説
明図。
FIG. 2 is an explanatory diagram showing a scanning pattern according to the first embodiment.

【図3】第1の実施の形態に係る研磨ヘッドを示す断面
図。
FIG. 3 is a cross-sectional view showing the polishing head according to the first embodiment.

【図4】平均研磨深さと加工面の曲率変化の関係を測定
した結果を示すグラフ。
FIG. 4 is a graph showing the results of measuring the relationship between the average polishing depth and the change in curvature of the processed surface.

【図5】本発明の第2の実施の形態に係る研磨ヘッドを
示す断面図。
FIG. 5 is a sectional view showing a polishing head according to a second embodiment of the present invention.

【図6】本発明の第3の実施の形態を示す説明図。FIG. 6 is an explanatory view showing a third embodiment of the present invention.

【図7】本発明の第4の実施の形態を示す説明図。FIG. 7 is an explanatory view showing a fourth embodiment of the present invention.

【図8】従来の曲面研磨装置の構成を示す説明図。FIG. 8 is an explanatory view showing a configuration of a conventional curved surface polishing apparatus.

【図9】従来の曲面研磨装置に係るZチルティング装置
を示す説明図。
FIG. 9 is an explanatory view showing a Z tilting device according to a conventional curved surface polishing device.

【図10】従来の曲面研磨装置に係る研磨ヘッドを示す
説明図。
FIG. 10 is an explanatory view showing a polishing head according to a conventional curved surface polishing apparatus.

【符号の説明】[Explanation of symbols]

1A 形状計測部 1B 研磨加工部 2 定盤 3 加工物 4 Y軸テーブル 5 ボールネジ 6 モータ 7 X軸テーブル 8 ボールネジ 9 モータ 10 θテーブル 11A、11B、11C 研磨フレーム 12 取付板 13 Zチルティング装置 14 研磨ヘッド 15 三角取付板 16A、16B 軸 17A、17B、17C ブロック 18A、18B、18C 研磨アーム 19A、19B、19C ボールネジ 20A、20B、20C モータ 21A、21B、21C ユニバーサルジョイント 22 研磨ヘッド取付板 23 研磨工具 24 研磨工具保持装置 25 荷重軸 26 定圧装置 27 揺動装置 28 モータ 28A 出力軸 29 クランク 30 コンロッド 31 スライド軸 32 スライダ 33 支持定盤 33A 駆動制御部 34 加工物 34A 加工面 35 テーブル駆動部 36 研磨ヘッド 37 支持機構部 38 Y軸機構部 39 α軸機構部 40 β軸機構部 41 固定治具 42A、42B ガイド 43 Y軸テーブル 44 ボールネジ 45 サーボモータ 46 円弧ガイド 46A 円弧面 47 α軸テーブル 47A 円弧面 48 円弧ガイド 48A 円弧面 49 β軸テーブル 49A 円弧面 50 サーボモータ 51 スピンドル 51A 回転軸 52 研磨工具 53 X軸機構部 54 垂直機構部 55A、55B 支柱 56 ガイド 57 X軸スライダ 58 スライド機構部 58A スライダ 59A、59B 滑車 60 ウェイト 61 ワイヤ 62 サーボモータ 63 カップリング 64A、64B ハウジング 65A、65B ベアリング 66 固定ピン 67 工具軸心 67A 球状部 68 弾性体 69 ポリッシャー 70 ジョイント 71A、71B、71C ハウジング 72A、72B ベアリング 73 サーボモータ 73A 出力軸 74 駆動ベルト 75 リング 76 ポリッシャー 77 袋状部材 78 エアシリンダ機構 78A シリンダ部 79 円弧ガイド 80A〜80D ヤトイ 1A Shape Measuring Section 1B Polishing Section 2 Surface Plate 3 Workpiece 4 Y-Axis Table 5 Ball Screw 6 Motor 7 X-Axis Table 8 Ball Screw 9 Motor 10 θ Table 11A, 11B, 11C Polishing Frame 12 Mounting Plate 13 Z Tilting Device 14 Polishing Head 15 Triangle mounting plate 16A, 16B Shaft 17A, 17B, 17C Block 18A, 18B, 18C Polishing arm 19A, 19B, 19C Ball screw 20A, 20B, 20C Motor 21A, 21B, 21C Universal joint 22 Polishing head mounting plate 23 Polishing tool 24 Polishing tool holding device 25 Load shaft 26 Constant pressure device 27 Oscillating device 28 Motor 28A Output shaft 29 Crank 30 Connecting rod 31 Slide shaft 32 Slider 33 Support surface plate 33A Drive controller 34 Workpiece 34A Work surface 35 Cable drive unit 36 polishing head 37 support mechanism unit 38 Y-axis mechanism unit 39 α-axis mechanism unit 40 β-axis mechanism unit 41 fixing jig 42A, 42B guide 43 Y-axis table 44 ball screw 45 servo motor 46 arc guide 46A arc surface 47 α Axis table 47A Arc surface 48 Arc guide 48A Arc surface 49 β Axis table 49A Arc surface 50 Servo motor 51 Spindle 51A Rotating shaft 52 Polishing tool 53 X axis mechanism 54 Vertical mechanism 55A, 55B Strut 56 Guide 57 X axis slider 58 Slide Mechanism part 58A Slider 59A, 59B Pulley 60 Weight 61 Wire 62 Servo motor 63 Coupling 64A, 64B Housing 65A, 65B Bearing 66 Fixing pin 67 Tool shaft center 67A Spherical part 68 Elastic body 69 Polisher 70 Yointo 71A, 71B, 71C housing 72A, 72B bearings 73 servo motor 73A output shaft 74 drive belt 75 ring 76 polisher 77 bag-like member 78 an air cylinder mechanism 78A cylinder 79 arc guide 80A~80D lens holder unit

