JPH09320638A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH09320638A
JPH09320638A JP8153122A JP15312296A JPH09320638A JP H09320638 A JPH09320638 A JP H09320638A JP 8153122 A JP8153122 A JP 8153122A JP 15312296 A JP15312296 A JP 15312296A JP H09320638 A JPH09320638 A JP H09320638A
Authority
JP
Japan
Prior art keywords
negative electrode
separator
characteristic absorption
peak intensity
absorption peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8153122A
Other languages
Japanese (ja)
Other versions
JP4067061B2 (en
Inventor
Masaharu Azumaguchi
雅治 東口
Keiichiro Uenae
圭一郎 植苗
Masayuki Yoshiya
正幸 芳屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP15312296A priority Critical patent/JP4067061B2/en
Publication of JPH09320638A publication Critical patent/JPH09320638A/en
Application granted granted Critical
Publication of JP4067061B2 publication Critical patent/JP4067061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To enhance the cycle characteristic of a nonaqueous secondary battery which has a positive electrode whose active material is a lithium-containing transition metal oxide, a negative electrode whose active material is a carbon material, an organic solvent type electrolyte, and a separator. SOLUTION: This battery has a positive electrode 1 whose active material is a lithium-containing transition metal oxide, a negative electrode 2 whose active material is a carbon material, an organic solvent type electrolyte 4, and a separator 5. In this case, for an infrared PAS spectrum on the side of the separator 3 opposite to the negative electrode 2, obtained through PAS (photoacoustic spectrometry) at a modulation frequency of 1.6kHz, the ratio of characteristic absorption peak intensity (photoacoustic signal intensity) in the vicinity of 1739cm<-1> to characteristic absorption peak intensity (photoacoustic signal intensity) in the vicinity of 2922cm<-1> is set to range from not less 0.001 to not more than 0.1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池に関
し、さらに詳しくは、サイクル特性が優れた非水二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery having excellent cycle characteristics.

【0002】[0002]

【従来の技術】リチウム二次電池に代表される非水二次
電池は、放電容量が大きく、高電圧、高エネルギー密度
であることから、その発展に対して大きな期待が寄せら
れている。
2. Description of the Related Art A non-aqueous secondary battery represented by a lithium secondary battery has a large discharge capacity, a high voltage and a high energy density, and therefore, there are great expectations for its development.

【0003】この非水二次電池では、有機溶媒にリチウ
ム塩を溶解させた有機溶媒系の電解液を用い、負極活物
質としてリチウムまたはリチウム合金を用いているが、
それらの負極活物質による場合、内部短絡を起こしやす
く、電池特性の低下を引き起こしたり、安全性に問題が
あった。そこで、リチウムまたはリチウム合金に代え
て、活性炭や黒鉛などの炭素材料を負極活物質として用
いることが、特開平6−84515号などにおいて検討
されている。
In this non-aqueous secondary battery, an organic solvent-based electrolytic solution in which a lithium salt is dissolved in an organic solvent is used, and lithium or a lithium alloy is used as a negative electrode active material.
When these negative electrode active materials are used, an internal short circuit is likely to occur, which causes deterioration of battery characteristics and has a problem in safety. Therefore, in place of lithium or a lithium alloy, use of a carbon material such as activated carbon or graphite as a negative electrode active material has been studied in JP-A-6-84515.

【0004】しかしながら、上記のような炭素材料を用
いた場合、炭素材料表面で電解液とリチウムが反応し、
リテンション(充電容量と放電容量の差)が大きくな
り、サイクル特性の優れた電池を得ることが難しいとい
う問題があった。
However, when the above carbon material is used, the electrolytic solution reacts with lithium on the surface of the carbon material,
There is a problem that retention (difference between charge capacity and discharge capacity) becomes large and it is difficult to obtain a battery having excellent cycle characteristics.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な従来の非水二次電池における問題点を解決し、サイク
ル特性の優れた非水二次電池を提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the problems in the conventional non-aqueous secondary battery as described above and to provide a non-aqueous secondary battery having excellent cycle characteristics.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果、負極の炭素材料
表面の電解液とリチウムとの反応により得られる情報を
利用し、下記の特性を有する炭素材料を負極に用いるこ
とによって、サイクル特性の優れた非水二次電池を得る
ことができることを見出し、本発明を完成するにいたっ
た。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have utilized the information obtained by the reaction between the electrolytic solution on the surface of the carbon material of the negative electrode and lithium. It was found that a non-aqueous secondary battery having excellent cycle characteristics can be obtained by using a carbon material having the above characteristics as a negative electrode, and completed the present invention.

【0007】すなわち、本発明は、リチウム含有遷移金
属酸化物を活物質とする正極、炭素材料を活物質とする
負極、有機溶媒系の電解液およびセパレータを有する非
水二次電池において、変調周波数1.6kHzのPAS
分析法により得られたセパレータの負極と対向する側の
赤外PASスペクトルについて、1739cm-1付近の
生成物の特性吸収ピーク強度(光音響信号強度)と29
22cm-1付近のセパレータの特性吸収ピーク強度(光
音響信号強度)との比が0.001以上0.1以下であ
ることを特徴とする非水二次電池である。
That is, the present invention provides a non-aqueous secondary battery having a positive electrode having a lithium-containing transition metal oxide as an active material, a negative electrode having a carbon material as an active material, an organic solvent-based electrolyte and a separator. 1.6 kHz PAS
Regarding the infrared PAS spectrum on the side of the separator facing the negative electrode obtained by the analytical method, the characteristic absorption peak intensity (photoacoustic signal intensity) of the product near 1739 cm −1 and 29
The non-aqueous secondary battery is characterized in that the ratio with respect to the characteristic absorption peak intensity (photoacoustic signal intensity) of the separator near 22 cm −1 is 0.001 or more and 0.1 or less.

【0008】[0008]

【発明の実施の形態】本発明にいう、PAS分析法と
は、Photoacoustic Spectrosc
opy(光音響分光法)のことであり、このPAS分析
法は試料に断続光を照射して試料内に生じた周期的な熱
変化を最終的に圧力変化として検出する方法であって、
in−situ(その場)での測定が可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION The PAS analysis method referred to in the present invention means Photoacoustic Spectrosc.
OPS (photoacoustic spectroscopy), and this PAS analysis method is a method of irradiating a sample with intermittent light and finally detecting a periodic thermal change generated in the sample as a pressure change,
In-situ measurement is possible.

【0009】より具体的に説明すれば、まず、変調され
た赤外光が試料によって吸収されると、入射光に対応し
た熱が発生する。この発生した熱は、周囲の気体層に圧
力変化を起こすので、この変化を高感度マイクロホンに
より検出する。そして、これをフーリエ変換することに
よって、通常の赤外吸収スペクトルと同様のスペクトル
が得られる。
More specifically, first, when the modulated infrared light is absorbed by the sample, heat corresponding to the incident light is generated. The generated heat causes a pressure change in the surrounding gas layer, and this change is detected by the high-sensitivity microphone. Then, a spectrum similar to a normal infrared absorption spectrum is obtained by subjecting this to a Fourier transform.

