JPH09323017A - Large-sized low temperature gas purifier - Google Patents

Large-sized low temperature gas purifier

Info

Publication number
JPH09323017A
JPH09323017A JP8146033A JP14603396A JPH09323017A JP H09323017 A JPH09323017 A JP H09323017A JP 8146033 A JP8146033 A JP 8146033A JP 14603396 A JP14603396 A JP 14603396A JP H09323017 A JPH09323017 A JP H09323017A
Authority
JP
Japan
Prior art keywords
gas
purified
temperature
path
liquid nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8146033A
Other languages
Japanese (ja)
Other versions
JP3623853B2 (en
Inventor
Nobuyuki Kojima
伸之 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP14603396A priority Critical patent/JP3623853B2/en
Publication of JPH09323017A publication Critical patent/JPH09323017A/en
Application granted granted Critical
Publication of JP3623853B2 publication Critical patent/JP3623853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a large-sized low temperature gas purifier in which the consumption of a liquid nitrogen refrigerant is reduced, and the dissipated quantity of gas to be purified is decreased, and also the evacuation time is shortened. SOLUTION: This gas purifier is provided with a first heat exchanger 23 for cooling gas to be purified of room temperature to the temperature level of liquid nitrogen, second heat exchangers 25a, 25b for cooling the gas to be purified by a nitrogen refrigerant at the prestage of plurally installed adsorbers 3a, 3b, precooling routes 29a, 29b which are branched off from outlet routes 27a, 27b for purified gas brought out from adsorbers to be connected to inlet routes 28a, 28b for the gas to be purified of the other adsorbers, and a regenerated gas circulating route 36 which is branched off from the purified gas outlet routes 27a, 27b and join the gas to be purified inlet routes 28a, 28b of the same adsorbers through a blower and a heater 33.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大型低温ガス精製
器に関し、例えば、ヘリウムガスや水素ガス等の低沸点
ガスを精製するための大型低温ガス精製器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-sized low-temperature gas purifier, for example, a large-sized low-temperature gas purifier for purifying a low boiling point gas such as helium gas or hydrogen gas.

【0002】[0002]

【従来の技術】従来、ヘリウムや水素ガス等を精製する
ための大型低温ガス精製器は、不純物を含む被精製ガス
を冷却するための冷媒液浸漬型熱交換器と、不純物を吸
着除去するため吸着,再生を繰り返す吸着筒とを一組と
して収容したコールドボックスを複数系列設置する構成
になっていた。
2. Description of the Related Art Conventionally, a large-scale low-temperature gas purifier for purifying helium, hydrogen gas, etc. has a refrigerant liquid immersion type heat exchanger for cooling a gas to be purified containing impurities and an adsorbent for removing impurities. It had a configuration in which multiple cold boxes containing a set of adsorption cylinders that repeat adsorption and regeneration were installed.

【0003】図2は、従来の大型低温ガス精製器の一例
を示す系統図であって、不純物として窒素や酸素等、主
に空気成分を含む不純ヘリウムガスを精製するための大
型ヘリウム精製器である。
FIG. 2 is a system diagram showing an example of a conventional large-scale low-temperature gas purifier, which is a large-scale helium purifier for purifying impure helium gas containing mainly air components such as nitrogen and oxygen as impurities. is there.

【0004】この大型ヘリウム精製器は、導入される不
純ヘリウムガスと精製されて導出する高純ヘリウムガス
とを熱交換させる熱交換器1a,1bと、冷却された不
純ヘリウムガスを冷媒である液体窒素により更に冷却す
る冷媒液浸漬型熱交換器2a,2bと、内部に充填した
吸着剤により不純ヘリウムガス中の不純物を吸着除去す
る吸着筒3a,3bとを収容した2個のコールドボック
ス4a,4bと、液体窒素を貯蔵する液体窒素貯槽5
と、液体窒素を気化させて吸着筒3a,3bの再生用窒
素ガスを得るための蒸発器6と、再生用窒素ガスを昇温
するヒーター7と、吸着筒3a,3bに吸着された不純
物を加温再生により脱着させて系外に吸引除去する真空
ポンプ8と、これらの機器を接続する配管及び弁等とに
より構成されている。
This large-scale helium purifier is comprised of heat exchangers 1a and 1b for exchanging heat between the introduced impure helium gas and the purified high-purity helium gas, and the cooled impure helium gas as a liquid refrigerant. Two cold boxes 4a containing the refrigerant liquid immersion type heat exchangers 2a and 2b for further cooling with nitrogen, and the adsorption cylinders 3a and 3b for adsorbing and removing the impurities in the impure helium gas by the adsorbent filled therein. 4b and liquid nitrogen storage tank 5 for storing liquid nitrogen
An evaporator 6 for vaporizing liquid nitrogen to obtain the regenerating nitrogen gas in the adsorption columns 3a, 3b, a heater 7 for raising the temperature of the regenerating nitrogen gas, and impurities adsorbed in the adsorption columns 3a, 3b. It is composed of a vacuum pump 8 that is desorbed by heating regeneration and sucked and removed to the outside of the system, and pipes and valves that connect these devices.

【0005】以下、図2において、コールドボックス4
a側が再生工程、コールドボックス4b側が吸着工程の
場合について説明する。例えば、図示しないヘリウム液
化装置における液化プロセス段階で酸素,窒素等の不純
物が混入した不純ヘリウムガスは、ヘリウム液化装置等
から抜き出され、乾燥器等の設備で予め低温で固化する
成分、例えば水や炭酸ガス等が除去された後、この大型
ヘリウム精製器に導入され、コールドボックス4b側の
入口弁11b,熱交換器1b,冷媒液浸漬型熱交換器2
bを経て液体窒素温度レベルに冷却された後、吸着筒3
bに導入される。そして、該吸着筒3bの内部に充填さ
れた吸着剤により不純物が吸着除去されて高純ヘリウム
ガスとなり、熱交換器1bで前記不純ヘリウムガスと熱
交換を行い、常温となって出口弁12bから導出し、ヘ
リウム液化装置に戻される。
In the following, referring to FIG. 2, the cold box 4
The case where the a side is the regeneration process and the cold box 4b side is the adsorption process will be described. For example, impure helium gas mixed with impurities such as oxygen and nitrogen in the liquefaction process step in a helium liquefaction device (not shown) is extracted from the helium liquefaction device and the like, and is a component that solidifies in advance at a low temperature in equipment such as a dryer, for example, water. After removing carbon dioxide and the like, it is introduced into this large-scale helium purifier, and the inlet valve 11b on the cold box 4b side, the heat exchanger 1b, the refrigerant liquid immersion type heat exchanger 2
After cooling to the liquid nitrogen temperature level via b, the adsorption cylinder 3
b. Then, impurities are adsorbed and removed by the adsorbent filled in the adsorption column 3b to form high-purity helium gas, and heat is exchanged with the impure helium gas in the heat exchanger 1b, and the temperature becomes normal temperature from the outlet valve 12b. It is led out and returned to the helium liquefier.

【0006】なお、吸着工程中、吸着筒3bの外側に付
設されたコイル9bには、吸着筒3bでの吸着熱や外部
からの侵入熱に見合う寒冷を補償するために若干量の液
体窒素が、例えば、冷媒液浸漬型熱交換器2bに設けら
れた図示しない液面調節計で制御されて液体窒素供給弁
13bから供給される。
During the adsorption process, the coil 9b attached to the outside of the adsorption cylinder 3b is provided with a slight amount of liquid nitrogen in order to compensate for the cold which is commensurate with the heat of adsorption in the adsorption cylinder 3b and the heat of invasion from the outside. For example, it is supplied from the liquid nitrogen supply valve 13b under the control of a liquid level controller (not shown) provided in the refrigerant liquid immersion type heat exchanger 2b.