フロントページの続き (72)発明者 榊原 崇晃 神奈川県海老名市本郷2274番地 富士ゼロ ックス株式会社海老名事業所内 (72)発明者 藤沢 寿政 神奈川県足柄上郡中井町境430 グリーン テクなかい富士ゼロックス株式会社内Continued front page (72) Inventor Takaaki Sakakibara 2274 Hongo, Ebina City, Kanagawa Prefecture Fuji Xerox Co., Ltd.Ebina Business Office (72) Inventor, Hisasa Fujisawa 430, Nakai-cho, Ashigagami-gun, Kanagawa Prefecture Green Tech Nakai Fuji Xerox Co., Ltd.

Claims (29)

【特許請求の範囲】[Claims] 【請求項1】 弾性を有する略球形状の研磨工具を準備
し、 表面形状に応じて変化する加工物の加工面の法線と前記
研磨工具の押付け方向を一致させて所定の押付け力で前
記研磨工具を前記加工面に押付けると共に前記研磨工具
を所定の回転軸を中心にして回転させ、且つ、前記法線
と前記研磨工具の前記所定の回転軸との角度を所定の角
度に維持しながら前記研磨工具で前記加工面を走査して
前記加工面を研磨することを特徴とする曲面研磨方法。
1. A substantially spherical polishing tool having elasticity is prepared, and a normal line of a processing surface of a workpiece which changes according to a surface shape and a pressing direction of the polishing tool are matched to each other with a predetermined pressing force. While pressing the polishing tool against the working surface, the polishing tool is rotated about a predetermined rotation axis, and the angle between the normal and the predetermined rotation axis of the polishing tool is maintained at a predetermined angle. Meanwhile, the curved surface polishing method is characterized in that the processing surface is scanned by the polishing tool to polish the processing surface.
【請求項2】 前記研磨工具の準備は、直径50mm以
下で弾性率1kgf/mm2 以下の略球形状の弾性体の
表面にポリッシャーを設けることによって行う請求項1
記載の曲面研磨方法。
2. The polishing tool is prepared by providing a polisher on the surface of a substantially spherical elastic body having a diameter of 50 mm or less and an elastic modulus of 1 kgf / mm 2 or less.
The curved surface polishing method described.
【請求項3】 前記研磨工具の準備は、表面にポリッシ
ャーを有する弾性材料からなる袋状部材に流体を供給し
て所定のサイズの球形状に膨らませることによって行う
請求項1記載の曲面研磨方法。
3. The curved surface polishing method according to claim 1, wherein the polishing tool is prepared by supplying a fluid to a bag-shaped member made of an elastic material having a polisher on its surface to expand the bag into a spherical shape having a predetermined size. .
【請求項4】 前記法線に対する前記研磨工具の前記押
付け方向の一致、及び前記法線に対する前記研磨工具の
前記所定の回転軸の所定の角度の維持は、所定の姿勢に
保持された前記研磨工具に対して水平面上の直交する2
軸を中心に前記加工物を回転させることによって行う請
求項1記載の曲面研磨方法。
4. Matching of the pressing direction of the polishing tool with respect to the normal line and maintaining a predetermined angle of the predetermined rotation axis of the polishing tool with respect to the normal line are maintained in a predetermined posture. 2 orthogonal to the tool on the horizontal plane
The curved surface polishing method according to claim 1, which is performed by rotating the workpiece around an axis.
【請求項5】 前記加工面の研磨は、前記所定の角度を
0より大なる角度に設定して行う粗研磨と、前記所定の
角度を0に設定して行う仕上げ研磨を含む請求項1記載
の曲面研磨方法。
5. The polishing of the processed surface includes rough polishing performed by setting the predetermined angle to an angle larger than 0 and finish polishing performed by setting the predetermined angle to 0. Curved surface polishing method.
【請求項6】 前記加工物は、前記加工面の周囲に加工
捨て部分となるヤトイを有し、 前記加工面の研磨は、前記ヤトイ上で分割された複数の
走査パターンに従って行う請求項1項記載の曲面研磨方
法。
6. The work piece has a tool to be a processing waste portion around the work surface, and the work surface is polished according to a plurality of scanning patterns divided on the tool. The curved surface polishing method described.