【0010】本発明において、負極の炭素材料そのもの
をPAS分析せずに、セパレータの負極と対向する側を
分析しているのは、次の理由によるものである。すなわ
ち、負極の炭素材料の表面には電解液などが数多く吸着
していて、それらの官能基に基づく多くのピークが重な
り合っているために、ピーク強度を定量する時、各ピー
ク点が重なって定量誤差が大きくなるのに対し、セパレ
ータの分析ピークにはセパレータに基づくピークと炭素
材料表面の生成物のピーク以外はほとんど検出されず、
検討しやすいからである。
In the present invention, the side of the separator facing the negative electrode is analyzed without PAS analysis of the carbon material itself of the negative electrode for the following reason. That is, many electrolytes are adsorbed on the surface of the carbon material of the negative electrode, and many peaks based on their functional groups overlap, so when peak intensity is quantified, each peak point overlaps and quantifies. While the error becomes large, almost no peaks other than the peaks due to the separator and the product on the carbon material surface are detected in the analytical peak of the separator,
This is because it is easy to consider.

【0011】本発明は、上記PAS分析法による測定の
結果、セパレータの負極と対向する側のPAS分析法に
よる測定で1739cm-1付近のピーク強度と2922
cm-1付近のピーク強度との比1739cm-1/292
2cm-1が0.001以上0.1以下であるときに、サ
イクル特性を改善することができることを見出したもの
である。
According to the present invention, as a result of the measurement by the PAS analysis method, the peak intensity around 1739 cm -1 and 2922 by the PAS analysis method on the side of the separator facing the negative electrode are measured.
cm -1 ratio of the peak intensity in the vicinity of 1739cm -1 / 292
It was found that the cycle characteristics can be improved when 2 cm −1 is 0.001 or more and 0.1 or less.

【0012】本発明において、PAS分析測定により得
られた赤外PASスペクトルの特性吸収ピークは、電池
の系によりある程度はシフトする(ピーク位置が変る)
ので、1739cm-1付近の特性吸収ピーク強度は、1
650〜1800cm-1の範囲に見られる各特性吸収ピ
ークのうち、他のピークと重ならない、セパレータ
の表面の生成物の量が多くなっても相互作用が見られな
い、セパレータのピークと区別できる、という〜
の条件を満たすピークの中から最大強度のものを選ぶこ
とが好ましい。なお、変調周波数1.6kHzを用いる
のは、この〜の条件を満たすピークを最も顕著に確
認できるからである。
In the present invention, the characteristic absorption peak of the infrared PAS spectrum obtained by PAS analysis measurement shifts to some extent (the peak position changes) depending on the battery system.
Therefore, the characteristic absorption peak intensity near 1739 cm -1 is 1
Among the characteristic absorption peaks in the range of 650 to 1800 cm -1 , they do not overlap with other peaks, no interaction is observed even if the amount of the product on the surface of the separator increases, and it can be distinguished from the peak of the separator. Say,
It is preferable to select the one having the maximum intensity from the peaks satisfying the condition of. The modulation frequency of 1.6 kHz is used because the peaks satisfying the conditions (1) to (3) can be most conspicuously confirmed.

【0013】本発明における、1739cm-1付近の特
性吸収ピークは、炭素材料表面において電解液とリチウ
ムとの反応による生成物を構成している結合のうち、ν
C=O(エステル)基伸縮振動に基づくピークであると
考えられる。そして、この特性吸収ピークを示す生成物
の官能基はイオン導電にも寄与するものであると考えら
れることから、炭素材料表面にこれらの官能基を有する
生成物が形成されると、その生成物が炭素材料表面を不
活性化する電解液の有機溶媒と炭素材料表面との直接接
触を防止するので、リチウムイオンが炭素材料にドープ
する際、電解液の有機溶媒とリチウムとの反応が抑制さ
れ、それによって、サイクル特性が向上するものと考え
られる。
In the present invention, the characteristic absorption peak near 1739 cm −1 is the ν out of the bonds constituting the product of the reaction between the electrolytic solution and lithium on the surface of the carbon material.
It is considered to be a peak based on stretching vibration of a C = O (ester) group. Since the functional group of the product exhibiting this characteristic absorption peak is considered to also contribute to ionic conduction, when a product having these functional groups is formed on the surface of the carbon material, the product is Prevents direct contact between the surface of the carbon material and the organic solvent of the electrolytic solution that inactivates the surface of the carbon material, and when lithium ions dope the carbon material, the reaction between the organic solvent of the electrolytic solution and lithium is suppressed. Therefore, it is considered that the cycle characteristics are improved.

【0014】また、2922cm-1付近のピークは、セ
パレータ材料のC−H結合を示すものであり、セパレー
タの負極と対向する側の表面に付着した炭素材料表面の
生成物量を測定する基準となるものである。すなわち、
その基準となるセパレータの特性吸収ピークとしては、
2922cm-1付近のνC−H基の非対称伸縮振動を用
いる。このセパレータの2922cm-1付近の特性吸収
ピークは、2800〜3000cm-1のうち、他のピ
ークと重ならない、セパレータ中の炭化水素量が多く
なっても相互作用が見られない、というおよびの条
件を満たすピークのうち、最大強度のものを選ぶことが
好ましい。
The peak near 2922 cm -1 indicates the C--H bond of the separator material, and serves as a standard for measuring the amount of the product on the surface of the carbon material attached to the surface of the separator facing the negative electrode. It is a thing. That is,
As the characteristic absorption peak of the separator that becomes the reference,
Asymmetric stretching vibration of νC—H group near 2922 cm −1 is used. The characteristic absorption peak near 2922 cm −1 of this separator does not overlap with other peaks of 2800 to 3000 cm −1 , and no interaction is observed even if the amount of hydrocarbons in the separator is large. Of the peaks satisfying the above conditions, it is preferable to select the peak having the maximum intensity.

【0015】従って、本発明における、PAS分析法に
より得られた1739cm-1付近の特性吸収ピーク強度
と2922cm-1付近の特性吸収ピーク強度との比は、
炭素材料表面の生成物が多いか少ないかを示しており、
1739cm-1付近の生成物の特性吸収ピーク強度と2
922cm-1付近のセパレータの炭化水素の特性吸収ピ
ーク強度との比が大きいということは、負極の炭素材料
表面上に電解液とリチウムの反応により生成した生成物
が多く存在していることを意味していて、上記のピーク
強度比が大きすぎるときは、上記の生成物によって抵抗
が大きくなり、サイクル特性が悪くなってしまう。
Therefore, in the present invention, the ratio of the characteristic absorption peak intensity near 1739 cm -1 and the characteristic absorption peak intensity near 2922 cm -1 obtained by PAS analysis is
It shows whether there are many products on the surface of the carbon material,
The characteristic absorption peak intensity of the product near 1739 cm -1 and 2
A large ratio with the characteristic absorption peak intensity of hydrocarbons in the separator near 922 cm -1 means that there are many products formed by the reaction of the electrolyte and lithium on the surface of the carbon material of the negative electrode. However, when the above peak intensity ratio is too large, the resistance increases due to the above products, and the cycle characteristics deteriorate.