【0007】一方、コールドボックス4a側では,吸着
筒3a内の吸着剤を再生するため、ヘリウムガス系の入
口弁11a,出口弁12a及び液体窒素供給弁13aを
閉じるとともに、冷媒液浸漬型熱交換器2aの液抜き弁
14aを開いて内部の液体窒素を系外に放出する。次い
で、弁15aを開いてヘリウムガス系内の残圧を系外に
放出した後、弁16aを開き、液体窒素貯槽5からの液
体窒素を蒸発器6で気化し、ヒーター7により常温以上
に昇温した加熱窒素ガスを弁16a,吸着筒3a,冷媒
液浸漬型熱交換器2a,弁15aを経由して流し、吸着
筒3a内の吸着剤の加熱再生を行う。これが終わると、
弁15a,弁16aを閉じて真空排気弁17aを開き、
真空ポンプ8を起動してヘリウムガス系内の真空排気を
行い、系内の窒素を主体とする不純物を系外に排出す
る。この操作は、不純物除去を促進するために、真空排
気弁17aを一旦閉じ、不純ヘリウムガスの入口弁11
aを開いて吸着筒3a内を不純ヘリウムガスで置換した
後、入口弁11aを閉じ、真空排気弁17aを開いて再
び真空排気するという置換真空排気操作を複数回繰り返
し行う。
On the other hand, on the cold box 4a side, in order to regenerate the adsorbent in the adsorption cylinder 3a, the inlet valve 11a, the outlet valve 12a and the liquid nitrogen supply valve 13a of the helium gas system are closed and the refrigerant liquid immersion type heat exchange is performed. The liquid removal valve 14a of the container 2a is opened to discharge the liquid nitrogen inside the system to the outside of the system. Then, after opening the valve 15a to release the residual pressure in the helium gas system to the outside of the system, the valve 16a is opened, the liquid nitrogen from the liquid nitrogen storage tank 5 is vaporized by the evaporator 6, and the temperature is raised to room temperature or higher by the heater 7. The heated heated nitrogen gas is caused to flow through the valve 16a, the adsorption cylinder 3a, the refrigerant liquid immersion type heat exchanger 2a, and the valve 15a to heat and regenerate the adsorbent in the adsorption cylinder 3a. When this is over,
Close the valves 15a and 16a and open the vacuum exhaust valve 17a,
The vacuum pump 8 is started to evacuate the helium gas system, and the impurities mainly composed of nitrogen in the system are discharged to the outside of the system. In this operation, in order to promote the removal of impurities, the vacuum exhaust valve 17a is once closed, and the impure helium gas inlet valve 11 is closed.
The replacement vacuum evacuation operation in which a is opened to replace the inside of the adsorption cylinder 3a with impure helium gas, the inlet valve 11a is closed, the vacuum exhaust valve 17a is opened, and vacuum exhaust is performed again is repeated a plurality of times.

【0008】置換真空排気を行って不純物除去が終了す
ると、次の吸着工程に備えるために、吸着筒3aの冷却
を開始する。すなわち、液体窒素供給弁13a,18a
を開いて液体窒素貯槽5から液体窒素を導入し、液体窒
素供給弁18a経由で冷媒液浸漬型熱交換器2a内の冷
却及び液溜めを行うとともに、吸着筒3aの外側に付設
されたコイル9aに液体窒素供給弁13aを経由して液
体窒素を流し、吸着筒3aの冷却を行う。冷却途上でガ
ス化した両経路の窒素ガスは、弁19aから大気に放出
される。
When the displacement vacuum exhaust is performed and the removal of impurities is completed, cooling of the adsorption cylinder 3a is started in preparation for the next adsorption step. That is, the liquid nitrogen supply valves 13a and 18a
And liquid nitrogen is introduced from the liquid nitrogen storage tank 5 to cool and store the inside of the refrigerant liquid immersion type heat exchanger 2a via the liquid nitrogen supply valve 18a, and a coil 9a attached to the outside of the adsorption cylinder 3a. Liquid nitrogen is caused to flow through the liquid nitrogen supply valve 13a to cool the adsorption cylinder 3a. The nitrogen gas in both paths, which has been gasified during cooling, is released from the valve 19a to the atmosphere.

【0009】そして、冷媒液浸漬型熱交換器2a内の液
溜めと、吸着筒3aの冷却温度が規定値になると、ヘリ
ウムガス系統を切換える。すなわち、入口弁11a及び
出口弁12aを開くとともに入口弁11b及び出口弁1
2bを閉じることにより、今度はコールドボックス側4
a側が吸着工程,コールドボックス4b側が再生工程に
入る。この工程を交互に繰返して連続的な精製運転を行
うようにしている。なお、図2において、両系統の同一
作用の弁には、同一数字にa,bの符号を付してある。
Then, when the liquid storage in the refrigerant liquid immersion type heat exchanger 2a and the cooling temperature of the adsorption cylinder 3a reach a specified value, the helium gas system is switched. That is, the inlet valve 11a and the outlet valve 12a are opened, and the inlet valve 11b and the outlet valve 1 are opened.
By closing 2b, this time the cold box side 4
The a side is in the adsorption process, and the cold box 4b side is in the regeneration process. By repeating this process alternately, a continuous refining operation is performed. Note that, in FIG. 2, valves having the same action in both systems are denoted by the same numerals and symbols a and b.

【0010】[0010]

【発明が解決しようとする課題】上述のように、従来の
大型低温ガス精製器では、吸着筒3a,3bの再生に先
立って冷媒液浸漬型熱交換器2a,2b内に液溜めされ
ている多量の液体窒素が全量放出され、また、加熱再生
工程時には、加熱用ガスとして液体窒素貯槽5から導入
された窒素ガスが使用され、循環使用することなく系外
へ排出されている。さらに、吸着筒を予冷する冷却工程
時には、再び冷媒液浸漬型熱交換器2a,2b内への多
量の液溜めが必要であり、冷媒液体窒素の消費量が多く
なるという欠点があった。加えて、加熱用ガスとして窒
素を使用しているため、再生後に行う真空排気で系外に
吸引除去する系内ガスは、その殆んどが窒素成分である
ため、置換真空排気回数が多くなり、置換真空排気のた
め系外へ逸散する被精製ガスの量が多くなるとともに、
真空排気に時間がかかるという不都合があった。
As described above, in the conventional large-sized low-temperature gas purifier, liquid is stored in the refrigerant liquid immersion type heat exchangers 2a and 2b prior to the regeneration of the adsorption columns 3a and 3b. A large amount of liquid nitrogen is completely released, and the nitrogen gas introduced from the liquid nitrogen storage tank 5 is used as a heating gas during the heating regeneration step and is discharged to the outside of the system without being circulated. Further, in the cooling step of precooling the adsorption column, a large amount of liquid is required to be stored again in the refrigerant liquid immersion type heat exchangers 2a and 2b, which results in a large consumption of the refrigerant liquid nitrogen. In addition, since nitrogen is used as a heating gas, most of the in-system gas that is sucked out of the system by vacuum evacuation after regeneration is a nitrogen component, so the number of times of displacement evacuation increases. , The amount of gas to be purified that escapes to the outside of the system increases due to displacement vacuum exhaustion,
There was an inconvenience that it took time to evacuate.

【0011】そこで本発明は、冷媒液体窒素の消費量を
低減するとともに、置換真空排気で逸散する被精製ガス
量が低減でき、また、真空排気時間を短縮することがで
きる大型低温ガス精製器を提供することを目的としてい
る。
Therefore, the present invention reduces the consumption of refrigerant liquid nitrogen, reduces the amount of gas to be purified that is dissipated by the displacement vacuum exhaust, and shortens the vacuum exhaust time. Is intended to provide.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明の大型低温ガス精製器は、被精製ガス、特
に、ヘリウムガス又は水素ガス中の不純物を低温吸着に
より除去する大型低温ガス精製器において、常温の被精
製ガスを冷媒窒素により冷却する第一熱交換器と、複数
個を切換え使用して被精製ガス中の不純物を吸着除去す
る吸着筒と、該吸着筒を冷媒窒素で冷却するコイルと、
該吸着筒の前段で吸着筒に導入される低温被精製ガスを
冷媒窒素により冷却する第二熱交換器とを備えたことを
特徴としている。
In order to achieve the above object, the large-sized low-temperature gas purifier of the present invention is a large-sized low-temperature gas purification for removing impurities in a gas to be purified, particularly helium gas or hydrogen gas by low-temperature adsorption. In the reactor, a first heat exchanger for cooling the purified gas at room temperature with refrigerant nitrogen, an adsorption cylinder for adsorbing and removing impurities in the purified gas by switching and using a plurality of them, and cooling the adsorption cylinder with refrigerant nitrogen A coil to
A second heat exchanger for cooling the low-temperature gas to be purified, which is introduced into the adsorption cylinder before the adsorption cylinder, with refrigerant nitrogen.

【0013】また、本発明は、前記第一熱交換器が温熱
交換部と冷熱交換部とを有し、冷熱交換部は、液体窒素
をサーモサイフォン効果で循環させて被精製ガスを冷却
することを特徴としている。さらに、前記吸着筒の精製
ガス出口経路から分岐し、他の吸着筒の被精製ガス入口
経路に接続する予冷経路を設けたこと、前記吸着筒の精
製ガス出口経路から分岐し、ブロワー及びヒーターを経
由して該吸着筒の被精製ガス入口経路に接続する再生ガ
ス循環経路を設けるとともに、該再生ガス循環経路のブ
ロワー入口側ガスとブロワー出口側ガスとを熱交換させ
てブロワー入口側ガスを昇温する再生用熱交換器を設け
たことを特徴としている。
Further, according to the present invention, the first heat exchanger has a hot heat exchange section and a cold heat exchange section, and the cold heat exchange section circulates liquid nitrogen by a thermosyphon effect to cool the gas to be purified. Is characterized by. Furthermore, a pre-cooling path branched from the purified gas outlet path of the adsorption column and connected to the refined gas inlet path of another adsorption column is provided, and a pre-cooling path branched from the purified gas outlet path of the adsorption column is provided with a blower and a heater. A regeneration gas circulation path connected to the refined gas inlet path of the adsorption column via is provided, and the blower inlet side gas and the blower outlet side gas of the regeneration gas circulation path are heat-exchanged to raise the blower inlet side gas. The feature is that a heat exchanger for regeneration for heating is provided.

【0014】上記構成によれば、吸着筒の切換え毎に、
冷媒液浸漬型熱交換器に液体窒素を液溜めしたり、液溜
めした液体窒素を放出する必要がないため、冷媒液体窒
素の消費量を低減することができる。
According to the above configuration, each time the suction cylinder is switched,
Since it is not necessary to store liquid nitrogen in the refrigerant liquid immersion type heat exchanger or to release the stored liquid nitrogen, it is possible to reduce the consumption amount of the refrigerant liquid nitrogen.

【0015】また、再生ガス循環経路を設けることによ
り、加熱再生用ガスとして窒素に代えて吸着筒内に残る
被精製ガスを循環使用することができ、再生後の置換真
空排気回数を少なくすることができるので、置換真空排
気で逸散する被精製ガス量を低減できるとともに、真空
排気時間を短縮することができる。さらに、予冷経路を
設けたことによっても、冷媒液体窒素の消費量を低減す
ることができる。
Further, by providing the regeneration gas circulation path, the gas to be purified remaining in the adsorption cylinder can be circulated and used as the heating regeneration gas instead of nitrogen, and the number of replacement vacuum exhaust after regeneration can be reduced. Therefore, it is possible to reduce the amount of gas to be purified that is dissipated by the displacement vacuum exhaust, and it is possible to shorten the vacuum exhaust time. Further, by providing the pre-cooling path, it is possible to reduce the consumption amount of the refrigerant liquid nitrogen.

【0016】[0016]

【発明の実施の形態】以下、本発明を、図1を参照して
さらに詳細に説明する。なお、前記従来例と同一要素の
ものには同一符号を付して、その詳細な説明は省略す
る。また、両系統の同一作用の弁及び経路には、同一数
字にa,bの符号を付す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below with reference to FIG. The same elements as those in the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the same numerals and symbols a and b are attached to the valves and paths having the same action in both systems.

【0017】図1は、本発明の大型低温ガス精製器をヘ
リウムガスの精製に用いた一例を示す系統図であって、
この大型ヘリウムガス精製器は、導入される常温の不純
ヘリウムガスを、複数個を切換え使用する吸着筒3a,
3bに導入する前に、液体窒素温度レベルまで冷却する
ための温熱交換部21と冷熱交換部22とからなる第一
熱交換器23を収容した第一コールドボックス24と、
吸着筒3a,3b及び該吸着筒3a,3bの前段に設け
られた第二熱交換器25a,25bをそれぞれ1組とし
て収容する複数の第二,第三コールドボックス26a,
26bと、各吸着筒3a,3bの精製ガス出口経路27
a,27bから分岐し、他の吸着筒3a,3bの被精製
ガス入口経路28a,28bに接続する予冷経路29
a,29b及び予冷弁30a,30bから形成される吸
着筒予冷用の経路と、吸着筒3a,3bの残圧を各精製
ガス出口経路27a,27bから経路31a,31bに
分岐し、分岐したガスを昇圧するブロワー32、昇温す
るヒーター33及びブロワー32の入口側ガスと出口側
ガスとを熱交換させて入口側ガスを昇温する再生用熱交
換器34を経た後、経路35a,35bを介して各被精
製ガス入口経路28a,28bに接続する再生ガス循環
経路36と、従来同様の液体窒素貯槽5、蒸発器6、真
空ポンプ8及びこれら機器を接続する経路や弁とにより
構成されている。
FIG. 1 is a system diagram showing an example in which the large-sized low-temperature gas purifier of the present invention is used to purify helium gas.
This large-scale helium gas purifier is equipped with an adsorption column 3a for switching a plurality of normal temperature impure helium gases to be used,
Before being introduced into 3b, a first cold box 24 containing a first heat exchanger 23 consisting of a heat exchanger 21 and a heat exchanger 22 for cooling to a liquid nitrogen temperature level,
Adsorption cylinders 3a, 3b and a plurality of second and third cold boxes 26a for accommodating the second heat exchangers 25a, 25b provided in front of the adsorption cylinders 3a, 3b as one set, respectively.
26b and the purified gas outlet path 27 of each adsorption cylinder 3a, 3b
a precooling path 29 branched from a and 27b and connected to the purified gas inlet paths 28a and 28b of the other adsorption columns 3a and 3b.
a, 29b and precooling valves 30a, 30b for adsorbing cylinder precooling, and residual pressure of the adsorbing cylinders 3a, 3b is branched from each purified gas outlet passage 27a, 27b to a passage 31a, 31b. After passing through the blower 32 for increasing the pressure, the heater 33 for raising the temperature, and the regeneration heat exchanger 34 for heating the inlet side gas and the outlet side gas of the blower 32 to raise the temperature of the inlet side gas, the paths 35a, 35b are It is composed of a regenerated gas circulation path 36 connected to each of the purified gas inlet paths 28a and 28b via the liquid nitrogen storage tank 5, the evaporator 6, the vacuum pump 8 and a path and a valve connecting these devices. There is.

【0018】前記第一熱交換器23は、一体成形された
形式でもよいが、本形態例では、温熱交換部21と冷熱
交換部22とを別個に形成し、冷熱交換部22は、液体
窒素溜37の液体窒素をサーモサイフォン効果で循環さ
せることにより、導入経路38から大型低温ガス精製器
の系内に導入される不純ヘリウムガスを冷却するように
構成している。
The first heat exchanger 23 may be of an integrally-molded type, but in the present embodiment, the warm heat exchange section 21 and the cold heat exchange section 22 are separately formed, and the cold heat exchange section 22 is made of liquid nitrogen. By circulating the liquid nitrogen in the reservoir 37 by the thermosiphon effect, the impure helium gas introduced from the introduction path 38 into the system of the large-sized low-temperature gas purifier is cooled.

【0019】以下、本形態例の大型ヘリウムガス精製器
によりヘリウムガスを精製する操作に基づいて説明す
る。図示しないヘリウム液化装置からの不純ヘリウムガ
ス、例えば不純物含有量が1000ppm程度の不純ヘ
リウムガスは、従来と同様に低温時に固化する水分等の
成分が予め除去された後、導入経路38から第一コール
ドボックス24内に導入される。第一コールドボックス
24内に導入された不純ヘリウムガスは、吸着筒3a,
3bに導入する前の不純ヘリウムガスを共通して冷却す
るための第一熱交換器23の温熱交換部21で、精製さ
れて帰還する低温の高純ヘリウムガス及び液体窒素溜3
7から供給される低温窒素ガスと熱交換して冷却され、
続いて冷熱交換部22で、液体窒素溜37からの液体窒
素と熱交換を行い、液体窒素の顕熱と潜熱とにより液体
窒素温度レベルまで冷却される。
The operation for purifying helium gas by the large helium gas purifier of this embodiment will be described below. Impurity helium gas from a helium liquefier (not shown), for example, impure helium gas having an impurity content of about 1000 ppm is removed from the first cold passage from the introduction path 38 after components such as water that solidify at low temperature are removed in the same manner as in the conventional case. It is installed in the box 24. The impure helium gas introduced into the first cold box 24 is absorbed by the adsorption column 3a,
In the warm heat exchange section 21 of the first heat exchanger 23 for commonly cooling the impure helium gas before being introduced into 3b, the purified high temperature pure helium gas and the liquid nitrogen reservoir 3 to be returned.
It is cooled by exchanging heat with the low temperature nitrogen gas supplied from 7.
Subsequently, the cold heat exchange section 22 exchanges heat with the liquid nitrogen from the liquid nitrogen reservoir 37, and the liquid nitrogen is cooled to the liquid nitrogen temperature level by the sensible heat and the latent heat of the liquid nitrogen.

【0020】上記冷熱交換部22における液体窒素は、
不純ヘリウムガスを冷却することにより自身は昇温して
液体窒素の一部がガス化し、このガスが液体窒素に揚力
を与えるサーモサイフォン効果を発生し、このサーモサ
イフォン効果の作用により、液体窒素溜37内の液体窒
素が、経路37i,冷熱交換部22,経路37oを流れ
て液体窒素溜37に循環する。そして、この循環流れに
おいて、冷熱交換部22で不純ヘリウムガスを冷却する
ことにより、液体窒素の一部がガス化して飽和温度の窒
素ガスとなり、この窒素ガスが、経路37gを介して前
記温熱交換部21に供給され、該温熱交換部21に導入
される常温の不純ヘリウムガスに常温までの顕熱に相当
する寒冷を与えて自身は昇温し、経路39,弁40を経
て系外に放出される。
The liquid nitrogen in the cold heat exchange section 22 is
By cooling the impure helium gas, the temperature of the liquid nitrogen itself rises and a part of the liquid nitrogen is gasified, and this gas produces a thermosiphon effect that gives a lift to the liquid nitrogen. The liquid nitrogen in 37 flows through the path 37 i, the cold heat exchange unit 22, and the path 37 o and circulates in the liquid nitrogen reservoir 37. Then, in this circulating flow, by cooling the impure helium gas in the cold heat exchange section 22, a part of the liquid nitrogen is gasified to become the nitrogen gas at the saturation temperature, and this nitrogen gas exchanges the heat through the path 37g. The impure helium gas at room temperature supplied to the part 21 and introduced into the heat exchange part 21 is given a cold equivalent to sensible heat up to room temperature to heat itself, and is discharged to the outside of the system through the path 39 and the valve 40. To be done.

【0021】このとき、系外に放出される上記窒素ガス
に相当する量の液体窒素は、液体窒素貯槽5から経路4
1を経て、例えば、液体窒素溜37に設けられた図示し
ない液面調節計で制御される液体窒素供給弁42を経由
して液体窒素溜37に補給される。
At this time, the amount of liquid nitrogen corresponding to the above-mentioned nitrogen gas released to the outside of the system is passed from the liquid nitrogen storage tank 5 to the path 4
1, the liquid nitrogen reservoir 37 is replenished through the liquid nitrogen supply valve 42 controlled by a liquid level controller (not shown) provided in the liquid nitrogen reservoir 37.

【0022】このように、第一熱交換器23の冷熱交換
部22に、サーモサイフォン熱交換器を採用し、温熱交
換部21を形成する熱交換器と分けて構成することによ
り、一体で構成した場合に発生し易い冷媒側の液体窒素
の沸騰蒸発に起因する圧力変動や、温熱交換部への液滴
同伴による熱交換温度の不安定を防止することができ、
液体窒素の顕熱と潜熱とを効率的かつ有効に利用して安
定した運転をすることができる。
As described above, by adopting the thermosiphon heat exchanger as the cold heat exchanging portion 22 of the first heat exchanger 23 and separately configuring it with the heat exchanger forming the heat exchanging portion 21, it is integrally formed. It is possible to prevent pressure fluctuation due to boiling evaporation of liquid nitrogen on the refrigerant side, which easily occurs in the case of, and instability of heat exchange temperature due to entrainment of liquid droplets in the heat exchange part,
Stable operation can be performed efficiently and effectively using the sensible heat and the latent heat of liquid nitrogen.

【0023】第一熱交換器23の冷熱交換部22で液体
窒素温度レベルに冷却された不純ヘリウムガスは、第一
コールドボックス24から低温不純ガス導入経路43に
導出された後、吸着工程を行っている吸着筒に導入され
る。以下、吸着筒3bが吸着工程、吸着筒3aが再生工
程を行っているとして説明を進める。
The impure helium gas cooled to the liquid nitrogen temperature level in the cold heat exchange section 22 of the first heat exchanger 23 is led out from the first cold box 24 to the low temperature impure gas introduction path 43 and then subjected to the adsorption step. Is introduced into the adsorption cylinder. Hereinafter, the description will be made assuming that the adsorption cylinder 3b performs the adsorption process and the adsorption cylinder 3a performs the regeneration process.

【0024】不純ヘリウムガスは、低温不純ガス導入経
路43から分岐経路43b側に流れ、入口弁44bから
被精製ガス入口経路28bを経て第三コールドボックス
26b内の第二熱交換器25bに導入され、コイル9b
から経路45bに導出される少量の液体窒素と熱交換し
て冷却される。
The impure helium gas flows from the low temperature impure gas introduction path 43 to the branch path 43b side, and is introduced from the inlet valve 44b to the purified gas inlet path 28b to the second heat exchanger 25b in the third cold box 26b. , Coil 9b
The liquid nitrogen is cooled by exchanging heat with a small amount of liquid nitrogen led to the path 45b.

【0025】上記第二熱交換器25bで冷却された低温
不純ヘリウムガスは、筒外周に付設されたコイル9bを
流れる少量の液体窒素により冷却されている吸着筒3b
に導入され、筒内に充填されている吸着剤により不純物
が吸着除去される。これにより、例えば、不純物含有量
1ppm以下の高純ヘリウムガスとなり、吸着筒3bか
ら精製ガス出口経路27bに導出される。
The low temperature impure helium gas cooled by the second heat exchanger 25b is cooled by a small amount of liquid nitrogen flowing through the coil 9b attached to the outer circumference of the cylinder 3b.
The impurities are adsorbed and removed by the adsorbent introduced into the cylinder and filled in the cylinder. As a result, for example, high-purity helium gas having an impurity content of 1 ppm or less is discharged from the adsorption column 3b to the purified gas outlet path 27b.

【0026】吸着筒3bが吸着工程にあるときに前記コ
イル9bに供給される液体窒素は、第二熱交換器25b
出口の低温不純ヘリウムガスの温度を測定する温度計
(図示せず)により制御される液体窒素供給弁13bで
流量調節され、液体窒素貯槽5から液体窒素経路46,
46bを経て所定流量で供給される。
The liquid nitrogen supplied to the coil 9b when the adsorption column 3b is in the adsorption step is the second heat exchanger 25b.
The flow rate is adjusted by the liquid nitrogen supply valve 13b controlled by a thermometer (not shown) for measuring the temperature of the low temperature impure helium gas at the outlet, and the liquid nitrogen storage tank 5 to the liquid nitrogen path 46,
It is supplied at a predetermined flow rate via 46b.

【0027】上記コイル9b及び第二熱交換器25bを
流れる液体窒素は、前記低温不純ヘリウムガスが流れる
低温不純ガス導入経路43,分岐経路43b、入口弁4
4b、被精製ガス入口経路28bや第三コールドボック
ス26bにおける侵入熱及び吸着筒3bでの吸着熱を補
償している。
The liquid nitrogen flowing through the coil 9b and the second heat exchanger 25b is the low temperature impure gas introduction path 43, the branch path 43b, and the inlet valve 4 through which the low temperature impure helium gas flows.
4b, the gas to be purified inlet 28b and the invasion heat in the third cold box 26b and the heat of adsorption in the adsorption cylinder 3b are compensated.

【0028】精製ガス出口経路27bを流れて第三コー
ルドボックス26bを導出した高純ヘリウムガスは、出
口弁47bから分岐経路48b,高純ガス導出経路48
を経て第一コールドボックス24に戻り、第一熱交換器
23の温熱交換部21で、前記導入経路38から導入さ
れる常温の不純ヘリウムガスと熱交換してこれを冷却
し、自身は常温まで昇温して第一コールドボックス24
を導出し、常温の高純ヘリウムガスとなって戻り経路4
9からヘリウム液化装置に戻される。
The high-purity helium gas flowing through the purified gas outlet path 27b and led out from the third cold box 26b is branched from the outlet valve 47b into a branch path 48b and a high-purity gas outlet path 48.
After returning to the first cold box 24, the heat exchanging part 21 of the first heat exchanger 23 exchanges heat with the impure helium gas at room temperature introduced through the introduction path 38 to cool the impure helium gas. First cold box 24
To obtain high-purity helium gas at room temperature and return path 4
Returned to the helium liquefier from 9.

【0029】一方、再生工程を行っている吸着筒3a側
では、まず、入口弁44a,出口弁47aが閉じられ、
ヘリウムガス系統を吸着筒3b側系列から切放す。同時
に、液体窒素供給弁13aも閉じ、放出弁(図示せず)
を介してコイル9a内の液体窒素を系外に放出する。し
たがって、吸着工程から再生工程に切換える際に放出さ
れる液体窒素は、コイル9a内に残る量のみであり、こ
の量は、従来の冷媒液浸漬式熱交換器に液溜めされて放
出されていた量に比較してはるかに少なく、液体窒素の
消費量を大幅に低減することができる。
On the other hand, on the side of the adsorption cylinder 3a in which the regeneration process is performed, first, the inlet valve 44a and the outlet valve 47a are closed,
The helium gas system is cut off from the adsorption cylinder 3b side system. At the same time, the liquid nitrogen supply valve 13a is also closed, and a discharge valve (not shown)
The liquid nitrogen in the coil 9a is discharged to the outside of the system via the. Therefore, the amount of liquid nitrogen released when switching from the adsorption process to the regeneration process is only the amount that remains in the coil 9a, and this amount was stored and released in the conventional refrigerant liquid immersion heat exchanger. It is much smaller than the amount, and the consumption of liquid nitrogen can be greatly reduced.

【0030】次いで、吸着筒3aの精製ガス出口経路2
7aから分岐した経路31aの循環弁50a、あるいは
図示しない放出弁を開いて系内の低温ヘリウムガスを放
出し、例えば、吸着筒3aの吸着筒入口部51aに設け
た圧力計で検出した系内圧力が所定圧力になるまで系内
を減圧する。このとき、放出時間と共に低下するヘリウ
ム系内の圧力は、再生ガス循環経路36に設けられた圧
力調節計(PIC)52により制御される圧力調節弁5
3によって所定圧力に調節,維持される。
Next, the purified gas outlet path 2 of the adsorption column 3a
In the system, the circulation valve 50a of the path 31a branched from 7a or a release valve (not shown) is opened to release the low temperature helium gas in the system and detected by, for example, a pressure gauge provided at the adsorption cylinder inlet 51a of the adsorption cylinder 3a. The pressure inside the system is reduced until the pressure reaches a predetermined pressure. At this time, the pressure in the helium system that decreases with the release time is controlled by the pressure control valve (PIC) 52 provided in the regeneration gas circulation path 36.
The pressure is adjusted and maintained at a predetermined pressure by 3.

【0031】吸着筒3a内の残圧が規定値、例えば0.
1kg/cm2 Gまで低下したら、吸着筒加熱弁54a
を開き、ブロワー32及びヒーター33を起動する。こ
れにより、再生ガス循環経路36が確立され、吸着筒3
a内に残ったヘリウムガスによる吸着筒3a内の吸着剤
の加熱再生工程が開始される。すなわち、吸着筒3a内
のヘリウムガスは、筒出口側の精製ガス出口経路27
a,循環弁50aを経て再生ガス循環経路36内に入
り、再生用熱交換器34からブロワー32,ヒーター3
3を経て経路35aに至り、吸着筒加熱弁54aを通っ
て吸着筒入口部51aから吸着筒3a内に流入し、再び
精製ガス出口経路27aに導出されてこの経路を循環す
る。
The residual pressure in the adsorption cylinder 3a is a specified value, for example, 0.
When the pressure drops to 1 kg / cm 2 G, the adsorption cylinder heating valve 54a
To open the blower 32 and the heater 33. As a result, the regeneration gas circulation path 36 is established, and the adsorption cylinder 3
The heating and regenerating process of the adsorbent in the adsorption column 3a by the helium gas remaining in a is started. That is, the helium gas in the adsorption cylinder 3a is supplied to the purified gas outlet path 27 on the cylinder outlet side.
a, through the circulation valve 50a, into the regeneration gas circulation path 36, from the regeneration heat exchanger 34 to the blower 32, the heater 3
3 to reach the path 35a, the adsorption cylinder heating valve 54a, the adsorption cylinder inlet portion 51a to flow into the adsorption cylinder 3a, and the gas is again guided to the purified gas outlet path 27a and circulates in this path.

【0032】この循環中、再生用熱交換器34では、吸
着筒3aから再生ガス循環経路36に導出した低温のヘ
リウムガスを、ブロワー32で昇圧する際に発生する圧
縮熱により昇温したヘリウムガスと熱交換させて昇温す
る。また、ブロワー32では、循環経路の流路抵抗分の
圧力が付与され、温度調節計(TIC)55により制御
されるヒーター33では、再生のための所定温度、例え
ば50℃に加温される。
During this circulation, in the regeneration heat exchanger 34, the low temperature helium gas led out from the adsorption column 3a to the regeneration gas circulation path 36 is heated by the compression heat generated when the blower 32 pressurizes the helium gas. And heat up to raise the temperature. Further, in the blower 32, a pressure corresponding to the flow path resistance of the circulation path is applied, and in the heater 33 controlled by the temperature controller (TIC) 55, it is heated to a predetermined temperature for regeneration, for example, 50 ° C.

【0033】なお、再生工程の初期には、吸着筒3aか
ら導出するヘリウムガスは、略液体窒素温度レベルの低
温であるから、これを昇温するため、図1に破線で示す
ように、前記常温の不純ヘリウムガスが導入される導入
経路38に循環ガス加熱経路56を接続するとともに、
流路切換弁57c,57dを設け、再生工程初期、例え
ば吸着筒3aから導出した循環ヘリウムガスの温度が1
0℃程度に昇温するまでの間、この大型ヘリウムガス精
製器に導入される常温の不純ヘリウムガスを、弁57c
を閉じて弁57dを開くことにより循環ガス加熱経路5
6に流し、再生用熱交換器34に導入して低温の循環ヘ
リウムガスを冷却するようにしてもよい。これにより、
再生用熱交換器34の低温化が防止できるとともに、導
入される常温の不純ヘリウムガスが再生用熱交換器34
で冷却された分、第一熱交換器23における冷媒液体窒
素の消費量を低減できる。
At the beginning of the regeneration process, the helium gas discharged from the adsorption column 3a is at a low temperature of approximately liquid nitrogen temperature level, so that the temperature of the helium gas is raised, as shown by the broken line in FIG. The circulation gas heating path 56 is connected to the introduction path 38 through which the impure helium gas at room temperature is introduced, and
The flow path switching valves 57c and 57d are provided so that the temperature of the circulating helium gas derived from the adsorption cylinder 3a is 1 at the initial stage of the regeneration process.
Until the temperature is raised to about 0 ° C., the room temperature impure helium gas introduced into the large-scale helium gas purifier is supplied to the valve 57c.
By closing the valve and opening the valve 57d.
Alternatively, it may be introduced into the regeneration heat exchanger 34 to cool the low-temperature circulating helium gas. This allows
The temperature of the heat exchanger 34 for regeneration can be prevented from lowering, and the introduced impure helium gas at normal temperature is introduced into the heat exchanger 34 for regeneration.
The amount of the refrigerant liquid nitrogen consumed in the first heat exchanger 23 can be reduced by the amount of the cooling performed in Step 1.

【0034】吸着筒3aにおける加熱再生工程の進行に
よって再生ガス循環経路36全体の温度が上昇し、これ
に伴って系内の圧力が上昇するが、この場合は、圧力調
節計52の指示により圧力調整弁53が開いて系内のガ
スが系外に放出される。逆に万一、例えば操作ミス等に
より系内の圧力が規定値以下に下がった場合は、圧力調
節計52の指示により窒素ガス供給弁58が開き、液体
窒素貯槽5内の液体窒素が蒸発器6で蒸発した後に、バ
ックアップ用窒素ガスとして再生ガス循環経路36に導
入される。これにより、系内は常に所定圧力範囲に維持
されることになる。
The temperature of the entire regeneration gas circulation path 36 rises due to the progress of the heating regeneration step in the adsorption cylinder 3a, and the pressure in the system rises accordingly. In this case, the pressure is instructed by the pressure controller 52. The regulating valve 53 is opened and the gas in the system is released to the outside of the system. On the contrary, if the pressure in the system falls below the specified value due to an operation error, the nitrogen gas supply valve 58 is opened by the instruction of the pressure controller 52, and the liquid nitrogen in the liquid nitrogen storage tank 5 is evaporated. After evaporating in 6, the nitrogen gas for backup is introduced into the regeneration gas circulation path 36. As a result, the inside of the system is always maintained within the predetermined pressure range.

【0035】また、ヒーター33の入口ガスは、再生用
熱交換器34で低温の循環ヘリウムガスと熱交換してい
るため、吸着筒3a内の温度上昇、即ち循環ヘリウムガ
スの温度の上昇と共にヒーター33の負荷が減少し、ヒ
ーター33の消費電力を削減することができる。
Further, since the inlet gas of the heater 33 is heat-exchanged with the low-temperature circulating helium gas in the regeneration heat exchanger 34, the temperature of the adsorbing cylinder 3a rises, that is, the temperature of the circulating helium gas rises and the heater heats up. The load of 33 is reduced, and the power consumption of the heater 33 can be reduced.

【0036】吸着筒3aの加熱再生が、例えば、吸着筒
3aの吸着筒出口部59aに設けた温度計(図示せず)
が規定温度以上を検知することにより終了すると、循環
弁50a及び吸着筒加熱弁54aを閉じた後、吸着筒3
a内の吸着剤が吸着した不純物を系外に排出するため、
真空排気弁17aを開いて真空ポンプ8を起動し、吸着
筒3a内の真空排気を行って不純物を排気経路60から
系外に放出する。
The heating and regeneration of the adsorption cylinder 3a is performed by, for example, a thermometer (not shown) provided at the adsorption cylinder outlet 59a of the adsorption cylinder 3a.
Is detected by detecting the temperature equal to or higher than the specified temperature, the circulation valve 50a and the adsorption cylinder heating valve 54a are closed, and then the adsorption cylinder 3 is closed.
Since the adsorbent in a discharges the adsorbed impurities out of the system,
The vacuum exhaust valve 17a is opened and the vacuum pump 8 is activated to evacuate the adsorption cylinder 3a to discharge impurities from the exhaust path 60 to the outside of the system.

【0037】この場合、本形態例では、再生ガスとして
吸着筒3a内に残ったヘリウムガスを使用しており、従
来のように窒素を使用しないので、加熱再生工程での窒
素をゼロとすることができ、冷媒液体窒素の消費量を低
減することができるだけでなく、真空排気工程では、加
熱再生用として窒素ガスを使用した場合に比べ、吸着筒
3a内から真空排気するガス中の不純物成分である窒素
成分が少ないので、置換真空排気回数も少なくてすみ、
これにより、置換真空排気によるヘリウムガスの逸散量
を少なくすることができるとともに、真空排気に要する
時間を短縮することができる。
In this case, in this embodiment, the helium gas remaining in the adsorption column 3a is used as the regeneration gas, and nitrogen is not used as in the conventional case. Therefore, the nitrogen in the heating regeneration step should be zero. In addition to being able to reduce the consumption of the liquid nitrogen in the refrigerant, in the vacuum evacuation step, compared with the case where nitrogen gas is used for heating regeneration, the amount of impurity components in the gas evacuated from the adsorption cylinder 3a is reduced. Since a certain nitrogen component is small, the number of times of displacement evacuation is small,
As a result, it is possible to reduce the amount of helium gas that is dissipated by the displacement evacuation, and it is possible to shorten the time required for evacuation.

【0038】真空排気による不純物の除去工程の終了判
定は、導入される不純ヘリウムガス中の不純物の含有
量,吸着圧力,吸着工程時間等から、再生時に脱着する
不純物の絶対量を算出し、これに基づいて再生圧力と真
空排気圧力との差から、計算で求められた真空排気の回
数で行うこともできるし、また、系内ガスの分析を行っ
て不純物量を確認してもよい。
To determine the completion of the impurity removal step by vacuum evacuation, the absolute amount of impurities desorbed during regeneration is calculated from the content of impurities in the introduced impure helium gas, the adsorption pressure, the adsorption step time, etc. The number of times of vacuum evacuation calculated based on the difference between the regeneration pressure and the vacuum evacuation pressure may be used, or the amount of impurities may be confirmed by analyzing the gas in the system.

【0039】不純物が除去された吸着筒3aは、次いで
冷却工程に入る。この冷却工程では、吸着筒3aの精製
ガス出口経路27aから分岐した予冷経路29aの予冷
弁30aを開き、吸着筒3aの入口弁44aを僅かに開
くとともに、吸着筒3bの入口弁44bを僅かに閉じ、
両入口弁44a,44bの開度を調節して低温不純ガス
導入経路43から導入される液体窒素温度レベルの低温
不純ヘリウムガスの一部を分岐経路43aに分岐し、被
精製ガス入口経路28a及び第二熱交換器25aを経由
して吸着筒3aに導入し、内部の吸着剤を冷却して精製
ガス出口経路27aに導出し、予冷経路29aから吸着
筒3bに導入される被精製ガス入口経路28bの不純低
温ヘリウムガスに合流させる。これにより、吸着筒3a
内の吸着剤が、液体窒素温度レベルの低温不純ヘリウム
ガスにより冷却される。
The adsorption cylinder 3a from which impurities have been removed then enters a cooling step. In this cooling step, the precooling valve 30a of the precooling path 29a branched from the purified gas outlet path 27a of the adsorption cylinder 3a is opened, the inlet valve 44a of the adsorption cylinder 3a is slightly opened, and the inlet valve 44b of the adsorption cylinder 3b is slightly opened. Close,
A part of the low-temperature impure helium gas having the liquid nitrogen temperature level introduced from the low-temperature impure gas introduction path 43 is branched into the branch path 43a by adjusting the openings of the both inlet valves 44a, 44b, and the purified gas inlet path 28a and The gas to be purified is introduced into the adsorption column 3a via the second heat exchanger 25a, the adsorbent inside is cooled and led to the purified gas outlet route 27a, and the pre-cooled route 29a is introduced into the adsorption column 3b to be introduced into the adsorption column 3b. 28b is mixed with impure low temperature helium gas. As a result, the suction cylinder 3a
The adsorbent therein is cooled by low temperature impure helium gas at the liquid nitrogen temperature level.

【0040】一方、同時に、液体窒素供給弁13aと吸
着筒予冷用窒素出口弁61aとを開き、吸着筒3aの外
側に付設されたコイル9aに、液体窒素貯槽5からの液
体窒素を液体窒素経路46,液体窒素供給弁13a及び
液体窒素経路46aを経由して導入し、吸着筒3aを間
接的に冷却する。この冷却工程中、コイル9aを流れる
液体窒素は、気化して昇温するので、コイル9aを導出
した後、窒素ガス排気経路62aから吸着筒予冷用窒素
出口弁61aを介して系外に放出し、第二熱交換器25
aが暖まらないようにする。
On the other hand, at the same time, the liquid nitrogen supply valve 13a and the adsorption cylinder precooling nitrogen outlet valve 61a are opened, and the liquid nitrogen from the liquid nitrogen storage tank 5 is supplied to the coil 9a attached to the outside of the adsorption cylinder 3a. 46, the liquid nitrogen supply valve 13a and the liquid nitrogen passage 46a to introduce the adsorption cylinder 3a indirectly. During this cooling step, the liquid nitrogen flowing through the coil 9a vaporizes and rises in temperature, so after it is led out of the coil 9a, it is discharged from the nitrogen gas exhaust path 62a to the outside of the system via the adsorption cylinder precooling nitrogen outlet valve 61a. , Second heat exchanger 25
Prevent a from warming up.

【0041】この冷却工程により、吸着筒3aが所定の
温度、例えば吸着筒3aの出口部59aに設けた図示し
ない温度計が所定温度以下を検知して予冷が完了する
と、吸着筒3a,3bの切換えを行う。すなわち、吸着
筒3a側の入口弁44a,出口弁47aを開き、吸着筒
3b側の入口弁44b,出口弁47bを閉じるととも
に、予冷経路29aの予冷弁30a及び吸着筒予冷用窒
素出口弁61aを閉じることにより、吸着筒3aが吸着
工程に、吸着筒3bが再生工程に切換えられ、ヘリウム
ガスの精製運転が連続的に行われる。
By this cooling step, when the adsorption cylinder 3a has a predetermined temperature, for example, a thermometer (not shown) provided at the outlet 59a of the adsorption cylinder 3a detects a temperature equal to or lower than the predetermined temperature and pre-cooling is completed, the adsorption cylinders 3a and 3b are cooled. Switch over. That is, the inlet valve 44a and the outlet valve 47a on the adsorption cylinder 3a side are opened, the inlet valve 44b and the outlet valve 47b on the adsorption cylinder 3b side are closed, and the precooling valve 30a and the adsorption cylinder precooling nitrogen outlet valve 61a on the precooling path 29a are closed. By closing, the adsorption column 3a is switched to the adsorption step and the adsorption column 3b is switched to the regeneration step, and the helium gas refining operation is continuously performed.

【0042】このように、吸着筒3aを予冷するための
冷却工程においても、吸着筒3a及び内部の吸着剤の冷
却を、液体窒素温度レベルの低温不純ヘリウムガスで行
うようにしたから、従来のように冷媒液浸漬式熱交換器
に多量の液体窒素を液溜めする必要がないので、冷媒液
体窒素の消費量を大幅に減少させることができる。
As described above, even in the cooling process for precooling the adsorption cylinder 3a, the adsorption cylinder 3a and the adsorbent inside are cooled by the low temperature impure helium gas at the liquid nitrogen temperature level. As described above, since it is not necessary to store a large amount of liquid nitrogen in the refrigerant liquid immersion type heat exchanger, the consumption amount of the refrigerant liquid nitrogen can be significantly reduced.

【0043】なお、上記形態例では、第一熱交換器23
を、温熱交換部21を形成する熱交換器と、液体窒素溜
37に組合わせて設けた冷熱交換部22を形成するサー
モサイフォン熱交換器とに分割した構成の場合について
説明したが、液体窒素溜37を設けずに、第一熱交換器
23を一体的な構成とし、液体窒素供給弁42から供給
される液体窒素を冷端側から、また、低温の高純ヘリウ
ムガスを冷端側又は中間部から導入するようにしてもよ
い。
In the above embodiment, the first heat exchanger 23
The case where the heat exchanger that forms the heat exchanger 21 and the thermosyphon heat exchanger that forms the cold heat exchanger 22 that is provided in combination with the liquid nitrogen reservoir 37 is divided has been described. The first heat exchanger 23 is integrated without providing the reservoir 37, liquid nitrogen supplied from the liquid nitrogen supply valve 42 is supplied from the cold end side, and low-temperature high-purity helium gas is supplied to the cold end side. You may make it introduce | transduce from an intermediate part.

【0044】また、液体窒素及び液体窒素温度レベルの
低温のヘリウムガスが流れる経路の配管や弁は、これら
をそれぞれ断熱構造として形成したり、各コールドボッ
クス内等に収容したりするようにしてもよく、大きさの
制限範囲内で各コールドボックスを一体化することもで
きる。
The pipes and valves in the path through which the liquid nitrogen and the low temperature helium gas at the liquid nitrogen temperature level flow may be formed as a heat insulating structure or housed in each cold box or the like. Of course, each cold box can be integrated within the size limit.

【0045】さらに、第二熱交換器25a,25bへの
液体窒素は、コイル9a,9bを介して導入することな
く、液体窒素貯槽5から液体窒素経路46を経由して導
入される液体窒素を、適当な分岐経路及び弁を設けて直
接導入するようにしてもよい。
Further, the liquid nitrogen introduced into the second heat exchangers 25a and 25b is the liquid nitrogen introduced from the liquid nitrogen storage tank 5 through the liquid nitrogen passage 46 without being introduced through the coils 9a and 9b. Alternatively, a proper branching path and valve may be provided for direct introduction.

【0046】また、本発明の大型低温ガス精製器は、被
精製ガスとしてヘリウムや水素に限らず、液体窒素より
低沸点のガス、例えばネオン等にも適用することがで
き、また、冷媒液体窒素は、圧力を高くすればその温度
も高くなるので、冷媒液体窒素の圧力を高くし、被精製
ガスの固化温度より高い温度に設定して使用すれば、ア
ルゴンや酸素等の精製にも適用することができる。
The large-scale low-temperature gas purifier of the present invention can be applied not only to helium or hydrogen as a gas to be purified but also to a gas having a boiling point lower than that of liquid nitrogen, such as neon, and the liquid nitrogen refrigerant. Since the higher the pressure, the higher the temperature, the pressure of the refrigerant liquid nitrogen is also increased, and if it is set to a temperature higher than the solidification temperature of the gas to be purified, it can be applied to the purification of argon, oxygen, etc. be able to.

【0047】[0047]

【発明の効果】以上説明したように、本発明の大型低温
ガス精製器によれば、吸着筒や導入ガスを冷却するため
の冷媒液体窒素の消費量を大幅に低減することができ
る。また、再生ガス循環経路を設けたことにより、工程
切換え時に吸着筒内に残るヘリウムガスを再生用ガスと
して循環使用することができるので、加熱ガスとしての
窒素が不要となり、この点でも窒素の消費量を低減する
ことができる。さらに、再生後の置換真空排気回数を減
らすことができるので、置換真空排気工程で逸散する被
精製ガスの量を低減することができるとともに、真空排
気時間を短縮することもできる。
As described above, according to the large-sized low-temperature gas purifier of the present invention, the consumption of the refrigerant liquid nitrogen for cooling the adsorption column and the introduced gas can be greatly reduced. In addition, by providing the recycle gas circulation path, the helium gas remaining in the adsorption cylinder can be circulated and used as the recycle gas when the process is switched, so that nitrogen as a heating gas is not necessary, and in this respect as well, the consumption of nitrogen is reduced. The amount can be reduced. Further, since the number of times of the displacement vacuum exhaustion after the regeneration can be reduced, the amount of the gas to be purified scattered in the displacement vacuum exhaustion step can be reduced and the vacuum exhaust time can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の大型低温ガス精製器の一形態例を示
す系統図である。
FIG. 1 is a system diagram showing an example of an embodiment of a large-sized low-temperature gas purifier of the present invention.

【図2】 従来の大型低温ガス精製器の一例を示す系統
図である。
FIG. 2 is a system diagram showing an example of a conventional large-sized low-temperature gas purifier.

【符号の説明】[Explanation of symbols]

3a,3b…吸着筒、5…液体窒素貯槽、6…蒸発器、
8…真空ポンプ、9a,9b…コイル、13a,13b
…液体窒素供給弁、17a,17b…真空排気弁、21
…温熱交換部、22…冷熱交換部、23…第一熱交換
器、24…第一コールドボックス、25a,25b…第
二熱交換器、26a…第二コールドボックス、26b…
第三コールドボックス、27a,27b…精製ガス出口
経路、28a,28b…被精製ガス入口経路、29a,
29b…予冷経路、30a,30b…予冷弁、31a,
31b…経路、32…ブロワー、33…ヒーター、34
…再生用熱交換器、35a,35b…経路、36…再生
ガス循環経路、37…液体窒素溜、37g,37i,3
7o…経路、38…導入経路,39…経路、40…弁、
41…経路、42…液体窒素供給弁、43…低温不純ガ
ス導入経路、43a,43b…分岐経路、44a,44
b…入口弁、45a,45b…経路、46,46a,4
6b…液体窒素経路、47a,47b…出口弁、48…
高純ガス導出経路、48a,48b…分岐経路、49…
戻り経路、50a,50b…循環弁、51a,51b…
吸着筒入口部、52…圧力調節計(PIC)、53…圧
力調節弁、54a,54b…吸着筒加熱弁、55…温度
調節計(TIC)、56…循環ガス加熱経路、57c,
57d…流路切換弁、58…窒素ガス供給弁、59a,
59b…吸着筒出口部、60…排気経路、61a,61
b…吸着筒予冷用窒素出口弁、62a,62b…窒素ガ
ス排気経路
3a, 3b ... Adsorption cylinder, 5 ... Liquid nitrogen storage tank, 6 ... Evaporator,
8 ... Vacuum pump, 9a, 9b ... Coil, 13a, 13b
... Liquid nitrogen supply valve, 17a, 17b ... Vacuum exhaust valve, 21
... Heat exchange part, 22 ... Cold exchange part, 23 ... First heat exchanger, 24 ... First cold box, 25a, 25b ... Second heat exchanger, 26a ... Second cold box, 26b ...
Third cold box, 27a, 27b ... Purified gas outlet path, 28a, 28b ... Purified gas inlet path, 29a,
29b ... pre-cooling path, 30a, 30b ... pre-cooling valve, 31a,
31b ... Path, 32 ... Blower, 33 ... Heater, 34
Regeneration heat exchanger, 35a, 35b ... Path, 36 ... Regeneration gas circulation path, 37 ... Liquid nitrogen reservoir, 37g, 37i, 3
7o ... path, 38 ... introduction path, 39 ... path, 40 ... valve,
41 ... Path, 42 ... Liquid nitrogen supply valve, 43 ... Low temperature impure gas introduction path, 43a, 43b ... Branch path, 44a, 44
b ... Inlet valve, 45a, 45b ... Path, 46, 46a, 4
6b ... Liquid nitrogen path, 47a, 47b ... Outlet valve, 48 ...
High-purity gas derivation route, 48a, 48b ... Branching route, 49 ...
Return path, 50a, 50b ... Circulation valve, 51a, 51b ...
Adsorption cylinder inlet part, 52 ... Pressure controller (PIC), 53 ... Pressure control valve, 54a, 54b ... Adsorption cylinder heating valve, 55 ... Temperature controller (TIC), 56 ... Circulating gas heating path, 57c,
57d ... Flow path switching valve, 58 ... Nitrogen gas supply valve, 59a,
59b ... Adsorption cylinder outlet, 60 ... Exhaust path, 61a, 61
b ... Adsorption cylinder precooling nitrogen outlet valve, 62a, 62b ... Nitrogen gas exhaust path

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被精製ガス中の不純物を低温吸着により
除去する大型低温ガス精製器において、常温の被精製ガ
スを冷媒窒素により冷却する第一熱交換器と、複数個を
切換え使用して被精製ガス中の不純物を吸着除去する吸
着筒と、該吸着筒を冷媒窒素で冷却するコイルと、該吸
着筒の前段で吸着筒に導入される低温被精製ガスを冷媒
窒素により冷却する第二熱交換器とを備えたことを特徴
とする大型低温ガス精製器。
1. A large-sized low-temperature gas purifier for removing impurities in a gas to be purified by low-temperature adsorption, a first heat exchanger for cooling a gas to be purified at room temperature with refrigerant nitrogen, and a plurality of the heat exchangers to be switched to be used. An adsorption column that adsorbs and removes impurities in the purified gas, a coil that cools the adsorption column with refrigerant nitrogen, and a second heat that cools the low-temperature gas to be purified introduced into the adsorption column before the adsorption column with the refrigerant nitrogen. A large-sized low-temperature gas purifier characterized by having an exchanger.
【請求項2】 前記第一熱交換器は、温熱交換部と冷熱
交換部とを有し、冷熱交換部は、冷媒である液体窒素を
サーモサイフォン効果で循環させて被精製ガスを冷却す
ることを特徴とする請求項1記載の大型低温ガス精製
器。
2. The first heat exchanger has a hot heat exchange section and a cold heat exchange section, and the cold heat exchange section circulates liquid nitrogen, which is a refrigerant, by a thermosiphon effect to cool the gas to be purified. The large-sized low-temperature gas purifier according to claim 1.
【請求項3】 前記吸着筒の精製ガス出口経路から分岐
し、他の吸着筒の被精製ガス入口経路に接続する予冷経
路を設けたことを特徴とする請求項1又は2記載の大型
低温ガス精製器。
3. The large-scale low-temperature gas according to claim 1, wherein a precooling path is provided which branches from the purified gas outlet path of the adsorption column and is connected to the purified gas inlet path of another adsorption column. Purifier.
【請求項4】 前記吸着筒の精製ガス出口経路から分岐
し、ブロワー及びヒーターを経由して該吸着筒の被精製
ガス入口経路に接続する再生ガス循環経路を設けるとと
もに、該再生ガス循環経路のブロワー入口側ガスとブロ
ワー出口側ガスとを熱交換させてブロワー入口側ガスを
昇温する再生用熱交換器を設けたことを特徴とする請求
項1乃至3のいずれかに記載の大型低温ガス精製器。
4. A regeneration gas circulation path that branches from the purified gas outlet path of the adsorption column and is connected to the refined gas inlet path of the adsorption column via a blower and a heater is provided. The large-sized low-temperature gas according to any one of claims 1 to 3, further comprising a regeneration heat exchanger that heats the blower inlet side gas and the blower outlet side gas to raise the temperature of the blower inlet side gas. Purifier.
【請求項5】 前記被精製ガスが、ヘリウムガス又は水
素ガスであることを特徴とする請求項1乃至4のいずれ
かに記載の大型低温ガス精製器。
5. The large-sized low-temperature gas purifier according to claim 1, wherein the gas to be purified is helium gas or hydrogen gas.
JP14603396A 1996-06-07 1996-06-07 Large cryogenic gas purifier Expired - Lifetime JP3623853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14603396A JP3623853B2 (en) 1996-06-07 1996-06-07 Large cryogenic gas purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14603396A JP3623853B2 (en) 1996-06-07 1996-06-07 Large cryogenic gas purifier

Publications (2)

Publication Number Publication Date
JPH09323017A true JPH09323017A (en) 1997-12-16
JP3623853B2 JP3623853B2 (en) 2005-02-23

Family

ID=15398596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14603396A Expired - Lifetime JP3623853B2 (en) 1996-06-07 1996-06-07 Large cryogenic gas purifier

Country Status (1)

Country Link
JP (1) JP3623853B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024456A1 (en) * 2014-08-12 2016-02-18 エア・ウォーター株式会社 Hydrogen gas purification method and purification device for same
CN114590786A (en) * 2022-03-22 2022-06-07 中国科学院合肥物质科学研究院 Full-automatic efficient purification device and purification method
CN114791202A (en) * 2022-05-07 2022-07-26 中国科学院理化技术研究所 Super-flow helium refrigerator with adsorber regeneration pipeline

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024456A1 (en) * 2014-08-12 2016-02-18 エア・ウォーター株式会社 Hydrogen gas purification method and purification device for same
JP2016040210A (en) * 2014-08-12 2016-03-24 エア・ウォーター株式会社 Method and apparatus for purifying hydrogen gas
KR20170042655A (en) * 2014-08-12 2017-04-19 에아.워타 가부시키가이샤 Hydrogen gas purification method and purification device for same
CN114590786A (en) * 2022-03-22 2022-06-07 中国科学院合肥物质科学研究院 Full-automatic efficient purification device and purification method
CN114590786B (en) * 2022-03-22 2022-12-27 中国科学院合肥物质科学研究院 Full-automatic efficient purification device and purification method
CN114791202A (en) * 2022-05-07 2022-07-26 中国科学院理化技术研究所 Super-flow helium refrigerator with adsorber regeneration pipeline

Also Published As

Publication number Publication date
JP3623853B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
US9759482B2 (en) Argon production method and apparatus
JPS62502671A (en) Method and apparatus for purifying gases
RU2005141485A (en) METHOD FOR COOLING A PRODUCT, IN PARTICULAR, FOR GAS LIQUIDATION AND A DEVICE FOR ITS IMPLEMENTATION
JPH0881203A (en) Purification of high-purity hydrogen bromide and apparatus therefor
JP3737900B2 (en) Purification method of exhaust gas argon from single crystal production furnace
WO2009101525A1 (en) Ozone production by pressure swing adsorption using a protective adsorbed component
KR20090005702A (en) Apparatus for enriching and purifying waste helium gases
JPH09323017A (en) Large-sized low temperature gas purifier
KR20100007186A (en) Manufacturing apparatus and method for high purity hydrogen bromide
JP2003062419A (en) Method for separating gas mixture and apparatus for the same
JPH0579715A (en) Helium refining device
JP3195986B2 (en) Helium gas supply method and device
JPH05277325A (en) Gaseous helium purifier and operating method thereof
JP6067368B2 (en) Adsorbent regeneration device, adsorbent regeneration method, carbon dioxide purification device, and carbon dioxide purification method
JP6067369B2 (en) Adsorbent regeneration device, adsorbent regeneration method, carbon dioxide purification device, and carbon dioxide purification method
KR102621890B1 (en) Gas purification apparatus
JPS6329724Y2 (en)
JPH06107402A (en) Helium refiner
JPH11182796A (en) Processing method of bog generated in lpg tank and device therefor
JP3798338B2 (en) Clean dry air manufacturing method and apparatus used therefor
JPS6353470B2 (en)
JPH10206012A (en) Method of producing nitrogen gas
JPH0579714A (en) Very-low temperature refrigerator
JPH08261644A (en) Apparatus for producing high-purity nitrogen gas
JPH05245329A (en) Gaseous helium purifier and operating method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041126

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term