【請求項7】 弾性を有する略球形状の研磨工具を準備
し、 表面形状に応じて変化する加工物の加工面の法線と前記
研磨工具の押付け方向を一致させて所定の押付け力で前
記研磨工具を前記加工面に押付けると共に前記研磨工具
を所定の回転軸を中心にして回転させ、且つ、前記法線
と前記研磨工具の前記所定の回転軸との角度を所定の角
度に維持しながら前記研磨工具で前記加工面を走査して
前記加工面を研磨し、 前記加工面の研磨時に、前記研磨工具の研磨位置に応じ
て前記研磨工具の回転速度、或いは前記研磨工具の前記
押付け力の少なくとも1つを制御することを特徴とする
曲面研磨方法。
7. A substantially spherical polishing tool having elasticity is prepared, and the pressing line of the polishing tool is aligned with the normal of the processing surface of the workpiece that changes according to the surface shape, and a predetermined pressing force is applied to the polishing tool. While pressing the polishing tool against the working surface, the polishing tool is rotated about a predetermined rotation axis, and the angle between the normal and the predetermined rotation axis of the polishing tool is maintained at a predetermined angle. While polishing the processing surface by scanning the processing surface with the polishing tool, during polishing of the processing surface, the rotation speed of the polishing tool or the pressing force of the polishing tool according to the polishing position of the polishing tool A curved surface polishing method, characterized in that at least one of the above is controlled.
【請求項8】 前記研磨工具の準備は、直径50mm以
下で弾性率1kgf/mm2 以下の略球形状の弾性体の
表面にポリッシャーを設けることによって行う請求項7
記載の曲面研磨方法。
8. The polishing tool is prepared by providing a polisher on the surface of a substantially spherical elastic body having a diameter of 50 mm or less and an elastic modulus of 1 kgf / mm 2 or less.
The curved surface polishing method described.
【請求項9】 前記研磨工具の準備は、表面にポリッシ
ャーを有する弾性材料からなる袋状部材に流体を供給し
て所定のサイズの球形状に膨らませることによって行う
請求項7記載の曲面研磨方法。
9. The method of polishing a curved surface according to claim 7, wherein the polishing tool is prepared by supplying a fluid to a bag-shaped member made of an elastic material having a polisher on its surface to expand the bag into a spherical shape having a predetermined size. .
【請求項10】 前記法線に対する前記研磨工具の前記
押付け方向の一致、及び前記法線に対する前記研磨工具
の前記所定の回転軸の所定の角度の維持は、所定の姿勢
に保持された前記研磨工具に対して水平面上の直交する
2軸を中心に前記加工物を回転させることによって行う
請求項7記載の曲面研磨方法。
10. Matching of the pressing direction of the polishing tool with respect to the normal line, and maintaining a predetermined angle of the predetermined rotation axis of the polishing tool with respect to the normal line, the polishing held in a predetermined posture The curved surface polishing method according to claim 7, which is performed by rotating the workpiece around two axes orthogonal to each other on a horizontal plane with respect to the tool.
【請求項11】 前記加工面の研磨は、前記所定の角度
を0より大なる角度に設定して行う粗研磨と、前記所定
の角度を0に設定して行う仕上げ研磨を含む請求項7記
載の曲面研磨方法。
11. The polishing of the machined surface includes rough polishing performed by setting the predetermined angle to an angle larger than 0 and finish polishing performed by setting the predetermined angle to 0. Curved surface polishing method.
【請求項12】 前記加工物は、前記加工面の周囲に加
工捨て部分となるヤトイを有し、 前記加工面の研磨は、前記ヤトイ上で分割された複数の
走査パターンに従って行う請求項7項記載の曲面研磨方
法。
12. The work piece has a tool to be a part to be processed around the work surface, and the work surface is polished according to a plurality of scanning patterns divided on the tool. The curved surface polishing method described.
【請求項13】 弾性を有した略球形状の研磨工具と、 前記研磨工具を加工物の加工面に所定の押付け力で所定
の押付け方向に押付ける押付け手段と、 前記研磨工具を所定の回転軸で回転させる回転手段と、 前記加工物と前記研磨工具の水平方向の相対的位置を変
位させる水平方向変位手段と、 前記加工物の前記加工面の法線と前記研磨工具の前記所
定の回転軸、及び前記所定の押付け方向の相対的角度を
変化させる角度変化手段と、 前記水平方向変位手段を制御して前記研磨工具に前記加
工面の走査を行わせると共に、前記角度変化手段を制御
して前記法線と前記研磨工具の前記押付け方向を一致さ
せ、且つ、前記法線と前記研磨工具の前記所定の回転軸
との角度を所定の角度に維持させて前記加工面を研磨す
る制御手段を備えていることを特徴とする曲面研磨装
置。
13. A substantially spherical polishing tool having elasticity, pressing means for pressing the polishing tool against a work surface of a workpiece in a predetermined pressing direction with a predetermined pressing force, and rotating the polishing tool in a predetermined rotation. Rotating means for rotating about an axis; horizontal displacing means for displacing the relative position of the workpiece and the polishing tool in the horizontal direction; a normal line of the processing surface of the workpiece and the predetermined rotation of the polishing tool. An axis, an angle changing means for changing the relative angle of the predetermined pressing direction, and the horizontal displacing means to cause the polishing tool to scan the machining surface and to control the angle changing means. Control means for polishing the machined surface by making the normal line coincide with the pressing direction of the polishing tool and maintaining the angle between the normal line and the predetermined rotation axis of the polishing tool at a predetermined angle. Equipped with It curved polishing apparatus according to claim.
【請求項14】 前記研磨工具は、直径50mm以下で
弾性率1kgf/mm2 以下の略球形状の弾性体と、そ
の表面に設けられたポリッシャーより構成されている請
求項13記載の曲面研磨装置。
14. The curved surface polishing apparatus according to claim 13, wherein the polishing tool comprises a substantially spherical elastic body having a diameter of 50 mm or less and an elastic modulus of 1 kgf / mm 2 or less, and a polisher provided on the surface thereof. .
【請求項15】 前記研磨工具は、弾性材料からなる袋
状部材と、この袋状部材の表面に設けられたポリッシャ
ーを有し、前記袋状部材に流体を供給して所定のサイズ
の略球形状に膨らませて構成される請求項13記載の曲
面研磨装置。
15. The polishing tool has a bag-shaped member made of an elastic material and a polisher provided on the surface of the bag-shaped member, and supplies a fluid to the bag-shaped member to form a substantially spherical ball of a predetermined size. 14. The curved surface polishing apparatus according to claim 13, wherein the curved surface polishing apparatus is formed by inflating into a shape.
【請求項16】 前記角度変化手段は、水平面上の直交
する2軸を中心にして前記加工物を回転させる加工物回
転手段によって構成される請求項13記載の曲面研磨装
置。
16. The curved surface polishing apparatus according to claim 13, wherein the angle changing means is constituted by a workpiece rotating means for rotating the workpiece around two axes orthogonal to each other on a horizontal plane.
【請求項17】 前記回転手段は、粗研磨工程の時、前
記所定の角度を0より大なる角度に設定し、仕上げ研磨
工程の時、前記所定の角度を0に設定する構成を有する
請求項13記載の曲面研磨装置。
17. The rotating means is configured to set the predetermined angle to an angle larger than 0 in a rough polishing step and set the predetermined angle to 0 in a final polishing step. 13. The curved surface polishing apparatus described in 13.
【請求項18】 前記加工物は、前記加工面の周囲に加
工捨て部分となるヤトイを有し、 前記制御手段は、前記研磨工具の前記加工面の研磨を、
前記ヤトイ上で分割された複数の走査パターンに従って
行わせる請求項13記載の曲面研磨装置。
18. The work piece has a tool to be a processing waste portion around the work surface, and the control means polishes the work surface of the polishing tool.
14. The curved surface polishing apparatus according to claim 13, wherein the curved surface polishing apparatus is performed according to a plurality of scanning patterns divided on the toy.
【請求項19】 前記押付け手段は、前記研磨工具の垂
直方向の位置に関係なく前記所定の押付け力を付与する
押付け力付与手段を有する構成の請求項13記載の曲面
研磨装置。
19. The curved surface polishing apparatus according to claim 13, wherein the pressing means has a pressing force applying means for applying the predetermined pressing force regardless of the vertical position of the polishing tool.
【請求項20】 前記押付け力付与手段は、前記研磨工
具、及び前記研磨工具を支持する支持体の重量との差に
基づいて前記所定の押付け力を発生させる重量バランス
機構である構成の請求項19記載の曲面研磨装置。
20. The pressing force applying means is a weight balance mechanism that generates the predetermined pressing force based on a difference between the weight of the polishing tool and the weight of the support that supports the polishing tool. 19. The curved surface polishing apparatus described in 19.
【請求項21】 前記押付け力付与手段は、前記研磨工
具が前記加工面から受ける反力に応じた内圧を発生する
シリンダ機構である構成の請求項19記載の曲面研磨装
置。
21. The curved surface polishing apparatus according to claim 19, wherein the pressing force applying means is a cylinder mechanism that generates an internal pressure according to a reaction force that the polishing tool receives from the processing surface.
【請求項22】 弾性を有した略球形状の研磨工具と、 前記研磨工具を加工物の加工面に所定の押付け力で所定
の押付け方向に押付ける押付け手段と、 前記研磨工具を所定の回転軸で回転させる回転手段と、 前記加工物と前記研磨工具の水平方向の相対的位置を変
位させる水平方向変位手段と、 前記加工物の前記加工面の法線と前記研磨工具の前記所
定の回転軸、及び前記所定の押付け方向の相対的角度を
変化させる角度変化手段と、 前記水平方向変位手段を制御して前記研磨工具に前記加
工面の走査を行わせると共に、前記角度変化手段を制御
して前記法線と前記研磨工具の押付け方向を一致させ、
且つ、前記法線と前記研磨工具の前記所定の回転軸との
角度を所定の角度に維持させて前記加工面を研磨する制
御手段を備え、 前記制御手段は、前記前記加工面の研磨時に、前記研磨
工具の研磨位置に応じて前記研磨工具の回転速度、或い
は前記研磨工具の押付け力の少なくとも1つを制御する
ことを特徴とする曲面研磨装置。
22. A substantially spherical polishing tool having elasticity, a pressing means for pressing the polishing tool against a processing surface of a workpiece with a predetermined pressing force in a predetermined pressing direction, and rotating the polishing tool in a predetermined rotation. Rotating means for rotating about an axis; horizontal displacing means for displacing the relative position of the workpiece and the polishing tool in the horizontal direction; a normal line of the processing surface of the workpiece and the predetermined rotation of the polishing tool. An axis, an angle changing means for changing the relative angle of the predetermined pressing direction, and the horizontal displacing means to cause the polishing tool to scan the machining surface and to control the angle changing means. Match the pressing direction of the polishing tool with the normal,
And, comprising a control means for polishing the processing surface by maintaining an angle between the normal line and the predetermined rotation axis of the polishing tool at a predetermined angle, the control means, when polishing the processing surface, A curved surface polishing apparatus, wherein at least one of a rotation speed of the polishing tool and a pressing force of the polishing tool is controlled according to a polishing position of the polishing tool.
【請求項23】 前記研磨工具は、直径50mm以下で
弾性率1kgf/mm2 以下の略球形状の弾性体と、そ
の表面に設けられたポリッシャーより構成されている請
求項22記載の曲面研磨装置。
23. The curved surface polishing apparatus according to claim 22, wherein the polishing tool comprises a substantially spherical elastic body having a diameter of 50 mm or less and an elastic modulus of 1 kgf / mm 2 or less, and a polisher provided on the surface thereof. .
【請求項24】 前記研磨工具は、弾性材料からなる袋
状部材と、この袋状部材の表面に設けられたポリッシャ
ーを有し、前記袋状部材に流体を供給して所定のサイズ
の略球形状に膨らませて構成される請求項22記載の曲
面研磨装置。
24. The polishing tool has a bag-shaped member made of an elastic material and a polisher provided on the surface of the bag-shaped member, and supplies a fluid to the bag-shaped member to form a substantially spherical ball of a predetermined size. The curved surface polishing apparatus according to claim 22, wherein the curved surface polishing apparatus is formed by inflating the shape.
【請求項25】 前記角度変化手段は、水平面上の直交
する2軸を中心にして前記加工物を回転させる加工物回
転手段によって構成される請求項22記載の曲面研磨装
置。
25. The curved surface polishing apparatus according to claim 22, wherein the angle changing means is constituted by a workpiece rotating means for rotating the workpiece around two axes orthogonal to each other on a horizontal plane.
【請求項26】 前記回転手段は、粗研磨工程の時、前
記所定の角度を0より大なる角度に設定し、仕上げ研磨
工程の時、前記所定の角度を0に設定する構成を有する
請求項22記載の曲面研磨装置。
26. The rotating means is configured to set the predetermined angle to an angle larger than 0 in a rough polishing step and set the predetermined angle to 0 in a final polishing step. 22. The curved surface polishing apparatus described in 22.
【請求項27】 前記加工物は、前記加工面の周囲に加
工捨て部分となるヤトイを有し、 前記制御手段は、前記研磨工具の前記加工面の研磨を、
前記ヤトイ上で分割された複数の走査パターンに従って
行わせる請求項22記載の曲面研磨装置。
27. The workpiece has a tool to be a processing waste portion around the processing surface, and the control means polishes the processing surface of the polishing tool.
23. The curved surface polishing apparatus according to claim 22, wherein the curved surface polishing is performed according to a plurality of scanning patterns divided on the unit.
【請求項28】 前記押付け手段は、前記研磨工具の垂
直方向の位置に関係なく所定の押付け力を付与する押付
け力付与手段を有する構成の請求項22記載の曲面研磨
装置。
28. The curved surface polishing apparatus according to claim 22, wherein the pressing means has a pressing force applying means for applying a predetermined pressing force regardless of the vertical position of the polishing tool.
【請求項29】 前記押付け力付与手段は、前記研磨工
具が前記加工面から受ける反力に応じた内圧を発生する
シリンダ機構である構成の請求項28記載の曲面研磨装
置。
29. The curved surface polishing apparatus according to claim 28, wherein the pressing force applying means is a cylinder mechanism that generates an internal pressure according to a reaction force that the polishing tool receives from the processing surface.
JP14392296A 1996-06-06 1996-06-06 Profile polishing method and device Pending JPH09323252A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14392296A JPH09323252A (en) 1996-06-06 1996-06-06 Profile polishing method and device
US08/869,217 US5895311A (en) 1996-06-06 1997-06-04 Abrasive device that maintains normal line of contact with curved abrasive surface and method of using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14392296A JPH09323252A (en) 1996-06-06 1996-06-06 Profile polishing method and device

Publications (1)

Publication Number Publication Date
JPH09323252A true JPH09323252A (en) 1997-12-16

Family

ID=15350226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14392296A Pending JPH09323252A (en) 1996-06-06 1996-06-06 Profile polishing method and device

Country Status (1)

Country Link
JP (1) JPH09323252A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2352417B (en) * 1999-03-25 2003-09-17 Ford Global Tech Inc Method and tooling for automated wet or dry sanding of a vehicle surface
JP2011218466A (en) * 2010-04-06 2011-11-04 Ohara Inc Grinding tool, method for manufacturing the grinding tool, and method for manufacturing ground body
JP2014012338A (en) * 2013-09-17 2014-01-23 Nikon Corp Polishing device
JP2014172143A (en) * 2013-03-12 2014-09-22 Mitsubishi Heavy Ind Ltd Jig for polishing tool
CN105500152A (en) * 2014-05-04 2016-04-20 东莞劲胜精密组件股份有限公司 3D processing method for glass, processing cutter and processing device
KR20160051251A (en) * 2014-11-03 2016-05-11 서상로 Auto-grinder
WO2016120985A1 (en) * 2015-01-27 2016-08-04 日立マクセル株式会社 Method for manufacturing rotationally asymmetric lens, method for manufacturing rotationally asymmetric lens molding die, method for manufacturing rotationally asymmetric mirror, and method for manufacturing rotationally asymmetric mirror molding die
CN108044486A (en) * 2018-01-10 2018-05-18 黄常运 A kind of numerical control polishing
CN109366288A (en) * 2018-12-16 2019-02-22 浙江工业大学 A kind of constant moment of force automatic trimming device for toilet seat
CN109702585A (en) * 2018-12-16 2019-05-03 浙江工业大学 A kind of constant moment of force automatic trimming device for toilet lid
CN115771084A (en) * 2022-12-08 2023-03-10 中国科学院西安光学精密机械研究所 Optical surface wheel type air bag processing device and polishing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2352417B (en) * 1999-03-25 2003-09-17 Ford Global Tech Inc Method and tooling for automated wet or dry sanding of a vehicle surface
JP2011218466A (en) * 2010-04-06 2011-11-04 Ohara Inc Grinding tool, method for manufacturing the grinding tool, and method for manufacturing ground body
JP2014172143A (en) * 2013-03-12 2014-09-22 Mitsubishi Heavy Ind Ltd Jig for polishing tool
JP2014012338A (en) * 2013-09-17 2014-01-23 Nikon Corp Polishing device
CN105500152A (en) * 2014-05-04 2016-04-20 东莞劲胜精密组件股份有限公司 3D processing method for glass, processing cutter and processing device
KR20160051251A (en) * 2014-11-03 2016-05-11 서상로 Auto-grinder
WO2016120985A1 (en) * 2015-01-27 2016-08-04 日立マクセル株式会社 Method for manufacturing rotationally asymmetric lens, method for manufacturing rotationally asymmetric lens molding die, method for manufacturing rotationally asymmetric mirror, and method for manufacturing rotationally asymmetric mirror molding die
JPWO2016120985A1 (en) * 2015-01-27 2017-09-14 日立マクセル株式会社 Rotation non-axisymmetric lens manufacturing method, rotation non-axisymmetric lens molding die manufacturing method, rotation non-axisymmetric surface mirror manufacturing method, and rotation non-axisymmetric surface mirror molding die manufacturing method
US10265831B2 (en) 2015-01-27 2019-04-23 Maxell, Ltd. Method for manufacturing lens, method for manufacturing molding die for lens, method for manufacturing mirror, method for manufacturing molding die for mirror, lens and molding die for lens
CN108044486A (en) * 2018-01-10 2018-05-18 黄常运 A kind of numerical control polishing
CN109366288A (en) * 2018-12-16 2019-02-22 浙江工业大学 A kind of constant moment of force automatic trimming device for toilet seat
CN109702585A (en) * 2018-12-16 2019-05-03 浙江工业大学 A kind of constant moment of force automatic trimming device for toilet lid
CN109366288B (en) * 2018-12-16 2024-03-01 浙江工业大学 Automatic constant-torque trimming device for toilet seat
CN115771084A (en) * 2022-12-08 2023-03-10 中国科学院西安光学精密机械研究所 Optical surface wheel type air bag processing device and polishing method

Similar Documents

Publication Publication Date Title
US5895311A (en) Abrasive device that maintains normal line of contact with curved abrasive surface and method of using same
US5140777A (en) Method and apparatus for polishing optical elements
EP0453627B1 (en) Plastic lens generator and method
US4928435A (en) Apparatus for working curved surfaces on a workpiece
US6122999A (en) Lathe apparatus and method
JP3613889B2 (en) Curved surface polishing method and curved surface polishing apparatus
JPH11300589A (en) Finishing apparatus of glass article
EP1048404B1 (en) Method and apparatus for optical polishing
JPH09323252A (en) Profile polishing method and device
EP0313417B1 (en) Toric finer polisher
JP2006320970A (en) Machining device
JP3670177B2 (en) Glass disk polishing equipment
JPH10175150A (en) Curved surface polishing method and device thereof
US4166342A (en) Toroidal polisher
EP0872307B1 (en) Lathe apparatus and method
US5085007A (en) Toric lens fining apparatus
JPH0752015A (en) Grinding device for lens of eyeglasses
JP4460736B2 (en) Polishing equipment
JP2001260020A (en) Pressurizing force variable polishing device
CN110936266A (en) Connecting rod formula grinding device that floats
JP3115617B2 (en) Curved surface polishing method
JP2002079448A (en) Lens chamfering device and method
JP2000167756A (en) Curved surface machining device
JPH09248748A (en) Machining device
JPH0966445A (en) Polishing device and polishing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Effective date: 20040430

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20040602

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20040727

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20040730

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040910