【0016】一方、上記のピーク強度比が小さいという
ことは、炭素材料表面の生成物が少ないことを示してお
り、そのピーク強度比が小さすぎるときは、上記生成物
による充放電反応時の電解液とリチウムとの反応を抑制
する効果が充分に発現しなくなり、この場合もサイクル
特性が悪くなる。
On the other hand, the fact that the peak intensity ratio is small means that the amount of the product on the surface of the carbon material is small, and when the peak intensity ratio is too small, the electrolysis during the charge / discharge reaction by the product is caused. The effect of suppressing the reaction between the liquid and lithium is not sufficiently exhibited, and in this case also, the cycle characteristics deteriorate.

【0017】本発明者らは、このピーク強度比とサイク
ル特性との関係について鋭意研究を重ねた結果、173
9cm-1付近の生成物の特性吸収ピーク強度と2922
cm-1付近のセパレータの炭化水素の特性吸収ピーク強
度との比が0.001以上0.1以下の場合に、サイク
ル特性を向上できることを見出した。このピーク強度比
が上記範囲より大きい場合も、また小さい場合も、前記
のように、それぞれ理由は異なるけれども、サイクル特
性が悪くなる。
The inventors of the present invention conducted extensive studies on the relationship between the peak intensity ratio and the cycle characteristics, and as a result, 173
The characteristic absorption peak intensity of the product near 9 cm -1 and 2922
It has been found that the cycle characteristics can be improved when the ratio of the characteristic absorption peak intensity of hydrocarbon of the separator in the vicinity of cm −1 is 0.001 or more and 0.1 or less. If the peak intensity ratio is larger or smaller than the above range, as described above, the cycle characteristics are deteriorated, although the reasons are different.

【0018】これまで、炭素材料表面の分析には、XP
S(X線光電子分光法)やFTIR・ATR(フーリエ
変換赤外減衰全反射)法によって行われてきたが、これ
らは、負極を電池内から取り出して、ex−situ
(系外)条件で分析する方法であるため、測定試料が酸
化された状態でしか分析することができず、電池内の負
極の炭素材料表面での電解液とリチウムとの反応形態を
直接確認することができないため、サイクル特性に関す
る有用な情報を得ることができなかったが、本発明のP
AS分析法によれば、電池内と同じ条件である、in−
situ条件で、負極の炭素材料表面を分析でき、しか
も、このPAS分析法によって負極そのものでなく、セ
パレータの負極と対向する側を測定することによって、
サイクル特性に関連する情報を導き出すことができる。
Up to now, XP has been used to analyze the surface of the carbon material.
S (X-ray photoelectron spectroscopy) and FTIR / ATR (Fourier transform infrared attenuated total reflection) have been performed, but these are ex-situ extraction from the negative electrode.
Since it is a method of analysis under (outside the system) conditions, the measurement sample can be analyzed only in the oxidized state, and the reaction form between the electrolytic solution and lithium on the carbon material surface of the negative electrode in the battery can be directly confirmed. Therefore, it was not possible to obtain useful information regarding the cycle characteristics, but the P
According to the AS analysis method, the same condition as in the battery, in-
In situ conditions, the surface of the carbon material of the negative electrode can be analyzed, and by using this PAS analysis method, not the negative electrode itself but the side of the separator facing the negative electrode can be measured.
Information related to cycle characteristics can be derived.

【0019】本発明において、負極活物質の前駆体とな
る物質としては、リチウムイオンをドープ、脱ドープで
きるものであって、例えば、熱分解炭素類、コークス
類、ガラス状炭素類、有機高分子化合物の焼成体、メソ
カーボンマイクロビーズ、炭素繊維、活性炭などを用い
ることができる。そして、本発明において負極活物質と
なる炭素材料は、上記に列挙した各物質を炭素化するこ
とによって得られるものである。
In the present invention, the substance serving as the precursor of the negative electrode active material can be doped or dedoped with lithium ions, and examples thereof include pyrolytic carbons, cokes, glassy carbons and organic polymers. A compound fired body, mesocarbon microbeads, carbon fiber, activated carbon and the like can be used. The carbon material used as the negative electrode active material in the present invention is obtained by carbonizing each of the substances listed above.

【0020】本発明において、PAS分析法による所定
のピーク強度比を有する炭素材料表面を作製する方法と
しては、種々の方法が考えられ、例えば、電解液中に二
酸化炭素をバブリングしたり、液体二酸化炭素を溶解さ
せる方法なども挙げられるが、これらは一定の膜厚にな
るように制御することが難しい。
In the present invention, various methods are conceivable as a method for producing a carbon material surface having a predetermined peak intensity ratio by the PAS analysis method. For example, carbon dioxide is bubbled in the electrolytic solution or liquid carbon dioxide is used. Although a method of dissolving carbon can be used, it is difficult to control these so that the film thickness becomes constant.

【0021】そのため、本発明者らは、種々検討を重ね
た結果、最も簡易でかつ安価に実施できる方法として、
電池にエージングを施すことにより、本発明の負極活物
質となり得る炭素材料を作製できることを見出した。
Therefore, as a result of various investigations, the present inventors have found that the simplest and most inexpensive method is as follows.
It has been found that a carbon material that can serve as the negative electrode active material of the present invention can be produced by subjecting a battery to aging.

【0022】このエージングについて説明すると、ま
ず、作製した電池を低レートでCVCC充電(定電流お
よび定電圧充電)を行う。その際の電池の充電状態とし
ては、30〜100%充電している状態が好ましく、特
に60〜100%充電している状態が好ましい。
Explaining this aging, first, the produced battery is subjected to CVCC charging (constant current and constant voltage charging) at a low rate. The state of charge of the battery at that time is preferably 30 to 100% charged, and particularly preferably 60 to 100% charged.

【0023】ついで、この充電状態にある電池を30〜
80℃、好ましくは40〜70℃の温度範囲で所定時間
貯蔵する。これは、30℃より低い場合は、温度が低す
ぎるため、一定量の生成物を炭素材料表面に生成させる
ことが難しくなり、また80℃より高くなると、電解液
の分解が起こる可能性が高くなるからである。そして、
このようなエージングにより、充放電に適した炭素材料
表面を作製することができる。
Then, the battery in this charged state is
It is stored in a temperature range of 80 ° C., preferably 40 to 70 ° C. for a predetermined time. This is because if the temperature is lower than 30 ° C., the temperature is too low, so that it becomes difficult to generate a certain amount of product on the surface of the carbon material, and if the temperature is higher than 80 ° C., decomposition of the electrolytic solution is likely to occur. Because it will be. And
By such aging, a carbon material surface suitable for charging and discharging can be prepared.

【0024】本発明において、正極活物質としては、例
えば、リチウムニッケル酸化物、リチウムマンガン酸化
物、リチウムコバルト酸化物(これらは、通常、それぞ
れ、LiNiO2 、LiMnO2 、LiCoO2 などで
表すが、これらのLiとNiの比、LiとMnの比、L
iとCoの比は化学量論組成からずれている場合が多
い)などのリチウム含有遷移金属酸化物が単独でまたは
2種以上の混合物として用いられる。
In the present invention, examples of the positive electrode active material include lithium nickel oxide, lithium manganese oxide and lithium cobalt oxide (these are usually represented by LiNiO 2 , LiMnO 2 and LiCoO 2 , respectively, The ratio of these Li and Ni, the ratio of Li and Mn, L
The ratio of i to Co is often deviated from the stoichiometric composition) and the like, and a lithium-containing transition metal oxide is used alone or as a mixture of two or more kinds.

【0025】そして、正極は、上記正極活物質に、必要
に応じて、例えば、りん(鱗)状黒鉛、アセチレンブラ
ック、カーボンブラックなどの導電助剤と、例えば、ポ
リフッ化ビニリデン、ポリテトラフルオロエチレン、エ
チレンプロピレンジエンターポリマーなどのバインダー
を加えて調製した正極合剤を加圧成形するか、あるいは
さらに溶剤を加えてペースト状にし、それを金属箔(例
えば、アルミニウム箔、チタン箔、白金箔など)などか
らなる集電体上に塗布、乾燥する工程を経て作製され
る。ただし、正極の作製方法は上記例示のものに限定さ
れることはない。
Then, the positive electrode contains, if necessary, a conductive auxiliary agent such as phosphorus (scaly) graphite, acetylene black or carbon black, and, for example, polyvinylidene fluoride or polytetrafluoroethylene. , A positive electrode mixture prepared by adding a binder such as ethylene propylene diene terpolymer is pressure-molded, or a solvent is further added to form a paste, which is then formed into a metal foil (for example, aluminum foil, titanium foil, platinum foil, etc.). ) Is applied to a current collector made of, for example, and dried. However, the method for producing the positive electrode is not limited to the above-described example.

【0026】本発明において、負極は、前記の負極活物
質前駆体としての物質に、必要に応じて、例えば、ポリ
フッ化ビニリデン、ポリテトラフルオロエチレン、エチ
レンプロピレンジエンターポリマーなどのバインダーを
適宜加え、混合して調製した負極合剤を加圧成形する
か、あるいは、さらに溶剤を加えてペースト状にし、そ
のペーストを金属箔(例えば、銅箔、ニッケル箔など)
などからなる集電体上に塗布、乾燥する工程を経て作製
された電極体を電池に組み込み、例えばエージングし
て、炭素材料が特定のピーク強度比を持つようにするこ
とによって作製される。ただし、負極の前駆体としての
電極体の作製方法は上記例示の方法に限定されることは
ない。
In the present invention, in the negative electrode, if necessary, a binder such as polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene terpolymer, etc. is appropriately added to the above-mentioned substance as the negative electrode active material precursor, The negative electrode mixture prepared by mixing is pressure-molded, or a solvent is further added to form a paste, and the paste is a metal foil (eg, copper foil, nickel foil, etc.)
It is produced by incorporating an electrode body produced through a process of coating and drying on a current collector made of, for example, into a battery and aging it so that the carbon material has a specific peak intensity ratio. However, the manufacturing method of the electrode body as the precursor of the negative electrode is not limited to the method exemplified above.

【0027】また、電解液は、有機溶媒に電解質を溶解
させることによって調製されるが、その際の有機溶媒と
しては、誘電率の高いエステルや粘度の低いエーテルや
エステルなどを用いることが好ましい。
The electrolytic solution is prepared by dissolving an electrolyte in an organic solvent. At that time, it is preferable to use an ester having a high dielectric constant or an ether or an ester having a low viscosity.

【0028】誘電率の高いエステルとしては、例えば、
プロピレンカーボネート(PC)、エチレンカーボネー
ト(EC)、ブチレンカーボネート(BC)、ガンマ−
ブチロラクトン(γ−BL)などが挙げられる。
Examples of the ester having a high dielectric constant include, for example,
Propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), gamma-
Butyrolactone (γ-BL) and the like can be mentioned.

【0029】粘度の低いエーテルとしては、例えば、
1,2−ジメトキシエタン(DME)、ジオキソラン
(DO)、テトラヒドロフラン(THF)、2−メチル
−テトラヒドロフラン(Me−THF)、ジエチルエー
テル(DEE)などが挙げられる。粘度の低いエステル
としては、例えば、メチルエチルカーボネート(ME
C)、ジエチルカーボネート(DEC)などが挙げられ
る。
Examples of ethers having a low viscosity include, for example,
1,2-dimethoxyethane (DME), dioxolane (DO), tetrahydrofuran (THF), 2-methyl-tetrahydrofuran (Me-THF), diethyl ether (DEE) and the like can be mentioned. Examples of low-viscosity esters include methyl ethyl carbonate (ME
C), diethyl carbonate (DEC) and the like.

【0030】そのほか、イミド系有機溶媒や、含イオウ
または含フッ素系有機溶媒、リン酸トリアルキルなども
用いることができる。
In addition, imide type organic solvents, sulfur-containing or fluorine-containing organic solvents, trialkyl phosphates and the like can be used.

【0031】本発明において、電解液の電解質として
は、例えば、LiClO4 、LiPF6 、LiBF4
LiAsF6 、LiSbF6 、LiCF3 SO3 、Li
CF3CO2 などや、そのほかLi2 2 4 (S
3 2 、LiN(CF3 SO2 2 、LiC(CF3
SO2 3 、LiCn 2n+1SO3 (n≧2)などが単
独でまたは2種以上混合して用いられる。それらの中で
も、LiPF6 やLiCn 2n+1SO3 (n≧2)は充
放電特性が良好なことから好適に用いられる。これら電
解質の電解液中の濃度は、特に限定されるものではない
が、通常0.1〜2mol/l、特に0.4〜1.4m
ol/l程度が好ましい。
In the present invention, as the electrolyte of the electrolytic solution, for example, LiClO 4 , LiPF 6 , LiBF 4 ,
LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , Li
CF 3 CO 2, etc., and other Li 2 C 2 F 4 (S
O 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3
SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2) and the like are used alone or in combination of two or more. Among them, LiPF 6 and LiC n F 2n + 1 SO 3 (n ≧ 2) are preferably used because of good charge / discharge characteristics. The concentration of these electrolytes in the electrolytic solution is not particularly limited, but is usually 0.1 to 2 mol / l, particularly 0.4 to 1.4 m.
ol / l is preferred.

【0032】[0032]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only those examples.

【0033】実施例1 負極活物質前駆体として、石油ピッチより抽出したカー
ボンマイクロビーズを3000℃で熱処理したバルクカ
ーボンを粉砕して平均粒径10μmの粉末を用意した。
この粉末の層間距離d002 は3.36Åであり、c軸方
向の結晶子サイズLcは1334Åであった。この粉末
9重量部と、バインダーとしてポリフッ化ビニリデン1
重量部、溶媒としてN−メチル−2−ピロリドンを用い
て負極合剤スラリーを調製し、帯状の銅箔からなる負極
集電体の両面に均一に塗布して乾燥し、その後、ローラ
ープレス機により圧縮成形し、リード体を溶接して、負
極の前駆体となる帯状の電極体を作製した。
Example 1 As a negative electrode active material precursor, carbon microbeads extracted from petroleum pitch were heat-treated at 3000 ° C., and bulk carbon was pulverized to prepare a powder having an average particle size of 10 μm.
The interlayer distance d 002 of this powder was 3.36Å, and the crystallite size Lc in the c-axis direction was 1334Å. 9 parts by weight of this powder and polyvinylidene fluoride 1 as a binder
By weight, N-methyl-2-pyrrolidone is used as a solvent to prepare a negative electrode mixture slurry, which is evenly applied on both surfaces of a negative electrode current collector made of strip-shaped copper foil and dried, and then by a roller press. It was compression-molded and the lead body was welded to produce a strip-shaped electrode body as a precursor of the negative electrode.

【0034】つぎに、LiCoO2 90重量部に黒鉛6
重量部とポリフッ化ビニリデン4重量部を加え混合し、
N−メチルピロリドンで溶解してスラリーにした。この
正極合剤スラリーを厚さ20μmのアルミニウム箔から
なる正極集電体の両面に均一に塗布して乾燥し、その
後、ローラープレス機により圧縮成形し、リード体の溶
接を行って、帯状の正極を作製した。
Next, 90 parts by weight of LiCoO 2 was mixed with 6 parts of graphite.
Parts by weight and 4 parts by weight of polyvinylidene fluoride are added and mixed,
It was dissolved with N-methylpyrrolidone to form a slurry. This positive electrode mixture slurry is uniformly applied to both sides of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm, dried, and then compression-molded by a roller press machine to weld a lead body to form a strip-shaped positive electrode. Was produced.

【0035】上記の帯状正極に厚さ25μmの微孔性ポ
リエチレンフィルムからなるセパレータを介して前記負
極の前駆体としての帯状電極体を重ね、渦巻状に巻回し
て渦巻状電極体とした後、外径15mm、高さ40mm
の有底円筒状の電池ケース内に充填し、正極および負極
の電極体のリード体の溶接を行った後、電解液を電池ケ
ース内に注入した。
After the strip-shaped electrode body as a precursor of the negative electrode was superposed on the strip-shaped positive electrode through a separator made of a microporous polyethylene film having a thickness of 25 μm and spirally wound into a spiral electrode body, Outer diameter 15 mm, height 40 mm
The battery was filled in a cylindrical battery case having a bottom and the lead bodies of the positive and negative electrode bodies were welded, and then the electrolytic solution was injected into the battery case.

【0036】上記電解液は、LiPF6 をエチルメチル
カーボネートに溶解させた後、エチレンカーボネートを
加えて混合して調製したもので、LiPF6 がエチレン
カーボネート(EC)とエチルメチルカーボネート(M
EC)との体積比1:1の混合溶媒中に1.0mol/
l溶解した有機溶媒系の電解液である。この電解液の組
成は1.0mol/l LiPF6 /EC:MEC(体
積比1:1)で示される。
The above-mentioned electrolytic solution was prepared by dissolving LiPF 6 in ethyl methyl carbonate and then adding and mixing ethylene carbonate. LiPF 6 was prepared by mixing ethylene carbonate (EC) and ethyl methyl carbonate (M
EC) in a mixed solvent with a volume ratio of 1: 1 is 1.0 mol /
1 is a dissolved organic solvent-based electrolytic solution. The composition of this electrolytic solution is represented by 1.0 mol / l LiPF 6 / EC: MEC (volume ratio 1: 1).

【0037】つぎに、常法にしたがって、電池ケースの
開口部を封口し、図1に示す構造の筒形の非水二次電池
を作製した。
Then, the opening of the battery case was sealed according to a conventional method to produce a cylindrical non-aqueous secondary battery having the structure shown in FIG.

【0038】図1に示す電池について説明すると、1は
前記の正極で、2は負極である。ただし、図1では、繁
雑化を避けるため、正極1や負極2の作製にあたって使
用された集電体などは図示していない。そして、3はセ
パレータで、4は電解液である。
Explaining the battery shown in FIG. 1, 1 is the positive electrode and 2 is the negative electrode. However, in FIG. 1, in order to avoid complication, the current collector and the like used in manufacturing the positive electrode 1 and the negative electrode 2 are not shown. 3 is a separator, and 4 is an electrolytic solution.

【0039】5はステンレス鋼製の電池ケースであり、
この電池ケース5は負極端子を兼ねている。電池ケース
5の底部にはポリテトラフルオロエチレンシートからな
る絶縁体6が配置され、電池ケース5の内周部にもポリ
テトラフルオロエチレンシートからなる絶縁体7が配置
されていて、前記正極1、負極2およびセパレータ3か
らなる渦巻状電極体や、電解液4などは、この電池ケー
ス5内に収容されている。
5 is a battery case made of stainless steel,
This battery case 5 also serves as a negative electrode terminal. An insulator 6 made of a polytetrafluoroethylene sheet is arranged at the bottom of the battery case 5, and an insulator 7 made of a polytetrafluoroethylene sheet is also arranged at the inner periphery of the battery case 5. The spiral electrode body composed of the negative electrode 2 and the separator 3, the electrolyte 4, and the like are accommodated in the battery case 5.

【0040】8はステンレス鋼製の封口板であり、この
封口板8の中央部にはガス通気孔8aが設けられてい
る。9はポリプロピレン製の環状パッキング、10はチ
タン製の可撓性薄板で、11は環状でポリプロピレン製
の熱変形部材である。
Reference numeral 8 is a stainless steel sealing plate, and a gas vent hole 8a is provided at the center of the sealing plate 8. Reference numeral 9 denotes an annular packing made of polypropylene, reference numeral 10 denotes a flexible thin plate made of titanium, and reference numeral 11 denotes an annular, thermally deformable member made of polypropylene.

【0041】上記の熱変形部材11は温度によって変形
することにより、可撓性薄板10の破壊圧力を変える作
用をする。
The thermal deformation member 11 acts to change the breaking pressure of the flexible thin plate 10 by being deformed by the temperature.

【0042】12はニッケルメッキを施した圧延鋼製の
端子板であり、この端子板12には切刃12aとガス排
出孔12bとが設けられていて、電池内部にガスが発生
して電池の内部圧力が上昇し、その内圧上昇によって可
撓性薄板10が変形したときに、上記切刃12aによっ
て可撓性薄板10を破壊し、電池内部のガスを上記ガス
排出孔12bから電池外部に排出して、電池の高圧下で
の破壊が防止できるように設計されている。
Reference numeral 12 is a nickel-plated terminal plate made of rolled steel. The terminal plate 12 is provided with a cutting edge 12a and a gas discharge hole 12b. When the internal pressure rises and the flexible thin plate 10 is deformed due to the increase in the internal pressure, the cutting blade 12a breaks the flexible thin plate 10 to discharge the gas inside the battery from the gas discharge hole 12b to the outside of the battery. In addition, the battery is designed to be prevented from being broken under high pressure.

【0043】13は絶縁パッキングで、14はリード体
であり、このリード体14は正極1と封口板8とを電気
的に接続しており、端子板12は封口板8との接触によ
り正極端子として作用する。また、15は負極2と電池
ケース5とを電気的に接続するリード体である。
Reference numeral 13 is an insulating packing, and 14 is a lead body. This lead body 14 electrically connects the positive electrode 1 and the sealing plate 8, and the terminal plate 12 comes into contact with the sealing plate 8 to make a positive electrode terminal. Acts as. Reference numeral 15 is a lead body that electrically connects the negative electrode 2 and the battery case 5.

【0044】この電池を0.2Cで8時間充電した後、
60℃で10時間貯蔵してエージングした。この電池を
放電後、グローブボックスのアルゴン雰囲気中(露点温
度−40℃以下)にて分解し、セパレータをエチルメチ
ルカーボネートで洗浄後、真空乾燥し、PASセル内に
サンプリングして密閉した。その後、PASセルをFT
−IR試料室中にセットし、PASセル内をHe(ヘリ
ウム)で置換してセパレータの負極側のFT−IR分析
を行った。
After charging this battery at 0.2C for 8 hours,
It was stored at 60 ° C. for 10 hours and aged. After discharging this battery, the battery was decomposed in an argon atmosphere in a glove box (dew point temperature of -40 ° C or lower), the separator was washed with ethyl methyl carbonate, vacuum dried, and sampled and sealed in a PAS cell. After that, FT the PAS cell
The sample was set in the -IR sample chamber, the inside of the PAS cell was replaced with He (helium), and FT-IR analysis was performed on the negative electrode side of the separator.

【0045】PAS分析条件は次の表1に示す通りであ
る。
The PAS analysis conditions are as shown in Table 1 below.

【0046】[0046]

【表1】 ※1:米国のマトソン(Mattson)社製 ※2:米国のエムテック(MTEC)社製[Table 1] * 1: Made by Mattson, USA * 2: Made by MTEC, USA

【0047】この実施例1の電池に関して上記条件下で
のPAS分析測定により得られたセパレータの負極と対
向する側の赤外PASスペクトルを図2に示す。また、
図2のA部の詳細を図3に拡大して示す。
The infrared PAS spectrum of the side of the separator facing the negative electrode obtained by PAS analysis and measurement under the above conditions for the battery of Example 1 is shown in FIG. Also,
The detail of the A portion of FIG. 2 is enlarged and shown in FIG.

【0048】これらの図に示すように、負極の炭素材料
表面の生成物の特性吸収ピークの位置は1739cm-1
であり、ポリエチレン製セパレータの特性吸収ピークの
位置は2922cm-1であって、そのピーク強度比17
39cm-1/2922cm-1の値は0.0136であっ
た。
As shown in these figures, the position of the characteristic absorption peak of the product on the carbon material surface of the negative electrode was 1739 cm -1.
The position of the characteristic absorption peak of the polyethylene separator is 2922 cm -1 , and the peak intensity ratio is 17
The value of 39cm -1 / 2922cm -1 was 0.0136.

【0049】実施例2 実施例1における60℃で10時間という条件下でのエ
ージングに代えて、45℃で10時間貯蔵してエージン
グしたほかは、実施例1と同様の方法で試料を作製し、
PAS分析を行った。その結果、この実施例2の負極の
炭素材料表面の生成物の特性吸収ピークとセパレータの
特性吸収ピークの位置は、両者とも実施例1と同じであ
り、そのピーク強度比1736cm-1/2922cm-1
の値は0.0086であった。
Example 2 A sample was prepared in the same manner as in Example 1 except that instead of aging under the condition of 60 ° C. for 10 hours in Example 1, the sample was stored at 45 ° C. for 10 hours and aged. ,
PAS analysis was performed. As a result, the position of the characteristic absorption peak and separator characteristic absorption peak of the product of the negative electrode carbon material surface of this second embodiment, both the same as in Example 1, the peak intensity ratio 1736cm -1 / 2922cm - 1
The value of was 0.0086.

【0050】実施例3 実施例1における60℃で10時間という条件下でのエ
ージングに代えて、60℃で10時間貯蔵してエージン
グしたほかは、実施例1と同様の方法で試料を作製し、
PAS分析を行った。その結果、この実施例3の負極の
炭素材料表面の生成物の特性吸収ピークとセパレータの
特性吸収ピークの位置は、両者とも実施例1と同じであ
り、そのピーク強度比1737cm-1/2922cm-1
の値は0.0871であった。
Example 3 A sample was prepared in the same manner as in Example 1 except that aging was carried out by storing at 60 ° C. for 10 hours instead of aging at 60 ° C. for 10 hours in Example 1. ,
PAS analysis was performed. As a result, the position of the characteristic absorption peak and separator characteristic absorption peak of the product of the negative electrode carbon material surface of this third embodiment, both the same as in Example 1, the peak intensity ratio 1737cm -1 / 2922cm - 1
The value of was 0.0871.

【0051】実施例4 電解液として、LiPF6 をジエチルカーボネート(D
EC)に溶解させた後、エチレンカーボネート(EC)
を加えて混合して調製した組成が1.0mol/l L
iPF6 /EC:DEC(体積比1:1)で示される有
機溶媒系の電解液を用いたほかは、実施例1と同様の方
法で試料を作製し、PAS分析を行った。その結果、こ
の実施例4の負極の炭素材料表面の生成物の特性吸収ピ
ークの位置は1738cm-1であり、ピーク強度比17
38cm-1/2922cm-1の値は0.0082であっ
た。
Example 4 As an electrolytic solution, LiPF 6 was added to diethyl carbonate (D
EC) and then ethylene carbonate (EC)
Was added and mixed to prepare a composition of 1.0 mol / l L
A sample was prepared in the same manner as in Example 1 except that an organic solvent-based electrolytic solution represented by iPF 6 / EC: DEC (volume ratio 1: 1) was used, and PAS analysis was performed. As a result, the position of the characteristic absorption peak of the product on the carbon material surface of the negative electrode of Example 4 was 1738 cm −1 , and the peak intensity ratio was 17
The value of 38cm -1 / 2922cm -1 was 0.0082.

【0052】実施例5 電解質としてLiPF6 を代えて、C4 9 SO3 Li
を用いたほかは、実施例1と同様の方法で試料を作製
し、PAS分析を行った。その結果、この実施例5の負
極の炭素材料表面の生成物の特性吸収ピークの位置は1
740cm-1であり、ピーク強度比1740cm-1/2
922cm-1の値は0.0075であった。
Example 5 Instead of LiPF 6 as the electrolyte, C 4 F 9 SO 3 Li was used.
A sample was prepared in the same manner as in Example 1 except that was used, and PAS analysis was performed. As a result, the position of the characteristic absorption peak of the product on the carbon material surface of the negative electrode of Example 5 was 1
Is 740 cm -1, the peak intensity ratio 1740 cm -1 / 2
The value at 922 cm -1 was 0.0075.

【0053】実施例6 負極活物質前駆体としてコークスを1200℃で熱処理
したものを粉砕して10μmの粉末を用意した。この粉
末の層間距離d002 は3.43Åであり、c軸方向の結
晶子サイズLcは32Åであった。この粉末を用いたほ
かは、実施例1と同様の方法で試料を作製し、PAS分
析を行った。
Example 6 As a negative electrode active material precursor, coke heat-treated at 1200 ° C. was pulverized to prepare a powder of 10 μm. The interlayer distance d 002 of this powder was 3.43Å, and the crystallite size Lc in the c-axis direction was 32Å. A sample was prepared in the same manner as in Example 1 except that this powder was used, and PAS analysis was performed.

【0054】その結果、この実施例6の負極の炭素材料
表面の生成物の特性吸収ピークの位置は1735cm-1
であり、ピーク強度比1735cm-1/2922cm-1
の値は0.0125であった。
As a result, the position of the characteristic absorption peak of the product on the carbon material surface of the negative electrode of Example 6 was 1735 cm -1.
And the peak intensity ratio is 1735 cm -1 / 2922 cm -1
The value of was 0.0125.

【0055】実施例7 セパレータとして微孔性ポリプロピレンフィルムを用い
たほかは、実施例1と同様の方法で試料を作製し、PA
S分析を行った。その結果、この実施例7の負極の炭素
材料表面の生成物の特性吸収ピークの位置は1680c
-1であり、セパレータの特性吸収ピークの位置は28
70cm-1であって、そのピーク強度比1680cm-1
/2870cm-1の値は0.0035であった。
Example 7 A sample was prepared in the same manner as in Example 1 except that a microporous polypropylene film was used as the separator.
S analysis was performed. As a result, the position of the characteristic absorption peak of the product on the carbon material surface of the negative electrode of Example 7 was 1680c.
m −1 , and the position of the characteristic absorption peak of the separator is 28
70 cm -1 , with a peak intensity ratio of 1680 cm -1
The value of / 2870 cm -1 was 0.0035.

【0056】比較例1 実施例1における60℃で10時間という条件下でのエ
ージングに代えて、80℃で20日間貯蔵してエージン
グしたほかは、実施例1と同様の方法で試料を作製し、
PAS分析を行った。その結果、この比較例1の負極の
炭素材料表面の生成物の特性吸収ピークとセパレータの
特性吸収ピークの位置は、両者とも実施例1と同じであ
り、そのピーク強度比1737cm-1/2922cm-1
の値は0.2551であった。
Comparative Example 1 A sample was prepared in the same manner as in Example 1 except that aging was performed by storing at 80 ° C. for 20 days instead of aging at 60 ° C. for 10 hours in Example 1. ,
PAS analysis was performed. As a result, the position of the characteristic absorption peak and separator characteristic absorption peak of the product of the negative electrode carbon material surface of Comparative Example 1, both the same as in Example 1, the peak intensity ratio 1737cm -1 / 2922cm - 1
The value of was 0.2551.

【0057】比較例2 実施例1における60℃で10時間という条件下でのエ
ージングに代えて、25℃で10時間貯蔵してエージン
グしたほかは、実施例1と同様の方法で試料を作製し、
PAS分析を行った。その結果、この比較例2の負極の
炭素材料表面の生成物の特性吸収ピークとセパレータの
特性吸収ピークの位置は、両者とも実施例1と同じであ
り、そのピーク強度比1739cm-1/2922cm-1
の値は0.0005であった。
Comparative Example 2 A sample was prepared in the same manner as in Example 1 except that instead of aging under the condition of 60 ° C. for 10 hours in Example 1, the sample was stored at 25 ° C. for 10 hours and aged. ,
PAS analysis was performed. As a result, the position of the characteristic absorption peak and separator characteristic absorption peak of the product of the negative electrode carbon material surface in Comparative Example 2, both the same as in Example 1, the peak intensity ratio 1739cm -1 / 2922cm - 1
Was 0.0005.

【0058】上記実施例1〜7および比較例1〜2の電
池について、0.5Cで電圧2.7〜4.2Vの範囲で
充放電させ、放電容量が初期の放電容量の95%に低下
するまでのサイクル数を調べた。そのサイクル数とピー
ク強度比(PAS分析測定により得られたセパレータの
負極と対向する側の赤外PASスペクトルについて、1
739cm-1付近の特性吸収ピーク強度と2922cm
-1付近の特性吸収ピーク強度との比)との関係を表2に
示す。
The batteries of Examples 1 to 7 and Comparative Examples 1 and 2 were charged and discharged at a voltage of 2.7 to 4.2 V at 0.5 C, and the discharge capacity dropped to 95% of the initial discharge capacity. The number of cycles to do was examined. The number of cycles and the peak intensity ratio (for the infrared PAS spectrum of the side of the separator facing the negative electrode, obtained by PAS analysis measurement: 1
Characteristic absorption peak intensity around 739 cm -1 and 2922 cm
Table 2 shows the relationship with the characteristic absorption peak intensity near -1 ).

【0059】[0059]

【表2】 [Table 2]

【0060】表2に示すように、ピーク強度比、すなわ
ち、PAS分析測定により得られたセパレータの負極と
対向する側の赤外PASスペクトルについて、1739
cm-1付近の特性吸収ピーク強度と2922cm-1付近
の特性吸収ピーク強度との比が0.001以上0.1以
下の範囲内にある実施例1〜7は、ピーク強度比が上記
範囲外の比較例1〜2に比べて、サイクル数(放電容量
が初期の放電容量の95%に低下するまでのサイクル
数)が多く、サイクル特性が優れていた。
As shown in Table 2, the peak intensity ratio, that is, the infrared PAS spectrum of the side of the separator facing the negative electrode obtained by PAS analysis measurement was 1739.
cm -1 ratio of the characteristic absorption peak intensity and 2922cm -1 characteristic absorption peak intensity near the vicinity is within the range of 0.001 to 0.1 Examples 1 to 7, the peak intensity ratio is outside the above range Compared with Comparative Examples 1 and 2, the number of cycles (the number of cycles until the discharge capacity decreased to 95% of the initial discharge capacity) was large, and the cycle characteristics were excellent.

【0061】すなわち、上記ピーク強度比が0.1より
大きい比較例1も、また上記ピーク強度比が0.001
より小さい比較例2も、実施例1〜7に比べて、サイク
ル数が少なく、充分なサイクル特性を有していなかっ
た。
That is, also in Comparative Example 1 in which the peak intensity ratio is larger than 0.1, the peak intensity ratio is 0.001.
The smaller Comparative Example 2 also had a smaller number of cycles than Examples 1 to 7 and did not have sufficient cycle characteristics.

【0062】[0062]

【発明の効果】以上説明したように、本発明は、リチウ
ム含有遷移金属酸化物を活物質とする正極、炭素材料を
活物質とする負極、有機溶媒系の電解液およびセパレー
タを有する非水二次電池において、PAS分析測定によ
り得られたセパレータの負極と対向する側の赤外PAS
スペクトルについて、1739cm-1付近の特性吸収ピ
ーク強度と2922cm-1付近の特性吸収ピーク強度と
の比を0.001以上0.1以下にすることによって、
サイクル特性の優れた非水二次電池を提供することがで
きた。
INDUSTRIAL APPLICABILITY As described above, the present invention provides a non-aqueous electrolyte having a positive electrode having a lithium-containing transition metal oxide as an active material, a negative electrode having a carbon material as an active material, an organic solvent-based electrolyte and a separator. In the secondary battery, the infrared PAS on the side facing the negative electrode of the separator obtained by PAS analysis measurement
For spectrum, by a 0.001 to 0.1 the ratio of the characteristic absorption peak intensity at around the characteristic absorption peak intensity and 2922cm -1 in the vicinity of 1739cm -1,
It was possible to provide a non-aqueous secondary battery having excellent cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水二次電池の一例を模式的に示す断
面図である。
FIG. 1 is a cross-sectional view schematically showing an example of a non-aqueous secondary battery of the present invention.

【図2】実施例1の電池に関して、変調周波数1.6k
HzのPAS分析測定により得られたセパレータの負極
と対向する側の赤外PASスペクトルを示す図である。
2 is a modulation frequency of 1.6 k for the battery of Example 1. FIG.
It is a figure which shows the infrared PAS spectrum of the side which opposes the negative electrode of the separator obtained by PAS analysis measurement of Hz.

【図3】図2のA部の拡大図である。FIG. 3 is an enlarged view of part A of FIG.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電解液 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有遷移金属酸化物を活物質と
する正極、炭素材料を活物質とする負極、有機溶媒系の
電解液およびセパレータを有する非水二次電池におい
て、変調周波数1.6kHzのPAS(光音響分光法)
分析測定により得られたセパレータの負極と対向する側
の赤外PASスペクトルについて、1739cm-1付近
の特性吸収ピーク強度(光音響信号強度)と2922c
-1付近の特性吸収ピーク強度(光音響信号強度)との
比が0.001以上0.1以下であることを特徴とする
非水二次電池。
1. A non-aqueous secondary battery having a positive electrode using a lithium-containing transition metal oxide as an active material, a negative electrode using a carbon material as an active material, an organic solvent-based electrolyte and a separator at a modulation frequency of 1.6 kHz. PAS (photoacoustic spectroscopy)
Regarding the infrared PAS spectrum of the side of the separator facing the negative electrode obtained by analytical measurement, the characteristic absorption peak intensity (photoacoustic signal intensity) near 1739 cm -1 and 2922c
A non-aqueous secondary battery having a ratio with a characteristic absorption peak intensity (photoacoustic signal intensity) in the vicinity of m −1 of 0.001 or more and 0.1 or less.
JP15312296A 1996-05-23 1996-05-23 Non-aqueous secondary battery Expired - Fee Related JP4067061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15312296A JP4067061B2 (en) 1996-05-23 1996-05-23 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15312296A JP4067061B2 (en) 1996-05-23 1996-05-23 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH09320638A true JPH09320638A (en) 1997-12-12
JP4067061B2 JP4067061B2 (en) 2008-03-26

Family

ID=15555465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15312296A Expired - Fee Related JP4067061B2 (en) 1996-05-23 1996-05-23 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4067061B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340231A (en) * 1998-10-22 2000-12-08 Toyota Central Res & Dev Lab Inc Positive electrode active material for lithium secondary battery, manufacture of same, lithium secondary battery using same, and method for aging lithium secondary battery
US6555280B2 (en) 2001-03-30 2003-04-29 Fujitsu Limited Color toner for flash fixing
JP2007250288A (en) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd Method for manufacturing non-aqueous electrolyte secondary battery
CN110398461A (en) * 2019-07-11 2019-11-01 上海交通大学 A kind of three-D imaging method for realizing dendrite in lithium metal battery using photoacoustic imaging
EP4019963A3 (en) * 2020-12-24 2022-09-07 InnoRay Co. Ltd. Method for ultrasonic testing of a secondary battery and method for manufacturing a secondary battery including the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340231A (en) * 1998-10-22 2000-12-08 Toyota Central Res & Dev Lab Inc Positive electrode active material for lithium secondary battery, manufacture of same, lithium secondary battery using same, and method for aging lithium secondary battery
JP4734684B2 (en) * 1998-10-22 2011-07-27 株式会社豊田中央研究所 Positive electrode active material for lithium secondary battery, method for producing the same, lithium secondary battery using the same, and aging treatment method for the secondary battery
US6555280B2 (en) 2001-03-30 2003-04-29 Fujitsu Limited Color toner for flash fixing
JP2007250288A (en) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd Method for manufacturing non-aqueous electrolyte secondary battery
CN110398461A (en) * 2019-07-11 2019-11-01 上海交通大学 A kind of three-D imaging method for realizing dendrite in lithium metal battery using photoacoustic imaging
EP4019963A3 (en) * 2020-12-24 2022-09-07 InnoRay Co. Ltd. Method for ultrasonic testing of a secondary battery and method for manufacturing a secondary battery including the same

Also Published As

Publication number Publication date
JP4067061B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
US6040092A (en) Nonaqueous secondary battery
US6524749B1 (en) Lithium secondary battery, and process for producing the same
JP2001023684A (en) Nonaqueous electrolyte secondary battery
JP3692547B2 (en) Charging method
KR100692733B1 (en) Nonaqueous electrolyte secondary cell
JPH08315817A (en) Manufacture of carbon negative electrode material and nonaqueous electrolyte secondary battery
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
CN108306049B (en) Non-aqueous electrolyte secondary battery
JPH09161778A (en) Organic electrolyte secondary battery
JP2001006730A (en) Nonaqueous electrolyte battery
JP7106748B2 (en) Electrodes, batteries and battery packs
JP4067061B2 (en) Non-aqueous secondary battery
JP4690643B2 (en) Nonaqueous electrolyte secondary battery
JP3851040B2 (en) Lithium secondary battery
JP4147671B2 (en) Nonaqueous electrolyte secondary battery and method for producing negative electrode material
JPH04329268A (en) Nonaqueous electrolyte secondary battery
JP2002367585A (en) Separator, its manufacturing method, as well as battery, and its manufacturing method
JP4145391B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP4686131B2 (en) Nonaqueous electrolyte secondary battery
CN116830310A (en) Nonaqueous electrolyte battery and battery pack
JP2000123869A (en) Nonaqueous secondary battery
JP4938923B2 (en) Secondary battery
JP4585229B2 (en) Nonaqueous electrolyte secondary battery
JPH11339852A (en) Lithium ion nonaqueous electrolyte secondary battery
JPH07320785A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees