JP3613889B2 - Curved surface polishing method and curved surface polishing apparatus - Google Patents

Curved surface polishing method and curved surface polishing apparatus Download PDF

Info

Publication number
JP3613889B2
JP3613889B2 JP15782696A JP15782696A JP3613889B2 JP 3613889 B2 JP3613889 B2 JP 3613889B2 JP 15782696 A JP15782696 A JP 15782696A JP 15782696 A JP15782696 A JP 15782696A JP 3613889 B2 JP3613889 B2 JP 3613889B2
Authority
JP
Japan
Prior art keywords
axis
polishing
polishing tool
workpiece
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15782696A
Other languages
Japanese (ja)
Other versions
JPH106199A (en
Inventor
剛和 塩谷
公宏 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP15782696A priority Critical patent/JP3613889B2/en
Priority to US08/869,217 priority patent/US5895311A/en
Publication of JPH106199A publication Critical patent/JPH106199A/en
Application granted granted Critical
Publication of JP3613889B2 publication Critical patent/JP3613889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は曲面形状、特に、回転対称軸を持たない非球面形状を有したレンズ、ミラー等の光学素子や、これらを射出成形するための成形金型等を研磨する曲面研磨方法、及び曲面研磨装置に関し、特に、研磨工具の走査速度を適切化し、加工精度の向上を図った曲面研磨方法、及び曲面研磨装置に関する。
【0002】
【従来の技術】
曲面形状、特に、回転対称軸を持たない非球面形状を有したレンズ、ミラー等の光学素子や、これらを射出成形するための成形金型を研磨する、従来の曲面研磨装置として、例えば、特開平5−57606号公報に開示されるものがある。
【0003】
には、上記曲面研磨装置が示されている。この曲面研磨装置は、定盤2上において加工物3に所定の水平運動を行わせる水平駆動部1Aと、水平駆動部1Aによって移動されてきた加工物3の加工面3Aの面形状を計測する形状計測部1Bと、形状計測部1Bの計測によって得られた加工面3Aの面形状データに基づいて水平駆動部1Aによって移動されてきた加工物3の加工面3Aの研磨加工を行う研磨加工部1Cを備えて構成されている。
【0004】
水平駆動部1Aは、定盤2上にY軸方向に移動可能に設けられたY軸テーブル4と、Y軸方向に沿って配置され、Y軸テーブル4のナット(図示せず)と螺合したボールネジ5と、ボールネジ5を回転させてY軸テーブル4をY軸方向に移動させるモータ6と、Y軸テーブル4上にX軸方向に移動可能に設けられたX軸テーブル7と、X軸方向に沿って配置され、X軸テーブル7のナット(図示せず)と螺合したボールネジ8と、ボールネジ8を回転させてX軸テーブル7をX軸方向に移動させるモータ9と、X軸テーブル7上に配置され、図示しないモータによって回転するθテーブル10を有して構成されている。
【0005】
研磨加工部1Cは、定盤2に設けられたL字形の研磨フレーム11A、11B、11Cと、研磨フレーム11A、11B、11Cの先端に取付板12を介して取り付けられ、下部に取り付けられた研磨ヘッド14を自在に傾斜させると共に昇降させるZチルティング装置13を有している。
【0006】
には、Zチルティング装置13の構成が示されている。Zチルティング装置13は、3つの角15aが取付板12にそれぞれ固定される三角取付板15と、三角取付板15上に各辺にそれぞれ平行に固着された軸16A〜16C(16Cは図示せず)と、軸16A〜16Cにそれぞれ回動自在に取り付けられたブロック17A〜17Cと、ブロック17A〜17CのZ軸方向に伸びる一対の側部に、Z軸方向に伸びる一対の内側部がそれぞれスライド自在に係合したロ字形の研磨アーム18A〜18Cと、それぞれZ軸方向に伸びて、研磨アーム18A〜18Cに軸支されると共に、ブロック17A〜17Cのナット(図示せず)に螺合したボールネジ19A〜19Cと、ボールネジ19A〜19Cを回転させて研磨アーム18A〜18CをZ軸方向に移動させるモータ20A〜20Cと、研磨アーム18A〜18Cの下端にユニバーサルジョイント21A〜21Cを介して取り付けられた三角形の研磨ヘッド取付板22を有して構成されている。
【0007】
には、研磨ヘッド14の構成が示されている。研磨ヘッド14は、加工物3の加工面3Aを研磨する円柱状の研磨工具23と、研磨工具23を保持する研磨工具保持装置24と、荷重軸25を介して研磨工具23に加圧力を付加する定圧装置26と、研磨工具23を矢印D方向に往復運動させる揺動装置27を有して構成されている。
【0008】
定圧装置26は、荷重軸25に取り付けられたボイスコイルモータ、板ばね、及び荷重センサ(何れも図示せず)によって常に設定された加圧力を保つように構成されている。また、荷重軸25には、荷重軸25の軸方向の変位量を検出する変位センサ(図示せず)が取り付けられている。
【0009】
揺動装置27は、モータ28の回転軸28Aに接続されたクランク29と、クランク29の回転運動を往復運動に変換するコンロッド30と、定圧装置26のケーシングに固着され、コンロッド30から往復運動を入力してスライド軸31上をスライドするスライダ32を有して構成されている。
【0010】
以上の構成において、加工物3の研磨加工を行う場合には、まず、加工物3の加工面3Aに研磨剤を塗布し、Zチルティング装置14によって研磨ヘッド13を下降させて研磨工具23を加工面3Aに接触させる。次に、揺動装置27により研磨工具23を矢印D方向に往復運動させると共に、定圧装置26により研磨工具23に所定の加圧力を加え、研磨工具23の研磨面と加工物3の加工面3Aとで摺擦を行わせる。このとき、研磨工具23の加圧方向と加工面3Aの法線方向が常に一致するように、また、変位センサによって計測される荷重軸25の変位量が一定になるように、走査パターン、及び後述する走査速度分布に従ってY軸テーブル4、X軸テーブル7、θテーブル10、及びZチルティング装置14が同期制御され、これによって研磨ヘッド13が加工面3Aの形状に倣った走査を行って加工面3Aの研磨加工を行う。ここで、研磨量は、研磨工具23の加圧力、加工物との相対速度、滞留時間に比例し、加工面3Aの形状を目標面形状に近づけるための滞留時間分布、つまり、研磨工具23の走査速度分布は、研磨工具23の加圧力と相対速度を一定に保ったときに研磨工具23が加工面3Aを単位時間あたり除去する単位除去形状と、形状計測部1Bで計測した加工面3Aの形状と目標面形状との差から求められる。
【0011】
【発明が解決しようとする課題】
しかし、従来の曲面研磨装置によると、研磨工具と加工面の接触点から離れた位置を中心に研磨ヘッドの姿勢を変化させているため、研磨ヘッドの姿勢変化と共に研磨工具の水平方向位置や垂直方向位置が変化し、加工物、或いは研磨ヘッドの水平方向位置や垂直方向位置を補正しなければならないという問題がある。特に、加工面の法線方向の変化が大きい箇所ではその補正量も大きくなり、制御機構の計算速度や駆動機構の追従速度の限界から研磨工具の走査速度が指令走査速度に追従できなくなる。このため、滞留時間分布が指令値から外れることになり、加工精度が低下するという問題が生じる。
【0012】
従って、本発明の目的は研磨工具を指令走査速度で走査できるようにして、加工精度の向上を図ることができる曲面研磨方法、及び曲面研磨装置を提供することである。
【0013】
【課題を解決するための手段】
本発明は、上記目的を達成するため、加工物を下方から支持してX軸およびY軸方向に移動させるX軸およびY軸テーブルと、前記加工物を下方から支持してX軸およびY軸にそれぞれ平行な軸回りに傾斜させるβ軸およびα軸テーブルと、球状の研磨工具を前記加工物の加工面に前記研磨工具の荷重軸に沿って所定の押付け力で押付ける押付け手段と、
前記加工面上で前記研磨工具に前記荷重軸回りの回転運動を与える研磨運動手段と、前記X軸およびY軸テーブル、および前記β軸およびα軸テーブルを制御して、前記研磨工具の前記加工面上の接触点を中心にして前記荷重軸の姿勢を調整することにより、前記荷重軸を前記加工物の前記加工面の法線に一致させながら前記荷重軸回りに回転する前記研磨工具で前記加工面上を走査して前記加工面を研磨させる制御手段を備えていることを特徴とする曲面研磨装置を提供するものである。
【0021】
【発明の実施の形態】
以下、本発明の曲面研磨方法、及び曲面研磨装置を添付図面を参照しながら詳細に説明する。
【0022】
図1には、本発明の第1の実施の形態における曲面研磨装置の構成が示されている。この曲面研磨装置は、支持定盤33上に設けられ、加工物34に所定の運動を行わせる加工物駆動部35と、支持定盤33上に設けられ、研磨ヘッド37を支持して加工物34の加工面34A上に位置させる研磨ヘッド支持部36と、研磨加工の駆動を制御する駆動制御部33Aを備えて構成されている。
【0023】
加工物駆動部35は、加工物34にY軸方向の水平運動を行わせるY軸機構部38と、加工物34にX軸方向の水平運動を行わせるX軸機構部39と、X軸機構部39上に加工物34を固定する固定治具40を備えている。
【0024】
Y軸機構部38は、支持定盤33上にY軸方向に伸びて配置された2本の平行なガイド41A、41Bと、ガイド41A、41Bにスライド自在に係合したY軸テーブル42と、ガイド41A、41B間に平行に配置され、Y軸テーブル42に設けられたナット(図示ぜす)と螺合したボールネジ43と、出力軸にボールネジ43の一端が接続され、ボールネジ43を回転させてY軸テーブル42をY軸方向に移動させ、且つ、所定の位置で停止させて位置決めするサーボモータ44より構成されている。
【0025】
X軸機構部39は、Y軸テーブル42上にX軸方向に伸びて配置された2本の平行なガイド45A、45Bと、ガイド45A、45Bにスライド自在に係合したX軸テーブル46と、ガイド45A、45B間に平行に配置され、X軸テーブル46に設けられたナット(図示ぜす)と螺合したボールネジ47と、出力軸にボールネジ47の一端が接続され、ボールネジ47を回転させてX軸テーブル46をX軸方向に移動させ、且つ、所定の位置で停止させて位置決めするサーボモータ48より構成されている。
【0026】
研磨ヘッド支持部36は、支持定盤33上に設けられた支柱49A、49Bにに支持され、Z軸方向の垂直運動を行うZ軸機構部50と、Z軸機構部50に支持され、研磨ヘッド37にX軸と平行な軸を中心とした円弧方向(以下、α軸方向という)の回転運動を行わせるα軸機構部51と、α軸機構部51に支持され、Y軸と平行な軸を中心とした円弧方向(以下、β軸方向という)の回転運動を行わせるβ軸機構部52を有して構成されている。
【0027】
Z軸機構部50は、図示しないガイドにスライド自在に係合し、図示しないサーボモータ、及びボールネジによりZ軸方向に移動して、且つ、所定の位置で停止して位置決めされるZ軸スライダ53を有している。
【0028】
α軸機構部51は、Z軸スライダ53に固定され、X軸と平行な軸を曲率中心とした円弧ガイド54と、図示しないサーボモータにより円弧ガイド54に沿って移動して、所定の位置で位置決めされるα軸スライダ55を有して構成されている。
【0029】
β軸機構部52は、α軸スライダ55に固定され、Y軸と平行な軸を曲率中心とした円弧ガイド56と、図示しないサーボモータにより円弧ガイド56に沿って移動して、所定の位置で位置決めされるβ軸スライダ57を有して構成されている。
【0030】
研磨ヘッド37は、β軸スライダ57に取り付けられ、図示しない電空変換レギュレータとドライバにより空気圧が制御されることにより後述する研磨工具を加工面34Aに所定の力で押し付けるエアシリンダ58と、エアシリンダ58のシリンダ部58Aに取り付けられ、図示しないドライバによって駆動されることにより回転トルクを発生するスピンドル59と、スピンドル59の回転軸59Aの先端に取り付けられ、回転運動によって加工面34Aの研磨加工を行う略球形状の研磨工具60より構成されている。
【0031】
駆動制御部33Aは、図示しない駆動計算部によって計算された駆動データに基づいて水平駆動軸であるY軸機構部38、及びX軸機構部39と垂直駆動軸であるZ軸機構部50と傾斜駆動軸であるα軸機構部51、及びβ軸機構部52の合計5軸の駆動を同期制御して、研磨工具60の荷重軸が加工面34Aの法線と一致するように研磨工具60の走査を行わせる。
【0032】
ここで、傾斜駆動軸であるα軸機構部51、及びβ軸機構部52について説明する。
【0033】
図2は、図1のY、Z平面図を、また、図3は、図1のX、Z平面図をそれぞれ示し、α軸機構部51の円弧ガイド54は、その曲率中心OがY方向とZ方向の位置において研磨工具60の先端と一致するように構成され、また、β軸機構部52の円弧ガイド56は、その曲率中心OがX方向とZ方向の位置において研磨工具60の先端と一致するように構成されている。このため、α軸スライダ55、及びβ軸スライダ57をそれぞれの円弧ガイド54、56の曲率中心O、Oを軸にしてα軸方向、及びβ軸方向に回動運動させることにより、研磨ヘッド37を研磨工具60の先端を中心に任意の方向に傾斜させることが可能になっている。
【0034】
以下、上記曲面研磨装置を用いた曲面研磨方法を説明する。
【0035】
まず、加工物34の加工面34A上に研磨剤を塗布した後、Z軸機構部50のZ軸スライダ53を下降させて、研磨工具60を加工物34の加工面34Aの研磨開始点上に位置させると共に、エアシリンダ58の空気圧を制御して研磨工具60を所定の力で加工面34A上に押し付ける。また同時に、スピンドル59によって研磨工具60を回転させると共に、駆動制御部33Aが予め駆動計算部で計算された駆動データに基づいて、Y軸機構部38のサーボモータ44、X軸機構部39のサーボモータ48、Z軸機構部50のサーボモータ、α軸機構部51のサーボモータ、及びβ軸機構部52のサーボモータの各ドライバに所定の制御信号を出力して、Y軸テーブル42、及びX軸テーブル46の水平方向位置とZ軸スライダ53の垂直方向位置とα軸スライダ55、及びβ軸スライダ57の回転位置を同期制御することにより、加工面34Aの法線と研磨工具60の荷重軸(押付け方向)が一致するように研磨ヘッド37の姿勢を変化させながら研磨工具60で加工面34Aを走査して、加工面34Aを研磨する。このとき、研磨ヘッド37が研磨工具60の先端、つまり、加工面34Aとの接触点を中心に傾斜するようになっているため、研磨ヘッド37の姿勢変化によって研磨工具60の水平方向位置や垂直方向位置が変化することがない。このため、Y軸機構部38、及びX軸機構部39を研磨ヘッド37の走査距離に応じて、また、Z軸機構部50を加工面34Aの高さに応じてそれぞれ駆動するだけで良く、このため、加工面34Aの法線方向の変化が大きい箇所でも研磨工具60の走査速度を指令走査速度に追従させることができる。その結果、滞留時間分布を指令値に一致させることができ、加工精度の向上を図ることができる。
【0036】
図4の(a),(b) は、加工面34Aの形状変化に対応するように研磨ヘッド37の姿勢を変化させながら研磨工具60で加工面34Aを走査した時の水平駆動部の動作を示す。ここで、研磨ヘッド37の長さLを300mm、加工面34A上の走査距離Dを2mm、加工面34A上の指令走査速度を200mm/sec、加工面34Aの形状変化に対する研磨ヘッド37の傾斜角度の変化量θを4°とする。このとき、図4の(a) に示すように、研磨工具60と加工面34Aとの接触点を回転中心Pとして研磨ヘッド37の姿勢を変化させる場合では、研磨ヘッド37の姿勢変化によって研磨工具60の水平方向位置の変化がないため、水平駆動部の駆動距離Dを2mm、駆動速度を200mm/secと指令値と同じ値にすれば良い。ところが、図4の(b) に示すように、加工面34Aから離れた位置を回転中心Pとして研磨ヘッド37を姿勢を変化させる場合では、研磨ヘッド37の姿勢変化によって研磨工具60の水平方向位置が変化するため、水平駆動部の駆動距離Dを約23mm、駆動速度を2300mm/secと指令値の10倍以上の値にする必要がある。このため、駆動機構の追従速度の限界等から指令走査速度に追従できなくなり、加工精度が低下することになる。
