JPH09318456A - Scan type infrared ray optical device - Google Patents

Scan type infrared ray optical device

Info

Publication number
JPH09318456A
JPH09318456A JP8153313A JP15331396A JPH09318456A JP H09318456 A JPH09318456 A JP H09318456A JP 8153313 A JP8153313 A JP 8153313A JP 15331396 A JP15331396 A JP 15331396A JP H09318456 A JPH09318456 A JP H09318456A
Authority
JP
Japan
Prior art keywords
scanning
infrared
scan
sub
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8153313A
Other languages
Japanese (ja)
Inventor
Kozo Tsuchimoto
耕三 土本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP8153313A priority Critical patent/JPH09318456A/en
Publication of JPH09318456A publication Critical patent/JPH09318456A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve picture quality of an infrared ray image with two dimensional scanning obtained based on TDI(time delay integration) process. SOLUTION: A photo detection input which is photo-detected through a main scan mechanism 1 which utilizes a rotating polygon mirror, a sub-scan mechanism 2 which utilizes a rotary flat mirror and an optical system 3, is converted into electric signal with an infrared ray detector 4, and sent to a time delay integration processing part 5. The time delay integration processing part 5, related to the photo detection output for each scan line from scan lines Rn-Rn+3 , etc., matches, in time base, the outputs for each continuous scan with time delay for addition-output, so that occurrence of stripe pattern on a thermal image caused by dispersion in reflection coefficient of each rotary flat mirror caused by TDI process output is essentially suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は走査型赤外線光学装
置に関し、特に水平方向の主走査と垂直方向の副走査と
を組み合わせたラスタースキャンを行い、且つ時間遅延
積分(Time Delayand Integration:TDI)方式で熱
画像を得る、赤外線カメラの画質改善に効果的な走査型
赤外線光学装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning infrared optical device, and more particularly, it performs raster scanning in which horizontal main scanning and vertical sub-scanning are combined and time delay integration (TDI) method. The present invention relates to a scanning infrared optical device that is effective in improving the image quality of an infrared camera that obtains a thermal image in the above.

【0002】[0002]

【従来の技術】従来、主走査に回転多面体鏡を用いて赤
外線熱画像を取得する赤外線光学装置としては、単数の
赤外線ディテクター(detector)を用いた方式、複数の
赤外線ディテクターを主走査方向に配列し、それらディ
テクターの出力信号を、走査に要する時間だけ順次遅延
させながら時間的に同相として加算合成するTDI方
式、複数の赤外線ディテクターを副走査方向に並行配列
し、1回の主走査によってこれら赤外線ディテクターの
個数本のラスター走査を行うパラレルスキャン方式の
他、TDI方式とパラレルスキャン方式を組み合わせた
2次元配列の赤外線検出素子を利用してTDI処理を行
う2次元TDI方式(例えば特願平8−20552号、
2次元時間遅延積分型熱画像装置)がある。
2. Description of the Related Art Conventionally, as an infrared optical device for acquiring an infrared thermal image by using a rotating polygon mirror for main scanning, a method using a single infrared detector is used, and a plurality of infrared detectors are arranged in the main scanning direction. Then, the output signals of these detectors are sequentially delayed by the time required for scanning and added and synthesized as in-phase in time, and a plurality of infrared detectors are arranged in parallel in the sub-scanning direction and these infrared rays are detected by one main scan. In addition to the parallel scan method that performs raster scanning of the number of detectors, a two-dimensional TDI method that performs TDI processing using a two-dimensional array of infrared detection elements that combines the TDI method and the parallel scan method (for example, Japanese Patent Application No. 8- 20552,
There is a two-dimensional time delay integration type thermal imager.

【0003】なお、上述したTDI方式によれば、N個
の赤外線検出素子の出力の遅延加算により、感度をN倍
となし、且つS/N比をN1/2 に改善することができ
る。
According to the TDI method described above, the sensitivity can be increased N times and the S / N ratio can be improved to N 1/2 by delay-adding the outputs of the N infrared detecting elements.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た各種の方式はいずれも、主走査に用いる回転多面体鏡
(ポリゴンミラー)の各反射面の反射率がばらついてい
たり、製造工程で、ある反射面にキズや汚れが付いてい
る場合には、その反射面に対応する走査線だけディテク
ターの出力値が変化し、均一であるべき熱画像画面上に
横筋が現れてしまう。
However, in each of the above-mentioned various methods, the reflectance of each reflecting surface of the rotating polygon mirror (polygon mirror) used for main scanning varies, or a certain reflecting surface is used in the manufacturing process. When there are scratches or stains on the surface, the output value of the detector changes only for the scanning line corresponding to the reflection surface, and horizontal stripes appear on the thermal image screen that should be uniform.

【0005】従って、ポリゴンミラーの製造時には各反
射面ごとの反射率を同一にするための特殊な処理や検査
が必要となり、製品の歩留まりも悪い。また、赤外線光
学系の調整中等に誤って反射面にキズや除去できない汚
れが付いた場合には、ポリゴンミラー自体を破棄しなけ
ればならないという欠点がある。
Therefore, when manufacturing the polygon mirror, special processing and inspection are required to make the reflectances of the respective reflecting surfaces the same, and the yield of the products is poor. Further, if the reflecting surface is erroneously scratched or stains cannot be removed during adjustment of the infrared optical system, the polygon mirror itself must be discarded.

【0006】本発明の目的は、上述した問題点を解決
し、副走査方向へ配列した赤外線ディテクターの配列数
と主走査に用いるポリゴンミラーの反射面数とを一致さ
せて撮像視野を2次元的に走査して得られる出力を、副
走査方向に配列した赤外線ディテクターに対して走査時
間に対応する時間遅延を施しつつ各赤外線ディテクター
の出力信号を累積加算することにより、ポリゴンミラー
の反射面のキズや除去できない汚れによる影響を排除し
た走査型赤外線光学装置を提供することにある。
The object of the present invention is to solve the above-mentioned problems and to make the imaging field of view two-dimensional by making the number of arrayed infrared detectors arranged in the sub-scanning direction coincide with the number of reflection surfaces of the polygon mirror used for main scanning. The output of each polygon detector is accumulated by adding the output signal of each infrared detector while delaying the time corresponding to the scanning time to the infrared detectors arranged in the sub-scanning direction. Another object of the present invention is to provide a scanning infrared optical device that eliminates the influence of dirt that cannot be removed.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の目的を
達成するために次の手段構成を有する。即ち、走査型赤
外線光学装置に関する本発明の第1の構成は、被写体の
水平方向走査および垂直方向走査の併施によるラスター
スキャンによって取得する熱画像を時間遅延積分方式で
2次元的に処理する場合に、水平方向走査を行う回転多
面体鏡の反射面のキズもしくは汚れによる反射率のバラ
ツキの影響の排除を可能とすることを特徴とする走査型
赤外線光学装置であって、下記に示す(イ)ないし
(ハ)の各構成を有する。 (イ)被写体に、高速の主走査としての水平方向走査と
低速の副走査としての垂直方向走査とをそれぞれ独立的
に施して前記ラスタースキャンを行う水平走査機構と垂
直走査機構とを有し、且つ前記ラスタースキャンによる
走査出力を光学的に集束して受光視野を形成する光学系
を配置した光学走査部 (ロ)前記光学走査部による受光視野の副走査方向に直
線的に配置して受光赤外線を電気的出力に変換送出す
る、前記回転多面体鏡の反射面の数と等しい複数の赤外
線検出器を備えた赤外線ディテクター (ハ)前記赤外線ディテクターの検出出力を、相続く前
記副走査ごとの同一主走査線から得られる検出出力を、
副走査に要する遅れ時間だけ順次相続く前記副走査ごと
に遅延させつつそれぞれを時間的に整合して加算出力す
る時間遅延積分処理部
The present invention has the following means in order to achieve the above object. That is, the first configuration of the present invention relating to the scanning infrared optical device is a case where a thermal image acquired by raster scanning by performing horizontal scanning and vertical scanning of an object is two-dimensionally processed by a time delay integration method. In addition, a scanning infrared optical device characterized in that it is possible to eliminate the influence of variations in reflectance due to scratches or dirt on the reflecting surface of a rotating polygon mirror that performs horizontal scanning, and is shown below (a) To (c). (A) A horizontal scanning mechanism and a vertical scanning mechanism that independently perform high-speed horizontal scanning as high-speed main scanning and vertical scanning as low-speed sub-scanning on a subject to perform the raster scan, respectively. Further, an optical scanning section in which an optical system for optically focusing the scanning output of the raster scan to form a light receiving field is arranged. (B) A light receiving infrared ray which is linearly arranged in the sub scanning direction of the light receiving field by the optical scanning section. An infrared detector having a plurality of infrared detectors, which are equal in number to the number of reflecting surfaces of the rotating polyhedral mirror, for transmitting the electric power to the electric output. The detection output obtained from the scanning line is
A time-delay integration processing section that delays each successive sub-scan by the delay time required for the sub-scan and adds the outputs by time matching them.

【0008】本発明の第2の構成は、前記第1の構成に
おいて、前記赤外線ディテクターの有する複数の赤外線
検出器が、それぞれ出力を同一レベルに設定可能な増幅
器を備えた構成を有する。
According to a second structure of the present invention, in the first structure, the plurality of infrared detectors included in the infrared detector have amplifiers capable of setting outputs to the same level.

【0009】[0009]

【発明の実施の形態】被写体を2次元的にラスタースキ
ャンすべく、水平方向の高速の主走査と、この主走査と
組み合わせる垂直方向の低速の副走査とを独立的に併行
実施する場合、主走査には通常、回転多面体鏡、いわゆ
るポリゴンミラーが用いられる。このポリゴンミラー
は、多面体鏡を形成する複数の平面ミラーによる反射面
を有し、この反射面の高速回転によって被写体の水平方
向の主走査が行われる。
BEST MODE FOR CARRYING OUT THE INVENTION In order to perform a two-dimensional raster scan of an object, a high-speed main scan in the horizontal direction and a low-speed sub-scan in the vertical direction combined with this main scan are independently executed in parallel. A rotating polygon mirror, a so-called polygon mirror, is usually used for scanning. This polygon mirror has a reflecting surface formed by a plurality of plane mirrors forming a polyhedral mirror, and the main scanning in the horizontal direction of the object is performed by high-speed rotation of the reflecting surface.

【0010】従って、これら複数の各反射面はいずれも
同一の反射率を有するものであることが必要となるが、
製造工程、調整中、もしくは何等かの他の原因でキズや
除去不能の汚れが付くと、当該反射面に対応する水平方
向走査線の赤外線ディテクター出力が変化し、元来均一
であるべき画面上に横筋、いわゆる画像縞が現れる画面
劣化をもたらす。
Therefore, it is necessary that all of the plurality of reflecting surfaces have the same reflectance.
If scratches or irremovable stains are attached during the manufacturing process, adjustment, or for some other reason, the infrared detector output of the horizontal scanning line corresponding to the reflecting surface will change, and it should be uniform on the screen. Horizontal stripes, so-called image stripes, appear on the screen, resulting in screen deterioration.

【0011】本発明は、かかるポリゴンミラーの個々の
反射面のキズや汚れによってもたらされる画面劣化を改
善すべく、赤外線画像形成におけるポリゴンミラーの反
射面の数と、副走査方向に1次元配列した赤外線ディテ
クターの含む赤外線検出器の数との一致が、TDI方式
における時系列データの、副走査ごとの同一走査線の加
算出力がいずれも同一となって、実効的には前述した画
面劣化の影響を排除しうる効果が得られることに着目
し、ポリゴンミラーの反射面数と副走査方向に1次元配
列した赤外線ディテクター数とを一致させて、且つ同一
走査線から得られる副走査ごとの出力を遅延により時間
整合し、順次累加することによって同一走査線からの出
力レベルの一定化を図って画像縞の発生を抑圧する走査
型赤外線光学装置を構成することを実施の形態としてい
る。
According to the present invention, in order to improve screen deterioration caused by scratches and stains on the individual reflecting surfaces of the polygon mirror, the number of reflecting surfaces of the polygon mirror in infrared image formation and the one-dimensional array in the sub-scanning direction are arranged. When the number of infrared detectors included in the infrared detector matches, the addition output of the same scanning line for each sub-scan of the time series data in the TDI method becomes the same, which effectively affects the above-mentioned screen deterioration. Paying attention to the effect that can be eliminated, the number of reflecting surfaces of the polygon mirror and the number of infrared detectors which are one-dimensionally arrayed in the sub-scanning direction are matched, and the output for each sub-scanning obtained from the same scanning line is obtained. A scanning infrared optical device that suppresses the occurrence of image stripes by time-matching with delay and sequentially accumulating to make the output level from the same scanning line constant It is as embodiments that formed.

【0012】[0012]

【実施例】次に、図面を参照して本発明を説明する。図
1は、本発明の一実施例の構成を斜視的に示すブロック
図である。図1に示す実施例は、ポリゴンミラーの反射
面数を4とした場合を例とし、4面体としての4つの反
射面を有するポリゴンミラーを有し高速の水平方向走査
を行う主走査機構1と、主走査機構1と組み合わせて低
速の垂直方向走査を行いラスタースキャンを実施する回
動平面鏡利用の副走査機構2と、ラスタースキャンの受
光出力を収束出光して所望の受光視野を形成する光学系
3と、主走査機構1の有する反射面数と同じ4つの赤外
線検知器を副走査方向に配列した赤外線ディテクター4
と、赤外線ディテクター4の出力に対して本発明独自の
TDI処理を施す時間遅延積分処理部5とを備え、図1
には尚、撮像視野101 と、主走査方向102 と、副走査方
向103 とを併記して示す。上述した構成中、主走査機構
1、副走査機構2および光学系3が光学走査部を構成す
る。
Next, the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a perspective view of the configuration of an embodiment of the present invention. In the embodiment shown in FIG. 1, the case where the number of reflecting surfaces of the polygon mirror is 4 is taken as an example, and a main scanning mechanism 1 having a polygon mirror having four reflecting surfaces as a tetrahedron and performing high-speed horizontal scanning is provided. , A sub-scanning mechanism 2 using a rotating plane mirror for performing low-speed vertical scanning and raster scanning in combination with the main scanning mechanism 1, and an optical system for converging and outputting the received light output of the raster scan to form a desired light receiving field of view. 3 and an infrared detector 4 in which four infrared detectors having the same number of reflecting surfaces as the main scanning mechanism 1 are arranged in the sub-scanning direction.
1 and a time delay integration processing unit 5 that performs the TDI processing unique to the present invention on the output of the infrared detector 4.
Note that the imaging field of view 101, the main scanning direction 102, and the sub-scanning direction 103 are also shown together. In the configuration described above, the main scanning mechanism 1, the sub-scanning mechanism 2 and the optical system 3 form an optical scanning unit.

【0013】次に、本実施例の動作について説明する。
主走査機構1のポリゴンミラーは、4つの同じ平面状の
反射面M1,M2,M3およびM4を有し、所定の高速
度で回転軸11を中心として矢印方向に回転する。副走
査機構2は、回動軸21を中心とし、所定の低速度で2
重矢印に示す回動を行う。主走査機構1と副走査機構2
によって、撮像視野101 に対する主走査方向102 と副走
査方向103 との組合せの走査によるラスタースキャンが
確保される。
Next, the operation of this embodiment will be described.
The polygon mirror of the main scanning mechanism 1 has four identical planar reflecting surfaces M1, M2, M3 and M4, and rotates in the direction of the arrow around the rotating shaft 11 at a predetermined high speed. The sub-scanning mechanism 2 rotates about the rotation shaft 21 at a predetermined low speed.
The rotation indicated by the double arrow is performed. Main scanning mechanism 1 and sub scanning mechanism 2
As a result, the raster scan is ensured by the scanning of the combination of the main scanning direction 102 and the sub scanning direction 103 with respect to the imaging visual field 101.

【0014】図1にはこのようなラスタースキャンの1
例を、撮像視野101 上の走査線Rn,Rn+1,Rn+2 および
n+3 上を、主走査方向102 の方向に、後述する4つの
赤外線検出素子受光視野D1,D2,D3およびD4の
走査によって表現している。
FIG. 1 shows one of such raster scans.
For example, on the scanning lines R n , R n + 1 , R n + 2 and R n + 3 on the imaging field of view 101, in the direction of the main scanning direction 102, four infrared detection element light receiving fields D1 and D2 to be described later are provided. , D3 and D4.

【0015】ラスタースキャンの走査ごとの受光出力は
光学系3によって収束され、赤外線ディテクター4の4
つの赤外線検出器の受光視野D1,D2,D3およびD
4に受光される。
The received light output for each scan of the raster scan is converged by the optical system 3, and the infrared detector 4
Receiving fields D1, D2, D3 and D of two infrared detectors
4 is received.

【0016】図2は、赤外線ディテクター4および時間
遅延積分処理部5の構成を示すブロック図である。赤外
線ディテクター4は、ポリゴンミラーの反射面数と同じ
4つの赤外線検出素子41a,41b,41cおよび4
1dと、これら4つの赤外線検出素子の出力を互いに一
定レベルに増幅して赤外線検出素子間の感度バラツキを
補正する4つの可変利得増幅器42a,42b,42c
および42dとを赤外線検知器として備える。
FIG. 2 is a block diagram showing the configurations of the infrared detector 4 and the time delay integration processing section 5. The infrared detector 4 includes four infrared detecting elements 41a, 41b, 41c and 4 having the same number of reflecting surfaces as the polygon mirror.
1d and four variable gain amplifiers 42a, 42b, 42c for amplifying the outputs of these four infrared detecting elements to a constant level and correcting sensitivity variations among the infrared detecting elements.
And 42d as an infrared detector.

【0017】赤外線検出素子41a〜41dは、1回の
副走査ごとの受光入力を電気出力に変換し、副走査に要
する一定時間ずつ順次遅延しつつ走査線を1つずつシフ
トして4つの受光出力を送出する。
The infrared detecting elements 41a to 41d convert the light receiving input for each sub-scanning into an electric output and sequentially shift the scanning lines one by one while sequentially delaying each for a fixed time required for the sub-scanning to receive four light-receivings. Send output.

【0018】時間遅延積分処理部5は、赤外線ディテク
ター4から提供される副走査ごとの受光出力について、
同一走査線から得られる副走査ごとの、ポリゴンミラー
の隣接する4つの反射面による検出出力を遅延処理によ
って時間的に整合し、且つ加算する時間遅延積分処理を
行って、感度とS/N比を改善する。
The time-delay integration processing unit 5 detects the light reception output for each sub-scan provided from the infrared detector 4.
Sensitivity and S / N ratio are obtained by performing time-delay integration processing of temporally matching and adding detection outputs by four adjacent reflecting surfaces of the polygon mirror for each sub-scan obtained from the same scanning line by delay processing. To improve.

【0019】図2に示す時間遅延積分処理部5は上述し
たTDI処理を実現する1構成例であり、3つの加算器
51a〜51cと、遅延時間をいずれも同じ1回当りの
副走査時間に設定する3つの遅延回路52a〜52cを
備え、所望のTDI出力501を得ている。
The time delay integration processing unit 5 shown in FIG. 2 is an example of a configuration for realizing the above-mentioned TDI processing, and the three adders 51a to 51c and the delay time are all set to the same sub-scanning time per one time. Three delay circuits 52a to 52c for setting are provided to obtain a desired TDI output 501.

【0020】次に、このような構成によって、ポリゴン
ミラーの反射面のキズ、汚れによる反射率のバラツキの
影響を排除する動作を説明する。図3は、図1の実施例
の動作の説明図である。図3の(a)は、第1回目の走
査を示し、図3の(b)は第2回目の走査を示し、以下
第n回目の走査まで継続される。第1回目の走査では、
撮像視野101 に対する走査は、走査線R1からR4まで
を主走査方向102 と副走査方向103 に亙ってラスタース
キャンする。次に行われる第2回目の走査では、図3の
(b)に示すように、走査線R2〜R5を対象とするラ
スタースキャンが行われる。
Next, the operation of eliminating the influence of the variation in the reflectance due to the scratches and stains on the reflecting surface of the polygon mirror with such a configuration will be described. FIG. 3 is an explanatory diagram of the operation of the embodiment of FIG. 3A shows the first scanning, FIG. 3B shows the second scanning, and the scanning is continued until the nth scanning. In the first scan,
The scanning of the imaging visual field 101 is performed by raster scanning the scanning lines R1 to R4 in the main scanning direction 102 and the sub scanning direction 103. In the second scanning performed next, as shown in FIG. 3B, a raster scan targeting the scanning lines R2 to R5 is performed.

【0021】図3に示す符号D1,D2,D3およびD
4は、元来は赤外線ディテクター4の赤外線検出素子4
1a,41b,41cおよび41dの受光視野を示すも
のであるが、図3においては説明の便宜を図って、撮像
視野101 上におけるそれぞれの赤外線検出素子の撮像小
領域を示すものとし、さらにポリゴンミラーの4つの反
射面と、上述した撮像小領域とによって得られる受光出
力を(Mn ×Dn)(n=1〜4)として表現して説明す
る。
Reference numerals D1, D2, D3 and D shown in FIG.
4 is originally an infrared detection element 4 of the infrared detector 4.
1A, 41b, 41c, and 41d show the light-receiving fields of view, but for convenience of description, FIG. 3 shows imaging small areas of the respective infrared detection elements on the imaging field of view 101, and further, a polygon mirror. The light reception output obtained by the four reflecting surfaces of 4 and the imaging small area described above will be described as (M n × D n ) (n = 1 to 4).

【0022】今、4番目の走査線R4に着目すると、第
1回目の走査でポリゴンミラーの反射面M1で反射した
赤外線が赤外線検出素子受光視野D4で検出された出力
(M1×D4)が得られる。この出力を1回の副走査分
だけ遅延させ、次の第2回目の走査の出力(M2×D
3)と加算する。
Focusing now on the fourth scanning line R4, the output (M1 × D4) obtained by the infrared rays reflected by the reflecting surface M1 of the polygon mirror in the first scanning and detected by the infrared detecting element light receiving field D4 is obtained. To be This output is delayed by one sub-scan, and the output of the next second scan (M2 × D
Add 3).

【0023】さらにその結果を、また1回の副走査分だ
け遅延させた第3回目の結果(M3×D2)と加算し、
同じことをもう1回繰り返すと、走査線R4からの出力
として得られる加算出力θ4は、次の数式1で示され
る。
Further, the result is added to the third result (M3 × D2) delayed by one sub-scan,
If the same thing is repeated once more, the addition output θ4 obtained as the output from the scanning line R4 is represented by the following formula 1.

【0024】[0024]

【数1】θ4=(M1×D4)+(M2×D3)+(M
3×D2)+(M4×D1)
## EQU1 ## θ4 = (M1 × D4) + (M2 × D3) + (M
3 x D2) + (M4 x D1)

【0025】同じことを、5番目の走査線R5について
考えてみると、次の数式2のθ5で示される。
Considering the same thing for the fifth scanning line R5, it is shown by θ5 in the following equation 2.

【0026】[0026]

【数2】θ5=(M2×D4)+(M3×D3)+(M
4×D2)+(M1×D1)
## EQU00002 ## .theta.5 = (M2.times.D4) + (M3.times.D3) + (M
4 x D2) + (M1 x D1)

【0027】同様に、6番目および7番目の走査線R6
およびR7による加算出力については、次の数式3およ
び数式4によるθ6、θ7で示される。
Similarly, the sixth and seventh scan lines R6
The addition output by R7 and R7 is represented by θ6 and θ7 by the following formulas 3 and 4.

【0028】[0028]

【数3】θ6=(M3×D4)+(M4×D3)+(M
1×D2)+(M2×D1)
## EQU3 ## θ6 = (M3 × D4) + (M4 × D3) + (M
1 x D2) + (M2 x D1)

【0029】[0029]

【数4】θ7=(M4×D4)+(M1×D3)+(M
2×D2)+(M3×D1)
## EQU4 ## θ7 = (M4 × D4) + (M1 × D3) + (M
2 x D2) + (M3 x D1)

【0030】このようにして、各走査線ごとに同様な出
力表現が得られる。赤外線検出素子受光視野D1,D
2,D3およびD4による検出出力は、互いに等しく設
定されており、D1=D2=D3=D4=Dなので、走
査線nについては次の数式5で示される。
In this way, a similar output representation is obtained for each scan line. Infrared detector element light receiving field D1, D
The detection outputs of D2, D3, and D4 are set to be equal to each other, and D1 = D2 = D3 = D4 = D, so that the scanning line n is expressed by the following formula 5.

【0031】[0031]

【数5】θn=(M1+M2+M3+M4)×D (n=4,5,6,……m)[Mathematical formula-see original document] θn = (M1 + M2 + M3 + M4) × D (n = 4,5,6, ... m)

【0032】つまり、反射面M1〜M4の反射率がどの
ように変化しても、合計出力は互いに常に等しいものと
なる。
That is, no matter how the reflectance of the reflecting surfaces M1 to M4 changes, the total outputs are always equal to each other.

【0033】従来の方式では、ポリゴンミラーの各反射
面の反射率のバラツキの影響は避けられず、次のように
画面上に縞が生起する。たとえば、赤外線検出器を1個
とし、ポリゴンミラーは実施例と同じく4面体であると
する。この場合の出力は、θ1=(M1×D)、θ2=
(M2×D)、θ3=(M3×D)、θ4=(M4×
D)、θ5=(M1×D)……、として示され、例え
ば、M1の反射率がM2〜M4と異なる場合はθ1およ
びθ5は他のθ2,θ3,θ4等と異なってしまい、4
本おきに画面上に縞となって現れる。
In the conventional method, the influence of the variation in the reflectance of each reflecting surface of the polygon mirror is unavoidable, and stripes appear on the screen as follows. For example, assume that there is one infrared detector and that the polygon mirror is a tetrahedron as in the embodiment. The output in this case is θ1 = (M1 × D), θ2 =
(M2 × D), θ3 = (M3 × D), θ4 = (M4 ×
D), θ5 = (M1 × D) ..., For example, when the reflectance of M1 is different from M2 to M4, θ1 and θ5 are different from other θ2, θ3, θ4, etc.
Every book appears as stripes on the screen.

【0034】本実施例にあっては、前述した如く、反射
面の反射率バラツキの影響が現れることが根本的に排除
されるので、このような画面上の縞の発生を皆無とし、
著しい画質改善を図ることができるとともに、ポリゴン
ミラー自体の製作、保全も著しく容易なものとしてい
る。
In this embodiment, as described above, since the influence of the reflectance variation of the reflecting surface is basically eliminated, the occurrence of such stripes on the screen is eliminated,
Not only can the image quality be significantly improved, but the polygon mirror itself can also be manufactured and maintained very easily.

【0035】[0035]

【発明の効果】以上説明したように本発明の走査型赤外
線光学装置によれば、ポリゴンミラー利用の高速な主走
査と、低速の副走査の併行実施によるラスタースキャン
で取得する受光入力をTDI処理して熱画像を生成する
場合に、撮像視野の同一走査線からの走査ごとの受光入
力を走査時間ずつ順次遅延させて時間的整合をとり、こ
れらを加算出力するTDI処理を施すことにより、ポリ
ゴンミラーの各反射面相互間のキズ、汚れによる反射率
の影響を根本的に排除して画質を著しく改善しうるとと
もに、ポリゴンミラー自体の製作および保全条件を著し
く緩和しうる効果がある。
As described above, according to the scanning infrared optical apparatus of the present invention, the TDI processing is performed on the light receiving input obtained by the raster scan by the parallel execution of the high speed main scanning using the polygon mirror and the low speed sub scanning. When a thermal image is generated by performing a TDI process that sequentially delays the light-receiving input for each scan from the same scanning line in the imaging field of view for each scanning time to achieve time alignment and adds and outputs them, the polygon There is an effect that the influence of the reflectance due to scratches and dirt between the reflecting surfaces of the mirror can be fundamentally eliminated to significantly improve the image quality, and the manufacturing and maintenance conditions of the polygon mirror itself can be significantly eased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を斜視的に示すブロッ
ク図である。
FIG. 1 is a block diagram showing a perspective view of a configuration of an embodiment of the present invention.

【図2】図1の赤外線ディテクター4と時間遅延積分処
理部5の構成を併記して示すブロック図である。
FIG. 2 is a block diagram showing the configurations of an infrared detector 4 and a time delay integration processing unit 5 of FIG. 1 together.

【図3】本発明の動作の説明図である。FIG. 3 is an explanatory diagram of the operation of the present invention.

【符号の説明】[Explanation of symbols]

1 主走査機構 2 副走査機構 3 光学系 4 赤外線ディテクター 5 時間遅延積分処理部 1 Main scanning mechanism 2 Sub-scanning mechanism 3 Optical system 4 Infrared detector 5 Time delay integration processing section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 次の各構成を備え、被写体の水平方向走
査および垂直方向走査の併施によるラスタースキャンに
よって取得する熱画像を時間遅延積分方式で2次元的に
処理する場合に、水平方向走査を行う回転多面体鏡の反
射面のキズもしくは汚れによる反射率のバラツキの影響
の排除を可能とすることを特徴とする走査型赤外線光学
装置。 (イ)被写体に、高速の主走査としての水平方向走査と
低速の副走査としての垂直方向走査とをそれぞれ独立的
に施して前記ラスタースキャンを行う水平走査機構と垂
直走査機構とを有し、且つ前記ラスタースキャンによる
走査出力を光学的に集束して受光視野を形成する光学系
を配置した光学走査部 (ロ)前記光学走査部による受光視野の副走査方向に直
線的に配置して受光赤外線を電気的出力に変換送出す
る、前記回転多面体鏡の反射面の数と等しい複数の赤外
線検出器を備えた赤外線ディテクター (ハ)前記赤外線ディテクターの検出出力を、相続く前
記副走査ごとの同一主走査線から得られる検出出力を、
副走査に要する遅れ時間だけ順次相続く前記副走査ごと
に遅延させつつそれぞれを時間的に整合して加算出力す
る時間遅延積分処理部
1. When a thermal image acquired by raster scanning by simultaneously performing horizontal scanning and vertical scanning of an object is two-dimensionally processed by a time delay integration method, the horizontal scanning is provided with each of the following configurations. A scanning infrared optical device capable of eliminating the influence of variations in reflectance due to scratches or dirt on the reflecting surface of the rotating polygon mirror. (A) A horizontal scanning mechanism and a vertical scanning mechanism that independently perform high-speed horizontal scanning as high-speed main scanning and vertical scanning as low-speed sub-scanning on the subject to perform the raster scan, respectively. Further, an optical scanning section in which an optical system for optically focusing the scanning output by the raster scan to form a light receiving field is arranged. (B) A light receiving infrared ray which is linearly arranged in the sub-scanning direction of the light receiving field by the optical scanning section. An infrared detector equipped with a plurality of infrared detectors, which are equal in number to the number of reflecting surfaces of the rotating polyhedral mirror, for transmitting the electric power to the electric output. The detection output obtained from the scanning line is
A time-delay integration processing section that delays each successive sub-scan by the delay time required for the sub-scan and adds the outputs by time matching them.
【請求項2】 前記赤外線ディテクターの有する複数の
赤外線検出器が、それぞれ出力を同一レベルに設定可能
な増幅器を備えたものであることを特徴とする請求項1
記載の走査型赤外線光学装置。
2. The plurality of infrared detectors included in the infrared detector are each equipped with an amplifier whose output can be set to the same level.
The scanning infrared optical device described.
JP8153313A 1996-05-24 1996-05-24 Scan type infrared ray optical device Pending JPH09318456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8153313A JPH09318456A (en) 1996-05-24 1996-05-24 Scan type infrared ray optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8153313A JPH09318456A (en) 1996-05-24 1996-05-24 Scan type infrared ray optical device

Publications (1)

Publication Number Publication Date
JPH09318456A true JPH09318456A (en) 1997-12-12

Family

ID=15559769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8153313A Pending JPH09318456A (en) 1996-05-24 1996-05-24 Scan type infrared ray optical device

Country Status (1)

Country Link
JP (1) JPH09318456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107748011A (en) * 2017-09-20 2018-03-02 南京航空航天大学 The test system and method for testing of medium-wave infrared detector image-forming time delay

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107748011A (en) * 2017-09-20 2018-03-02 南京航空航天大学 The test system and method for testing of medium-wave infrared detector image-forming time delay
CN107748011B (en) * 2017-09-20 2019-08-16 南京航空航天大学 The test macro and test method of medium-wave infrared detector image-forming delay time

Similar Documents

Publication Publication Date Title
EP0468474A2 (en) A method of compensating scattered characteristics of infrared detector elements
EP0291091B1 (en) Image reader having spectroscope for color separation
EP0023131B1 (en) Optical scanning devices
US5300767A (en) Color image sensing assembly with multiple linear sensors and aligned filters
EP0612185B1 (en) Optical scanning apparatus
US5391873A (en) Imaging apparatus compensating for nonuniformity in detector outputs
JPH09318456A (en) Scan type infrared ray optical device
JPH08116402A (en) Color image read sensor and color image reader using the sensor
JPH09189610A (en) Two-dimensional time delay integrating type thermal image device
CA1073715A (en) Optical system for multiple imaging of a linear object
EP0140529A1 (en) Imaging apparatus
US4762989A (en) Image detection with image plane divider
JPH0432378A (en) Infrared ray image pickup device
JPH07236040A (en) Color line sensor camera
JP3203684B2 (en) Spectral imaging optical device
JPH02281868A (en) Color image reader
JP2522706B2 (en) Line sensor connection deviation detection method
JPS592430B2 (en) infrared imaging device
JPH10290388A (en) Light wave sensor device
JP2005348399A (en) Parameter set multi-row linear photosensor array
JP2001201400A (en) Dual wavelength image pickup device
JPH0738810A (en) Image pickup device
JPH0574979B2 (en)
JPH01274164A (en) Color image forming device
JPH10126589A (en) Digital image reader