【0037】
なお、以上の実施の形態では、5軸同期制御を行ったが、Z軸機構部50の制御を省略した4軸同期制御を行っても良い。この場合、Z軸機構部50は研磨ヘッド37を任意の一定の高さに保持するように構成されており、また、エアシリンダ58は研磨工具60の先端が所定の位置から十数mmの範囲で変化するようにシリンダ部58Aを所定の範囲で揺動させるように構成されている。更に、円弧ガイド54は、その曲率中心Oが所定の位置に研磨工具60の先端がある時のその先端位置とY方向とZ方向の位置において一致するように構成され、また、円弧ガイド56は、その曲率中心Oが所定の位置に研磨工具60の先端がある時のその先端位置とX方向とZ方向の位置において一致するように構成されている。
【0038】
以上のように構成された曲面研磨装置で研磨加工を行う場合には、まず、加工物34の加工面34A上に研磨剤を塗布した後、研磨工具60が加工物34の加工面34A上に接触する高さまでZ軸機構部50のZ軸スライダ53を下降させてその高さに固定すると共に、エアシリンダ58の空気圧を制御して研磨工具60を所定の力で加工面34A上に押し付ける。また同時に、スピンドル59によって研磨工具60を回転させると共に、駆動制御部33Aが予め駆動計算部で計算された駆動データに基づいて、Y軸機構部38のサーボモータ44、X軸機構部39のサーボモータ48、α軸機構部51のサーボモータ、及びβ軸機構部52のサーボモータの各ドライバに所定の制御信号を出力して、Y軸テーブル42、及びX軸テーブル46の水平方向位置とα軸スライダ55、及びβ軸スライダ57の回転位置の4軸を同期制御することにより、加工面34Aの法線と研磨工具60の荷重軸(押付け方向)が一致するように研磨ヘッド37の姿勢を変化させながら研磨工具60で加工面34Aを走査して、加工面34Aを研磨する。このとき、加工面34Aの高低変化によって研磨工具60が押し付けられる位置は変動するが、エアシリンダ58のシリンダ部58Aが追従揺動することにより一定の押付け力で研磨加工を行うことができる。また、研磨工具60が押し付けられる位置の変化分は、駆動データの計算時に補正される。
【0039】
図5は、X方向とZ方向の2次元において本実施の形態の有効範囲を検討したもので、加工面の高低変化量と傾斜変化量から有効範囲を示した一例である。水平一方向に対し加工面の高低変化量が20mm以内の加工物や、傾斜変化量が45°以内の加工物であれば、研磨工具60の水平方向位置の変化量は加工面全面にわたって10mm以内であり、容易に補正することができる。
【0040】
このように4軸同期制御による研磨加工でも、研磨ヘッド37の姿勢変化による研磨工具60の水平方向位置や垂直方向位置の変化量が少ないため、研磨工具60の走査速度を指令走査速度に追従させることができる。このため、滞留時間分布が指令値と一致することになり、加工精度を向上させることができる。また、4軸同期制御のため、構成を簡素化することができ、コストダウンを図ることができる。
【0041】
図6には、本発明の第3の実施の形態の曲面研磨装置が示されている。この図において、図1、図2、及び図3と同一の部分には同一の引用数字、符号を付したので、重複する説明は省略する。この曲面研磨装置は、加工物駆動部35に加工物34にβ軸方向の回転運動を行わせるβ軸機構部61と、加工物34にα軸方向の回転運動を行わせるα軸機構部62と、加工物34にZ軸方向の垂直運動を行わせるZ軸機構部68が付加され、研磨ヘッド支持部36として支持定盤33上の設けられた支柱70A、70Bと、支柱70A、70B間に固定された粱71と、粱71に支持された垂直機構部72が設けられた構成を有している。
【0042】
β軸機構部61は、支持定盤33上に設けられ、X軸と平行な軸を曲率中心とした凹状の円弧面63Aが形成された円弧ガイド63と、X軸と平行な軸を曲率中心とした凸状の円弧面64Aが形成され、円弧ガイド63にβ軸方向の回転ができるように係合したβ軸テーブル64と、β軸テーブル64に設けられたナット(図示せず)と螺合したボールネジ(図示せず)と、出力軸にボールネジの一端が接続され、ボールネジを回転させてβ軸テーブル64をY軸方向に回動させ、且つ、所定の位置で停止させて位置決めするサーボモータ(図示せず)より構成されている。ガイド63の円弧面63Aとβ軸テーブル64の円弧面64Aは、その曲率中心OがY方向とZ方向の位置において研磨工具60の先端と一致するように構成されている。
【0043】
α軸機構部62は、β軸テーブル64上に設けられ、Y軸と平行な軸を曲率中心とした凹状の円弧面65Aが形成された円弧ガイド65と、Y軸と平行な軸を曲率中心とした凸状の円弧面66Aが形成され、円弧ガイド65にα軸方向の回転ができるように係合したα軸テーブル66と、α軸テーブル66に設けられたナット(図示せず)と螺合したボールネジ(図示せず)と、出力軸にボールネジの一端が接続され、ボールネジを回転させてα軸テーブル66をX軸方向に回動させ、且つ、所定の位置で停止させて位置決めするサーボモータ67より構成されている。ガイド65の円弧面65Aとα軸テーブル66の円弧面66Aは、その曲率中心OがY方向とZ方向の位置において研磨工具60の先端と一致するように構成されている。
【0044】
Z軸機構部68は、図示しないリフターと、リフターによって加工物34の高さ方向に移動し、且つ、所定の位置で位置決めされるZ軸テーブル69より構成されている。
【0045】
垂直機構部72は、スピンドル59が固定された昇降自在なスライダ73Aを有し、研磨ヘッド37の姿勢が一定になるように研磨ヘッド37の昇降をガイドするスライド機構部73と、滑車74A、74Bに掛けられ、一端にスライダ73Aが、他端にウェイト75が接続されたワイヤ76より構成されている。ウェイト75の重量は、スライダ73Aとスピンドル59と研磨工具60の合計重量より所定の重量だけ小になっており、研磨工具60が加工面34Aの形状に応じて下降したとき、その変位量に応じた距離だけウェイト75が上昇し、研磨工具60が加工面34Aの形状に応じて上昇したとき、ウェイト75の荷重によってその変位量に応じた距離だけウェイト75が下降すると共に、研磨工具60がスライダ73Aとスピンドル59と研磨工具60の合計重量による力からウェイト75の荷重による力を差し引いた力で加工面34Aに押し付けられるようになっている。
【0046】
以下、本発明の第3の実施の形態の曲面研磨方法を説明する。
【0047】
まず、加工物34の加工面34A上に研磨剤を塗布した後、ウェイト75の荷重を調整して研磨工具60を微小な力で加工面34A上に押し付ける。また同時に、スピンドル59によって研磨工具60を回転させると共に、駆動制御部33Aが予め駆動計算部で計算された駆動データに基づいて、Y軸機構部38のサーボモータ45、X軸機構部39のサーボモータ48、β軸機構部61のサーボモータ、α軸機構部62のサーボモータ67、Z軸機構部68のリフターの各ドライバに所定の制御信号を出力して、Y軸テーブル42、及びX軸テーブル46の水平方向位置とβ軸テーブル64、及びα軸テーブル66の回転位置とZ軸テーブル69の垂直方向位置を同期制御することにより、加工面34Aの法線と研磨工具60の荷重軸(押付け方向)が一致するように、加工面34Aに対する研磨ヘッド37の姿勢を変化させながら研磨工具60で加工面34Aを走査して、加工面34Aを研磨する。このとき、加工面34Aの高低変化によって研磨工具60が押し付けられる高さは変動するが、スライド機構部73におけるスライダ73Aの昇降によって研磨工具60がその高さに応じて昇降するため、常にスライダ73Aとスピンドル59と研磨工具60の合計重量による力からウェイト75の荷重による力を差し引いた一定の押付け力で研磨加工を行うことができる。また、加工物34が研磨工具60との接触点を中心に任意の方向に傾斜するようになっているため、加工面34Aの法線と研磨工具60の荷重軸を一致させるのに、加工物34の水平方向位置や垂直方向位置を補正する必要がなく、研磨工具60の走査速度を指令走査速度に追従させることができる。その結果、滞留時間分布が指令値と一致することになり、加工精度の向上を図ることができる。
【0048】
【発明の効果】
以上説明した通り、本発明の曲面研磨方法、及び曲面研磨装置によると、加工面の研磨走査によって加工面の法線の方向が変化したとき、研磨工具の荷重軸が法線に一致するように研磨工具の加工面上の接触点を中心にして荷重軸の姿勢を制御するようにしたため、研磨工具を指令した走査速度で走査して、加工精度の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す説明図。
【図2】図1のY、Z方向の平面図。
【図3】図1のX、Z方向の平面図。
【図4】研磨ヘッドの姿勢変化に基づく水平駆動部の動作を示す説明図。
【図5】本発明の第2の実施の形態に係る加工物の加工有効範囲を示す説明図。
【図6】本発明の第3の実施の形態を示す説明図。
【図7】従来の曲面研磨装置を示す説明図。
【図8】従来の曲面研磨装置のZチルティング装置を示す説明図。
【図9】従来の曲面研磨装置の研磨ヘッドを示す説明図。
【符号の説明】
1A 形状計測部
1B 研磨加工部
2 定盤
3 加工物
4 Y軸テーブル
5 ボールネジ
6 モータ
7 X軸テーブル
8 ボールネジ
9 モータ
10 θテーブル
11A、11B、11C 研磨フレーム
12 取付板
13 Zチルティング装置
14 研磨ヘッド
15 三角取付板
16A、16B 軸
17A、17B、17C ブロック
18A、18B、18C 研磨アーム
19A、19B、19C ボールネジ
20A、20B、20C モータ
21A、21B、21C ユニバーサルジョイント
22 研磨ヘッド取付板
23 研磨工具
24 研磨工具保持装置
25 荷重軸
26 定圧装置
27 揺動装置
28 モータ
28A 出力軸
29 クランク
30 コンロッド
31 スライド軸
32 スライダ
33 支持定盤
33A 駆動制御部
34 加工物
34A 加工面
35 加工物駆動部
36 研磨ヘッド支持部
37 研磨ヘッド
38 Y軸機構部
39 X軸機構部
40 固定治具
41A、41B ガイド
42 Y軸テーブル
43 ボールネジ
44 サーボモータ
45A、45B ガイド
46 X軸テーブル
47 ボールネジ
48 サーボモータ
49A、49B 支柱
50 Z軸機構部
51 α軸機構部
52 β軸機構部
53 Z軸スライダ
54 円弧ガイド
55 α軸スライダ
56 円弧ガイド
57 β軸スライダ
58 エアシリンダ
58A シリンリ部
59 スピンドル
59A 回転軸
60 研磨工具
61 β軸機構部
62 α軸機構部
63 円弧ガイド
63A 円弧面
64 β軸テーブル
64A 円弧面
65 円弧ガイド
65A 円弧面
66 β軸テーブル
66A 円弧面
67 サーボモータ
68 Z軸機構部
69 Z軸テーブル
70A、70B 支柱
71 粱
72 垂直機構部
73 スライド機構部
73A スライダ
74A、74B 滑車
75 ウェイト
76 ワイヤ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a curved surface polishing method for polishing an optical element such as a lens or a mirror having a curved surface shape, in particular, an aspherical shape having no rotational symmetry axis, a molding die for injection molding the same, and a curved surface polishing. More particularly, the present invention relates to a curved surface polishing method and a curved surface polishing apparatus in which a scanning speed of a polishing tool is optimized to improve processing accuracy.
[0002]
[Prior art]
As a conventional curved surface polishing apparatus for polishing a curved surface shape, in particular, an optical element such as a lens or a mirror having an aspherical shape not having a rotationally symmetric axis, and a molding die for injection molding thereof, for example, a Some are disclosed in Japanese Laid-Open Patent Publication No. 5-57606.
[0003]
Figure7Shows the curved surface polishing apparatus. This curved surface polishing apparatus measures a surface shape of a horizontal driving unit 1A that causes the workpiece 3 to perform a predetermined horizontal movement on the surface plate 2, and a processing surface 3A of the workpiece 3 that has been moved by the horizontal driving unit 1A. A shape measuring unit 1B and a polishing unit that polishes the processed surface 3A of the workpiece 3 moved by the horizontal drive unit 1A based on the surface shape data of the processed surface 3A obtained by the measurement of the shape measuring unit 1B. 1C is comprised.
[0004]
1 A of horizontal drive parts are arrange | positioned along the Y-axis direction, the Y-axis table 4 provided on the surface plate 2 so that the movement to the Y-axis direction, and screwed with the nut (not shown) of the Y-axis table 4 A ball screw 5, a motor 6 that rotates the ball screw 5 to move the Y-axis table 4 in the Y-axis direction, an X-axis table 7 that is movably provided on the Y-axis table 4 in the X-axis direction, and an X-axis A ball screw 8 that is arranged along the direction and screwed with a nut (not shown) of the X-axis table 7, a motor 9 that rotates the ball screw 8 to move the X-axis table 7 in the X-axis direction, and an X-axis table 7 and is configured to have a θ table 10 that is rotated by a motor (not shown).
[0005]
The polishing portion 1C is attached to the tips of L-shaped polishing frames 11A, 11B, and 11C provided on the surface plate 2 and the polishing frames 11A, 11B, and 11C via a mounting plate 12, and is attached to the lower portion. It has a Z tilting device 13 that tilts the head 14 freely and moves it up and down.
[0006]
Figure81 shows the configuration of the Z tilting device 13. The Z tilting device 13 includes a triangular mounting plate 15 having three corners 15a fixed to the mounting plate 12, and shafts 16A to 16C (16C not shown) fixed on the triangular mounting plate 15 in parallel to the respective sides. And a pair of side portions extending in the Z-axis direction of the blocks 17A to 17C and a pair of inner portions extending in the Z-axis direction are respectively provided on the shafts 16A to 16C. The slidably engaged, round-shaped polishing arms 18A to 18C, extend in the Z-axis direction, are pivotally supported by the polishing arms 18A to 18C, and are screwed into nuts (not shown) of the blocks 17A to 17C. The ball screws 19A to 19C, the motors 20A to 20C for rotating the ball screws 19A to 19C to move the polishing arms 18A to 18C in the Z-axis direction, And is configured with a polishing head mounting plate 22 of the triangle is attached via a universal joint 21A~21C the lower end of the arm 18A to 18C.
[0007]
Figure91 shows the configuration of the polishing head 14. The polishing head 14 applies pressure to the polishing tool 23 via a cylindrical polishing tool 23 for polishing the processed surface 3A of the workpiece 3, a polishing tool holding device 24 for holding the polishing tool 23, and a load shaft 25. And a rocking device 27 that reciprocates the polishing tool 23 in the direction of arrow D.
[0008]
The constant pressure device 26 is configured to always maintain a pressurizing force set by a voice coil motor, a leaf spring, and a load sensor (all not shown) attached to the load shaft 25. The load shaft 25 is attached with a displacement sensor (not shown) that detects the amount of displacement of the load shaft 25 in the axial direction.
[0009]
The swing device 27 is fixed to the crank 29 connected to the rotating shaft 28A of the motor 28, the connecting rod 30 for converting the rotating motion of the crank 29 into a reciprocating motion, and the casing of the constant pressure device 26. It has a slider 32 that inputs and slides on the slide shaft 31.
[0010]
In the above configuration, when polishing the workpiece 3, first, an abrasive is applied to the processing surface 3 </ b> A of the workpiece 3, and the polishing head 13 is lowered by the Z tilting device 14 to move the polishing tool 23. Contact with the processed surface 3A. Next, the polishing tool 23 is reciprocated in the direction of arrow D by the swing device 27, and a predetermined pressure is applied to the polishing tool 23 by the constant pressure device 26, so that the polishing surface of the polishing tool 23 and the processing surface 3A of the workpiece 3 are applied. And rub. At this time, the scanning pattern, and so that the pressing direction of the polishing tool 23 and the normal direction of the processing surface 3A always coincide, and the displacement amount of the load shaft 25 measured by the displacement sensor is constant. The Y-axis table 4, the X-axis table 7, the θ table 10, and the Z tilting device 14 are synchronously controlled according to a scanning speed distribution described later, whereby the polishing head 13 performs scanning according to the shape of the processing surface 3A. The surface 3A is polished. Here, the polishing amount is proportional to the pressing force of the polishing tool 23, the relative speed with the workpiece, and the residence time, and the residence time distribution for bringing the shape of the processed surface 3A closer to the target surface shape, that is, the polishing tool 23 The scanning speed distribution is such that the polishing tool 23 removes the processing surface 3A per unit time when the pressure and relative speed of the polishing tool 23 are kept constant, and the processing surface 3A measured by the shape measuring unit 1B. It is obtained from the difference between the shape and the target surface shape.
[0011]
[Problems to be solved by the invention]
However, according to the conventional curved surface polishing apparatus, since the posture of the polishing head is changed around the position away from the contact point between the polishing tool and the processing surface, the horizontal position and vertical position of the polishing tool are changed along with the change in the posture of the polishing head. There is a problem that the directional position changes, and the horizontal position and vertical position of the workpiece or polishing head must be corrected. In particular, the correction amount becomes large at a portion where the change in the normal direction of the machining surface is large, and the scanning speed of the polishing tool cannot follow the command scanning speed due to the limit of the calculation speed of the control mechanism and the tracking speed of the drive mechanism. For this reason, the residence time distribution deviates from the command value, which causes a problem that machining accuracy is lowered.
[0012]
Accordingly, an object of the present invention is to provide a curved surface polishing method and a curved surface polishing apparatus that can improve the processing accuracy by allowing a polishing tool to scan at a command scanning speed.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present inventionAn X-axis and Y-axis table that supports the workpiece from below and moves in the X-axis and Y-axis directions, and a β-axis that supports the workpiece from below and tilts about axes parallel to the X-axis and Y-axis, respectively. And an α-axis table, and pressing means for pressing the spherical polishing tool against the processing surface of the workpiece with a predetermined pressing force along the load axis of the polishing tool,
The machining of the polishing tool is controlled by controlling a polishing motion means for giving a rotational motion around the load axis to the polishing tool on the processing surface, the X-axis and Y-axis tables, and the β-axis and α-axis tables. By adjusting the attitude of the load axis around a contact point on a surface, the polishing tool rotates around the load axis while making the load axis coincide with the normal of the processed surface of the workpiece. A curved surface polishing apparatus comprising control means for scanning the processed surface to polish the processed surfaceIs to provide.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a curved surface polishing method and a curved surface polishing apparatus of the present invention will be described in detail with reference to the accompanying drawings.
[0022]
FIG. 1 shows the configuration of a curved surface polishing apparatus according to the first embodiment of the present invention. This curved surface polishing apparatus is provided on a support surface plate 33 and is provided on a support surface plate 33 and a workpiece drive unit 35 that causes the workpiece 34 to perform a predetermined motion. The polishing head support unit 36 is positioned on the processing surface 34A, and the drive control unit 33A is configured to control the driving of the polishing process.
[0023]
The workpiece drive unit 35 includes a Y-axis mechanism unit 38 that causes the workpiece 34 to perform horizontal movement in the Y-axis direction, an X-axis mechanism unit 39 that causes the workpiece 34 to perform horizontal movement in the X-axis direction, and an X-axis mechanism. A fixing jig 40 for fixing the workpiece 34 is provided on the portion 39.
[0024]
The Y-axis mechanism portion 38 includes two parallel guides 41A and 41B arranged on the support surface plate 33 so as to extend in the Y-axis direction, a Y-axis table 42 slidably engaged with the guides 41A and 41B, A ball screw 43 that is arranged in parallel between the guides 41A and 41B and screwed into a nut (shown in the figure) provided on the Y-axis table 42, and one end of the ball screw 43 are connected to the output shaft, and the ball screw 43 is rotated. The servo motor 44 is configured to move the Y-axis table 42 in the Y-axis direction and stop and position it at a predetermined position.
[0025]
The X-axis mechanism unit 39 includes two parallel guides 45A and 45B arranged to extend in the X-axis direction on the Y-axis table 42, an X-axis table 46 slidably engaged with the guides 45A and 45B, A ball screw 47 arranged in parallel between the guides 45A and 45B and screwed into a nut (illustration screw) provided on the X-axis table 46, and one end of the ball screw 47 are connected to the output shaft, and the ball screw 47 is rotated. The servo motor 48 is configured to move the X-axis table 46 in the X-axis direction and stop the X-axis table 46 at a predetermined position.
[0026]
The polishing head support portion 36 is supported by support columns 49A and 49B provided on the support surface plate 33, and is supported by the Z-axis mechanism portion 50 that performs vertical movement in the Z-axis direction, and the Z-axis mechanism portion 50, and is polished. An α-axis mechanism 51 that causes the head 37 to rotate in an arc direction (hereinafter referred to as α-axis direction) about an axis parallel to the X-axis, and an α-axis mechanism 51 that is supported by the α-axis mechanism 51 and parallel to the Y-axis It has a β-axis mechanism 52 that performs a rotational movement in the arc direction (hereinafter referred to as the β-axis direction) about the axis.
[0027]
The Z-axis mechanism 50 is slidably engaged with a guide (not shown), moved in the Z-axis direction by a servo motor (not shown) and a ball screw, and stopped and positioned at a predetermined position. have.
[0028]
The α-axis mechanism 51 is fixed to the Z-axis slider 53, and moves along the arc guide 54 with a circular arc guide 54 whose center of curvature is an axis parallel to the X axis and a servo motor (not shown). It has an α-axis slider 55 to be positioned.
[0029]
The β-axis mechanism 52 is fixed to the α-axis slider 55 and is moved along the arc guide 56 by an arc guide 56 having a center of curvature about an axis parallel to the Y axis and a servo motor (not shown). It has a β-axis slider 57 to be positioned.
[0030]
The polishing head 37 is attached to a β-axis slider 57, and an air cylinder 58 that presses a polishing tool (to be described later) against the machining surface 34A with a predetermined force by controlling the air pressure by an electropneumatic conversion regulator and a driver (not shown), and an air cylinder 58 is attached to a cylinder portion 58A, and is attached to a spindle 59 that generates rotational torque by being driven by a driver (not shown), and a tip of a rotary shaft 59A of the spindle 59, and polishes the processing surface 34A by rotational movement. The polishing tool 60 is substantially spherical.
[0031]
The drive control unit 33A is inclined with respect to the Y-axis mechanism unit 38 that is a horizontal drive axis, the X-axis mechanism unit 39, and the Z-axis mechanism unit 50 that is a vertical drive axis based on drive data calculated by a drive calculation unit (not shown). The driving of the α-axis mechanism 51 and the β-axis mechanism 52, which are drive axes, is synchronously controlled, and the load axis of the polishing tool 60 is aligned with the normal line of the machining surface 34A. Let it scan.
[0032]
Here, the α-axis mechanism unit 51 and the β-axis mechanism unit 52 that are inclined drive shafts will be described.
[0033]
2 shows the Y and Z plan views of FIG. 1, FIG. 3 shows the X and Z plan views of FIG. 1, and the arc guide 54 of the α-axis mechanism 51 has a center of curvature O.1Is configured to coincide with the tip of the polishing tool 60 at positions in the Y direction and the Z direction, and the arc guide 56 of the β-axis mechanism 52 has a center of curvature O2Is configured to coincide with the tip of the polishing tool 60 at positions in the X direction and the Z direction. For this reason, the α-axis slider 55 and the β-axis slider 57 are connected to the respective curvature centers O of the arc guides 54 and 56.1, O2As a result, the polishing head 37 can be tilted in any direction around the tip of the polishing tool 60 by rotating in the α axis direction and β axis direction.
[0034]
Hereinafter, a curved surface polishing method using the curved surface polishing apparatus will be described.
[0035]
First, after applying an abrasive onto the processed surface 34A of the workpiece 34, the Z-axis slider 53 of the Z-axis mechanism unit 50 is lowered to bring the polishing tool 60 onto the polishing start point of the processed surface 34A of the workpiece 34. At the same time, the air pressure of the air cylinder 58 is controlled to press the polishing tool 60 onto the processing surface 34A with a predetermined force. At the same time, the polishing tool 60 is rotated by the spindle 59, and the servo motor 44 of the Y-axis mechanism 38 and the servo of the X-axis mechanism 39 are driven by the drive controller 33A based on the drive data calculated in advance by the drive calculator. A predetermined control signal is output to each driver of the motor 48, the servo motor of the Z-axis mechanism unit 50, the servo motor of the α-axis mechanism unit 51, and the servo motor of the β-axis mechanism unit 52, and the Y-axis table 42 and X By synchronizing and controlling the horizontal position of the axis table 46, the vertical position of the Z-axis slider 53, and the rotational positions of the α-axis slider 55 and the β-axis slider 57, the normal line of the machining surface 34A and the load axis of the polishing tool 60 are obtained. The processing surface 34A is scanned with the polishing tool 60 while the posture of the polishing head 37 is changed so that the (pressing direction) matches, and the processing surface 34A is polished. At this time, since the polishing head 37 is inclined about the tip of the polishing tool 60, that is, the contact point with the processing surface 34 </ b> A, the horizontal position and vertical position of the polishing tool 60 are changed by the posture change of the polishing head 37. The direction position does not change. Therefore, it is only necessary to drive the Y-axis mechanism 38 and the X-axis mechanism 39 according to the scanning distance of the polishing head 37, and the Z-axis mechanism 50 according to the height of the processing surface 34A. For this reason, the scanning speed of the polishing tool 60 can be made to follow the command scanning speed even at a location where the change in the normal direction of the processed surface 34A is large. As a result, the residence time distribution can be matched with the command value, and the machining accuracy can be improved.
[0036]
4A and 4B show the operation of the horizontal drive unit when the processing surface 34A is scanned with the polishing tool 60 while changing the posture of the polishing head 37 so as to correspond to the change in shape of the processing surface 34A. Show. Here, the length L of the polishing head 37 is 300 mm, and the scanning distance D on the processing surface 34A.1Is 2 mm, the command scanning speed on the processing surface 34A is 200 mm / sec, and the change amount θ of the inclination angle of the polishing head 37 with respect to the shape change of the processing surface 34A is 4 °. At this time, as shown in FIG. 4A, the contact point between the polishing tool 60 and the processed surface 34A is set to the rotation center P.1When the posture of the polishing head 37 is changed, there is no change in the horizontal position of the polishing tool 60 due to the change in the posture of the polishing head 37.2Can be set to 2 mm and the driving speed is 200 mm / sec, the same value as the command value. However, as shown in FIG. 4B, the position away from the machining surface 34A is set at the rotation center P.2In the case where the posture of the polishing head 37 is changed, the horizontal position of the polishing tool 60 changes due to the posture change of the polishing head 37. Therefore, the driving distance D of the horizontal driving unit is changed.2Is about 23 mm and the driving speed is 2300 mm / sec, which is 10 times or more the command value. For this reason, it becomes impossible to follow the command scanning speed due to the limit of the follow-up speed of the drive mechanism, and the machining accuracy is lowered.
[0037]
In the above embodiment, the 5-axis synchronous control is performed. However, the 4-axis synchronous control may be performed in which the control of the Z-axis mechanism unit 50 is omitted. In this case, the Z-axis mechanism unit 50 is configured to hold the polishing head 37 at an arbitrary constant height, and the air cylinder 58 has a range in which the tip of the polishing tool 60 is a few tens mm from a predetermined position. The cylinder portion 58A is configured to swing within a predetermined range so as to change in the range. Further, the arc guide 54 has a center of curvature O.1Is configured to coincide with the tip position of the polishing tool 60 at a predetermined position in the Y direction and the Z direction, and the arc guide 56 has a center of curvature O.2Is configured to coincide with the position of the tip of the polishing tool 60 at a predetermined position in the X direction and the Z direction.
[0038]
In the case of performing polishing with the curved surface polishing apparatus configured as described above, first, an abrasive is applied on the processed surface 34A of the workpiece 34, and then the polishing tool 60 is applied on the processed surface 34A of the workpiece 34. The Z-axis slider 53 of the Z-axis mechanism unit 50 is lowered to a contact height and fixed at that height, and the air pressure of the air cylinder 58 is controlled to press the polishing tool 60 onto the machining surface 34A with a predetermined force. At the same time, the polishing tool 60 is rotated by the spindle 59, and the servo motor 44 of the Y-axis mechanism 38 and the servo of the X-axis mechanism 39 are driven by the drive controller 33A based on the drive data calculated in advance by the drive calculator. A predetermined control signal is output to each driver of the motor 48, the servo motor of the α-axis mechanism unit 51, and the servo motor of the β-axis mechanism unit 52, and the horizontal position and α of the Y-axis table 42 and the X-axis table 46 are output. By synchronously controlling the four axes of the rotational positions of the axis slider 55 and the β-axis slider 57, the posture of the polishing head 37 is adjusted so that the normal line of the machining surface 34A and the load axis (pressing direction) of the polishing tool 60 coincide. The machining surface 34A is scanned by the polishing tool 60 while changing, and the machining surface 34A is polished. At this time, the position at which the polishing tool 60 is pressed varies depending on the height change of the processing surface 34A, but the cylinder portion 58A of the air cylinder 58 can follow and swing to perform polishing with a constant pressing force. Further, the change in the position where the polishing tool 60 is pressed is corrected when the drive data is calculated.
[0039]
FIG. 5 is an example in which the effective range of the present embodiment is examined in two dimensions in the X direction and the Z direction, and is an example showing the effective range from the height change amount and the inclination change amount of the processed surface. If the workpiece has a height variation of 20 mm or less with respect to one horizontal direction or a workpiece having a tilt variation of 45 ° or less, the amount of change in the horizontal position of the polishing tool 60 is within 10 mm over the entire machining surface. It can be easily corrected.
[0040]
As described above, even in the polishing process by the 4-axis synchronous control, the amount of change in the horizontal position and the vertical position of the polishing tool 60 due to the change in the posture of the polishing head 37 is small, so that the scanning speed of the polishing tool 60 follows the commanded scanning speed. be able to. For this reason, the residence time distribution coincides with the command value, and the machining accuracy can be improved. Further, because of the 4-axis synchronous control, the configuration can be simplified and the cost can be reduced.
[0041]
FIG. 6 shows a curved surface polishing apparatus according to a third embodiment of the present invention. In this figure, the same reference numerals and symbols are assigned to the same parts as those in FIGS. 1, 2, and 3, so that the overlapping description is omitted. This curved surface polishing apparatus includes a β-axis mechanism 61 that causes the workpiece drive unit 35 to rotate the workpiece 34 in the β-axis direction, and an α-axis mechanism 62 that causes the workpiece 34 to rotate in the α-axis direction. And a Z-axis mechanism 68 for causing the workpiece 34 to perform vertical movement in the Z-axis direction, and between the columns 70A and 70B provided on the support surface plate 33 as the polishing head support 36 and the columns 70A and 70B. And a vertical mechanism 72 supported by the flange 71 is provided.
[0042]
The β-axis mechanism portion 61 is provided on the support surface plate 33, and has an arc guide 63 formed with a concave arc surface 63A having an axis parallel to the X axis as the center of curvature, and an axis parallel to the X axis as the center of curvature. A convex arc surface 64A is formed, and a β-axis table 64 engaged with the arc guide 63 so as to be able to rotate in the β-axis direction, a nut (not shown) provided on the β-axis table 64, and a screw The combined ball screw (not shown) and one end of the ball screw are connected to the output shaft, the ball screw is rotated to rotate the β-axis table 64 in the Y-axis direction, and the servo is positioned by stopping at a predetermined position. It consists of a motor (not shown). The arc surface 63A of the guide 63 and the arc surface 64A of the β-axis table 64 have a center of curvature O1Is configured to coincide with the tip of the polishing tool 60 at positions in the Y direction and the Z direction.
[0043]
The α-axis mechanism 62 is provided on the β-axis table 64, and has an arc guide 65 formed with a concave arc surface 65A centering on an axis parallel to the Y axis, and an axis parallel to the Y axis. A convex arcuate surface 66A is formed, an α-axis table 66 engaged with the arc guide 65 so as to be able to rotate in the α-axis direction, a nut (not shown) provided on the α-axis table 66, and a screw. A combined ball screw (not shown) and one end of the ball screw are connected to the output shaft, the ball screw is rotated to rotate the α-axis table 66 in the X-axis direction, and is stopped and positioned at a predetermined position. The motor 67 is configured. The arc surface 65A of the guide 65 and the arc surface 66A of the α-axis table 66 have a center of curvature O2Is configured to coincide with the tip of the polishing tool 60 at positions in the Y direction and the Z direction.
[0044]
The Z-axis mechanism unit 68 includes a lifter (not shown) and a Z-axis table 69 that is moved by the lifter in the height direction of the workpiece 34 and positioned at a predetermined position.
[0045]
The vertical mechanism portion 72 has a slider 73A that can be raised and lowered to which the spindle 59 is fixed, and includes a slide mechanism portion 73 that guides the raising and lowering of the polishing head 37 so that the posture of the polishing head 37 is constant, and pulleys 74A and 74B. And a wire 73 having a slider 73A at one end and a weight 75 connected at the other end. The weight 75 is smaller than the total weight of the slider 73A, the spindle 59, and the polishing tool 60 by a predetermined weight, and when the polishing tool 60 is lowered according to the shape of the processing surface 34A, the weight 75 corresponds to the amount of displacement. When the weight 75 rises by the distance and the polishing tool 60 rises according to the shape of the processing surface 34A, the weight 75 falls by the distance corresponding to the amount of displacement by the load of the weight 75, and the polishing tool 60 moves the slider. It is configured to be pressed against the machining surface 34A with a force obtained by subtracting the force due to the load of the weight 75 from the force due to the total weight of 73A, the spindle 59 and the polishing tool 60.
[0046]
Hereinafter, a curved surface polishing method according to a third embodiment of the present invention will be described.
[0047]
First, after applying an abrasive onto the processed surface 34A of the workpiece 34, the load of the weight 75 is adjusted to press the polishing tool 60 onto the processed surface 34A with a minute force. At the same time, the polishing tool 60 is rotated by the spindle 59, and the servo controller 45 of the Y-axis mechanism unit 38 and the servo of the X-axis mechanism unit 39 are driven by the drive control unit 33A based on the drive data calculated in advance by the drive calculation unit. A predetermined control signal is output to each driver of the motor 48, the servo motor of the β-axis mechanism unit 61, the servo motor 67 of the α-axis mechanism unit 62, and the lifter of the Z-axis mechanism unit 68, the Y-axis table 42, and the X-axis By synchronously controlling the horizontal position of the table 46 and the rotation position of the β-axis table 64 and the rotation position of the α-axis table 66 and the vertical position of the Z-axis table 69, the normal line of the machining surface 34A and the load axis of the polishing tool 60 ( The processing surface 34A is scanned with the polishing tool 60 while changing the posture of the polishing head 37 with respect to the processing surface 34A so that the pressing direction is coincident with the processing surface 34A. To polish. At this time, although the height at which the polishing tool 60 is pressed fluctuates due to the change in height of the processing surface 34A, the polishing tool 60 moves up and down in accordance with the height of the slider 73A in the slide mechanism 73, so the slider 73A is always moved. The polishing can be performed with a constant pressing force obtained by subtracting the force due to the load of the weight 75 from the force due to the total weight of the spindle 59 and the polishing tool 60. Further, since the workpiece 34 is inclined in an arbitrary direction centering on a contact point with the polishing tool 60, the workpiece 34A can be matched with the normal line of the processing surface 34A and the load axis of the polishing tool 60. It is not necessary to correct the horizontal position and the vertical position of 34, and the scanning speed of the polishing tool 60 can follow the commanded scanning speed. As a result, the residence time distribution coincides with the command value, and the processing accuracy can be improved.
[0048]
【The invention's effect】
As described above, according to the curved surface polishing method and the curved surface polishing apparatus of the present invention, when the direction of the normal of the processed surface is changed by polishing scanning of the processed surface, the load axis of the polishing tool matches the normal. Since the attitude of the load shaft is controlled around the contact point on the processing surface of the polishing tool, the polishing tool can be scanned at the commanded scanning speed to improve the processing accuracy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a first embodiment of the present invention.
2 is a plan view in the Y and Z directions of FIG. 1. FIG.
3 is a plan view in the X and Z directions of FIG. 1. FIG.
FIG. 4 is an explanatory diagram showing an operation of a horizontal drive unit based on a posture change of a polishing head.
FIG. 5 is an explanatory diagram showing a machining effective range of a workpiece according to a second embodiment of the present invention.
FIG. 6 is an explanatory diagram showing a third embodiment of the present invention.
FIG. 7 is an explanatory view showing a conventional curved surface polishing apparatus.
FIG. 8 is an explanatory view showing a Z tilting device of a conventional curved surface polishing apparatus.
FIG. 9 is an explanatory view showing a polishing head of a conventional curved polishing apparatus.
[Explanation of symbols]
1A shape measurement unit
1B Polishing part
2 Surface plate
3 Workpiece
4 Y-axis table
5 Ball screw
6 Motor
7 X-axis table
8 Ball screw
9 Motor
10 θ table
11A, 11B, 11C Polishing frame
12 Mounting plate
13 Z tilting device
14 Polishing head
15 Triangular mounting plate
16A, 16B axis
17A, 17B, 17C block
18A, 18B, 18C Polishing arm
19A, 19B, 19C Ball screw
20A, 20B, 20C motor
21A, 21B, 21C Universal joint
22 Polishing head mounting plate
23 Abrasive tools
24 Abrasive tool holding device
25 Load axis
26 Constant pressure device
27 Oscillator
28 Motor
28A output shaft
29 cranks
30 connecting rod
31 Slide axis
32 Slider
33 Support surface plate
33A Drive controller
34 Workpiece
34A machined surface
35 Workpiece drive
36 Polishing head support
37 Polishing head
38 Y-axis mechanism
39 X-axis mechanism
40 Fixing jig
41A, 41B Guide
42 Y-axis table
43 Ball screw
44 Servo motor
45A, 45B guide
46 X-axis table
47 Ball screw
48 Servo motor
49A, 49B Prop
50 Z-axis mechanism
51 α-axis mechanism
52 β axis mechanism
53 Z-axis slider
54 Arc guide
55 α axis slider
56 Arc guide
57 β-axis slider
58 Air cylinder
58A
59 Spindle
59A Rotating shaft
60 Abrasive tools
61 β-axis mechanism
62 α-axis mechanism
63 Arc guide
63A Circular surface
64 β axis table
64A circular arc surface
65 Arc guide
65A circular arc surface
66 β axis table
66A circular arc surface
67 Servo motor
68 Z-axis mechanism
69 Z-axis table
70A, 70B Prop
71 粱
72 Vertical mechanism
73 Slide mechanism
73A slider
74A, 74B pulley
75 weights
76 wires

Claims (1)

加工物を下方から支持してX軸およびY軸方向に移動させるX軸およびY軸テーブルと、
前記加工物を下方から支持してX軸およびY軸にそれぞれ平行な軸回りに傾斜させるβ軸およびα軸テーブルと、
球状の研磨工具を前記加工物の加工面に前記研磨工具の荷重軸に沿って所定の押付け力で押付ける押付け手段と、
前記加工面上で前記研磨工具に前記荷重軸回りの回転運動を与える研磨運動手段と、
前記X軸およびY軸テーブル、および前記β軸およびα軸テーブルを制御して、前記研磨工具の前記加工面上の接触点を中心にして前記荷重軸の姿勢を調整することにより、前記荷重軸を前記加工物の前記加工面の法線に一致させながら前記荷重軸回りに回転する前記研磨工具で前記加工面上を走査して前記加工面を研磨させる制御手段を備えていることを特徴とする曲面研磨装置。
An X-axis and Y-axis table that supports a workpiece from below and moves in the X-axis and Y-axis directions;
A β-axis and an α-axis table that supports the workpiece from below and inclines around axes parallel to the X-axis and the Y-axis, respectively.
A pressing means for pressing the spherical polishing tool against the processing surface of the workpiece with a predetermined pressing force along the load axis of the polishing tool;
Polishing motion means for imparting rotational motion about the load axis to the polishing tool on the processing surface;
By controlling the X-axis and Y-axis tables, and the β-axis and α-axis tables, and adjusting the posture of the load shaft around the contact point on the processing surface of the polishing tool, the load shaft And a control means for polishing the processed surface by scanning the processed surface with the polishing tool rotating around the load axis while matching the normal line of the processed surface of the workpiece. Curved surface polishing equipment.
JP15782696A 1996-06-06 1996-06-19 Curved surface polishing method and curved surface polishing apparatus Expired - Fee Related JP3613889B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15782696A JP3613889B2 (en) 1996-06-19 1996-06-19 Curved surface polishing method and curved surface polishing apparatus
US08/869,217 US5895311A (en) 1996-06-06 1997-06-04 Abrasive device that maintains normal line of contact with curved abrasive surface and method of using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15782696A JP3613889B2 (en) 1996-06-19 1996-06-19 Curved surface polishing method and curved surface polishing apparatus

Publications (2)

Publication Number Publication Date
JPH106199A JPH106199A (en) 1998-01-13
JP3613889B2 true JP3613889B2 (en) 2005-01-26

Family

ID=15658170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15782696A Expired - Fee Related JP3613889B2 (en) 1996-06-06 1996-06-19 Curved surface polishing method and curved surface polishing apparatus

Country Status (1)

Country Link
JP (1) JP3613889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103231296A (en) * 2013-05-08 2013-08-07 上海现代先进超精密制造中心有限公司 Tool setting centering method used for processing convex cone mirror

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264534B1 (en) * 1999-03-25 2001-07-24 Ford Global Technologies, Inc. Method and tooling for automated wet or dry sanding of a vehicle surface
JP5087481B2 (en) * 2008-06-24 2012-12-05 昭和精工株式会社 Multi-axis control mold automatic cell polishing apparatus and cell automatic polishing method
JP2016132077A (en) * 2015-01-21 2016-07-25 株式会社ナガセインテグレックス Curved surface polishing device
CN105290919B (en) * 2015-11-19 2017-12-26 苏州博义诺智能装备有限公司 Five axle automation equipments of mobile phone shell numerical control grinding and polishing
CN107932297B (en) * 2017-12-21 2023-09-05 浙江工业大学 Flexible polishing system for blades
CN108581716B (en) * 2018-05-16 2021-01-26 广东工业大学 Constant-pressure polishing method and device for optical element
CN108772777B (en) * 2018-07-26 2024-03-08 郑州博钰特超硬材料制品有限公司 Equipment convenient to clamping abrasive material grinding apparatus
CN109702585A (en) * 2018-12-16 2019-05-03 浙江工业大学 A kind of constant moment of force automatic trimming device for toilet lid
CN109366288B (en) * 2018-12-16 2024-03-01 浙江工业大学 Automatic constant-torque trimming device for toilet seat
CN110253383B (en) * 2019-06-18 2021-07-06 广东工业大学 Constant-pressure polishing device and constant-pressure polishing method for aspheric optical element
CN110962010A (en) * 2020-01-15 2020-04-07 南京工业大学 Device is moulded in repair of industrial design product appearance
CN112247686A (en) * 2020-09-28 2021-01-22 广东研基精密五金有限公司 Vertical numerical control forming grinder
CN114083391A (en) * 2021-11-09 2022-02-25 深圳市智链信息技术有限公司 Anti-interference power circuit building workbench
CN114083418A (en) * 2021-12-23 2022-02-25 四川慧丰精制科技有限责任公司 Polishing head installation device and air bag polishing system
CN114310566A (en) * 2022-01-06 2022-04-12 赣州协隆机械设备有限公司 Grinding machine for machining special-shaped curved surface
CN114589583A (en) * 2022-03-24 2022-06-07 朱雪萍 Part cambered surface grinding device
CN115284149B (en) * 2022-09-29 2022-12-23 山东瑞博电机有限公司 Polishing treatment equipment for machining induction motor tail cover

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103231296A (en) * 2013-05-08 2013-08-07 上海现代先进超精密制造中心有限公司 Tool setting centering method used for processing convex cone mirror
CN103231296B (en) * 2013-05-08 2015-05-20 上海现代先进超精密制造中心有限公司 Tool setting centering method used for processing convex cone mirror

Also Published As

Publication number Publication date
JPH106199A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JP3613889B2 (en) Curved surface polishing method and curved surface polishing apparatus
US5895311A (en) Abrasive device that maintains normal line of contact with curved abrasive surface and method of using same
JP4456520B2 (en) Multi-axis spherical grinding apparatus and grinding method
EP0453627B1 (en) Plastic lens generator and method
US6122999A (en) Lathe apparatus and method
JPH09323252A (en) Profile polishing method and device
JPH0929598A (en) Processing device for aspheric surface shape object
JPH057143B2 (en)
JP2006320970A (en) Machining device
JP3819141B2 (en) Polishing equipment
JP2006297512A (en) Spherical machining device for lens
JP4460736B2 (en) Polishing equipment
JPH02131851A (en) Polishing device for curved face
JPH10175150A (en) Curved surface polishing method and device thereof
JPH09248748A (en) Machining device
JP2000167756A (en) Curved surface machining device
EP0872307B1 (en) Lathe apparatus and method
JP2002178248A (en) Polishing device
JP3673682B2 (en) Polishing tool
JP3517595B2 (en) Spherical surface processing method and apparatus, and dummy holder
KR200493639Y1 (en) Ultra-precise centripetal grinding system using complex oscillating motion of spindle
JP2001179585A (en) Curved surface finishing grinding and polishing method and device
JP2004160565A (en) Polishing method and shape variable polishing tool device
JPH0966445A (en) Polishing device and polishing method
JPH11291149A (en) Curved surface polishing method and device therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees