JPH09318308A - Method for measuring clearance distance between members and method for controlling electrophotographic apparatus - Google Patents

Method for measuring clearance distance between members and method for controlling electrophotographic apparatus

Info

Publication number
JPH09318308A
JPH09318308A JP8133597A JP13359796A JPH09318308A JP H09318308 A JPH09318308 A JP H09318308A JP 8133597 A JP8133597 A JP 8133597A JP 13359796 A JP13359796 A JP 13359796A JP H09318308 A JPH09318308 A JP H09318308A
Authority
JP
Japan
Prior art keywords
roller
distance
photoconductor
voltage
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8133597A
Other languages
Japanese (ja)
Inventor
Sadayuki Iwai
貞之 岩井
Seiichi Miyagawa
誠一 宮川
Toshio Inada
俊生 稲田
Itsuo Ikeda
五男 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP8133597A priority Critical patent/JPH09318308A/en
Publication of JPH09318308A publication Critical patent/JPH09318308A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a clearance distance measuring method which calculates a clearance distance between members such as that between a roller and a photosensitive body in a wet type electrophotographic apparatus. SOLUTION: In this method, when a member B identical to a member A as electric resistor or conductor is set with a fine clearance made from the surface of the member A, a clearance distance between the members A and B is calculated from a voltage-current characteristic previously in a fixed relationship. To be more specific, an electrophotographic apparatus has a system in which a voltage is applied to a roller-shaped member B (such as set roller 4) set at a fixed distance from a photosensitive body 1 as member A. In this case, a discharge start voltage is determined by measuring the voltage applied to the roller-shaped member and the current flowing utilizing a fixed relationship existing between the clearance distance between the photosensitive body and the roller-shaped member and the discharge start voltage and a distance between the photosensitive body and the roller-shaped member is measured from a relational expression previously computed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、湿式電子写真装置
における部材間の空隙距離測定に応用される部材間の空
隙距離測定方法、及びその測定方法により得られた部材
間の空隙距離からそれらに関係するプロセスを制御する
電子写真装置の制御方法に関する。また本発明は、1m
m以下あるいは数μmオーダーの空隙を設けて組み立て
る超精密機構装置における空隙の直接測定の困難な箇所
において、スペーサー等を用いることなく金属等の部材
間距離を電圧を印加して計測する分野、また、非接触ロ
ーラー帯電や非接触除電など、物体と物体との間に狭い
空隙をおいて電圧を印加し、放電現象を生じさせるよう
な物理現象を応用したデバイスにおいて、その空隙距離
を放電開始電圧から測定し制御するような装置などに応
用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a gap distance between members applied to a gap distance measurement between members in a wet electrophotographic apparatus, and a gap distance between members obtained by the measuring method. The present invention relates to a control method of an electrophotographic apparatus that controls a related process. The present invention is also 1 m
In the field where it is difficult to directly measure the voids in an ultra-precision mechanical device that is assembled by providing voids of m or less or several μm order, the distance between members such as metal is measured by applying voltage without using spacers, etc. , Non-contact roller electrification, non-contact static elimination, etc., in a device that applies a physical phenomenon that causes a discharge phenomenon by applying a voltage with a narrow gap between objects, the gap distance is the discharge start voltage. It can be applied to a device for measuring and controlling from.

【0002】[0002]

【従来の技術】本発明が主に応用される分野である湿式
電子写真装置においては、感光体の周りに現像ローラー
(感光体上の潜像を現像するために現像液を供給す
る)、リバースローラー(余剰な現像液を除去するため
に用いられている)、セットローラー(感光体上のトナ
ー像の結合力を電気的に増加させるために用いられる)
などが配置されており、各々のローラーは感光体との間
にごく僅かな間隙をおいて設置されている。これらのロ
ーラーと感光体との空隙距離を精度良く出すことは良好
な画像出力を得るために不可欠な事柄である。例えばロ
ーラーと感光体との距離があまりに近すぎると感光体上
に形成したトナー像をローラーにより削られたり、また
あまりに遠すぎると余剰な現像液を充分に除去できなか
ったりする。
2. Description of the Related Art In a wet electrophotographic apparatus to which the present invention is mainly applied, a developing roller (supplying a developing solution for developing a latent image on the photosensitive member) and a reverse roller are provided around the photosensitive member. Roller (used to remove excess developer), set roller (used to electrically increase the binding force of the toner image on the photoreceptor)
Etc. are arranged, and each roller is installed with a very small gap between it and the photoconductor. It is an essential matter to obtain a good image output by accurately setting the gap distance between these rollers and the photoconductor. For example, if the distance between the roller and the photoconductor is too short, the toner image formed on the photoconductor is scraped by the roller, and if it is too far away, the excess developer cannot be removed sufficiently.

【0003】ローラー及び感光体の作成時に精度良く各
々の外形を測定して計算によって空隙距離を求めること
はできるが、各々の組において一々計算せねばならず機
械の量産時においては困難であり、また感光体の精度誤
差により、交換時に空隙距離が変化することもあるた
め、できれば実機内で測定できることが望ましい。しか
しながら、これらのローラーは感光体周りに連続して配
置されるため(図1参照)、隙間ゲージ等による測定は
難しく、また同様の理由により、非接触のレーザー外径
測定器などを用いるのも難しい。そのため、これまで実
機中での空隙距離の測定は困難であった。
Although it is possible to accurately measure the outer shape of each of the rollers and the photoconductor at the time of making the photoreceptor and obtain the air gap distance by calculation, it is necessary to calculate one by one for each set, which is difficult in mass production of machines. In addition, the gap distance may change during replacement due to the accuracy error of the photoconductor. Therefore, it is desirable to be able to measure in the actual machine if possible. However, since these rollers are continuously arranged around the photoreceptor (see FIG. 1), it is difficult to measure with a gap gauge or the like, and for the same reason, it is also possible to use a non-contact laser outer diameter measuring device or the like. difficult. Therefore, it has been difficult to measure the air gap distance in an actual machine.

【0004】[0004]

【発明が解決しようとする課題】物体と物体とをある距
離を置いて設置し、その物体と物体との間に電圧を印加
していく場合、印加電圧が低いうちは両者の間に電流は
流れないが、次第に印加電圧を上げていくとある電圧に
なったときに突然電流が流れ始める。この電流が流れ始
めた時の電圧を放電開始電圧と呼ぶが、放電開始電圧と
物体間の距離との間には一定の関係が成り立つことが知
られている(パッシェンの法則)。
When the objects are placed at a certain distance from each other and a voltage is applied between the objects, while the applied voltage is low, the current is not applied between them. It does not flow, but when the applied voltage is gradually increased, a certain amount of current suddenly starts to flow. The voltage at which this current begins to flow is called the discharge start voltage, and it is known that there is a certain relationship between the discharge start voltage and the distance between objects (Paschen's law).

【0005】一般に放電開始前後で安定に放電する状態
(グロー状放電)と、火花放電に移行する不安定状態が
あるが、本願はどちらの放電形態にも応用できるが、前
者のグロー状放電の方が確度良く測定することができ
る。この放電時の放電電流は高調波電流であるが、実際
の測定時には検出抵抗器を使ったアナログ電流計でその
平均電流を観測している。また、高調波をカットするた
めコンデンサを抵抗に並列に挿入して観測すれば同じく
平均電流が得られる。以後の説明の電流はこの平均電流
のことを指す。
Generally, there are a stable discharge state before and after the start of discharge (glow-like discharge) and an unstable state of shifting to spark discharge. The present application can be applied to either discharge form. Can be measured more accurately. The discharge current during this discharge is a harmonic current, but at the time of actual measurement, the average current is observed with an analog ammeter using a detection resistor. Also, if a capacitor is inserted in parallel with the resistor in order to cut harmonics and then observed, the same average current can be obtained. The current in the following description refers to this average current.

【0006】本発明では上記のパッシェンの法則に着目
し、二体の物体間に電圧を印加し、その放電開始電圧を
測定することにより微小空隙距離を測定すること、また
その応用として感光体周りのローラーに電圧を印加し
て、その放電開始電圧を求め、そこから感光体とローラ
ーとの間の空隙距離を算出すること、を課題としてい
る。さらに、算出された空隙距離を基に、ローラーと感
光体との距離に依存する、現像液供給や余剰現像液除去
などのプロセスが安定して行われるように制御を行うこ
とを課題としている。
In the present invention, attention is paid to the Paschen's law described above, a voltage is applied between two bodies, and the discharge start voltage is measured to measure the minute air gap distance. Voltage is applied to the roller, the discharge start voltage is obtained, and the gap distance between the photoconductor and the roller is calculated from the discharge start voltage. Further, it is an object to perform control based on the calculated gap distance so that processes such as developing solution supply and excess developing solution removal, which depend on the distance between the roller and the photoconductor, can be stably performed.

【0007】すなわち、本発明は、空隙間の放電現象に
は印加する電圧を次第に上げていくとある電圧(放電開
始電圧)で放電を開始するという物理現象があることを
利用し、ローラーへ電圧を印加してローラーと感光体と
の間の放電開始電圧を求め、そこからローラーと感光体
との空隙距離を算出する部材間の空隙距離測定方法を提
供すること、及び算出された空隙距離からそれらに関係
する電子写真のプロセスを制御する電子写真装置の制御
方法を提供することを目的とする。
That is, the present invention takes advantage of the fact that the discharge phenomenon between voids has a physical phenomenon that discharge is started at a certain voltage (discharge start voltage) when the applied voltage is gradually increased, and the voltage is applied to the roller. The discharge start voltage between the roller and the photoconductor is applied by applying the method to provide a gap distance measuring method between members for calculating the gap distance between the roller and the photoconductor, and from the calculated gap distance. An object of the present invention is to provide a control method for an electrophotographic apparatus that controls electrophotographic processes related to them.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
部材間の空隙距離測定方法であって、ある電気抵抗体ま
たは導体である部材Aの表面から微小空隙をおいて前記
Aと同様の部材Bが設置された場合、あらかじめ一定の
関係にある電圧−電流特性から部材A,B間の空隙距離
を算出する。
According to the first aspect of the present invention,
A method for measuring a gap distance between members, wherein when a member B similar to A is installed with a minute gap from the surface of a member A which is an electric resistor or conductor, a voltage having a constant relation- The air gap distance between the members A and B is calculated from the current characteristics.

【0009】請求項2記載の発明は、部材Aである感光
体との間に一定の距離をおいて設置されたローラー状の
部材Bに電圧を印加するような系を持つ電子写真装置に
おける部材間の空隙距離測定方法において、感光体とロ
ーラー状部材との空隙距離と、放電開始電圧との間には
一定の関係があることを利用して、ローラー状部材に印
加した電圧と流れた電流を測定することにより放電開始
電圧を求め、あらかじめ算出されている関係式から感光
体とローラー状部材間の空隙距離を測定する。
According to a second aspect of the present invention, there is provided a member in an electrophotographic apparatus having a system for applying a voltage to a roller-shaped member B installed at a constant distance from the photosensitive member which is the member A. In the method for measuring the air gap distance between the photoconductor and the roller-shaped member, the fact that there is a constant relationship between the discharge start voltage, the voltage applied to the roller-shaped member and the flowing current The discharge start voltage is obtained by measuring the above, and the gap distance between the photoconductor and the roller-like member is measured from the relational expression calculated in advance.

【0010】請求項3記載の発明は、部材Aである感光
体との間に一定の距離をおいて設置されたローラー状の
部材Bに電圧を印加するような系を持つ電子写真装置に
おける部材間の空隙距離測定方法において、感光体とロ
ーラー状部材との空隙距離と、放電開始電圧との間には
一定の関係があることを利用して、ローラー状部材に印
加した所定の電圧と流れる電流の関係との一定の関係
(関係式(C))をあらかじめ算出しておき、その特性
を表わす代表的な1点または数点の電圧対電流の関係を
測定し、関係式(C)に当てはめて放電開始電圧を求
め、あらかじめ算出されている関係式(D)から感光体
とローラ状部材間の空隙距離を測定する。
According to a third aspect of the present invention, a member in an electrophotographic apparatus having a system for applying a voltage to a roller-shaped member B installed at a constant distance from the photosensitive member which is the member A. In the method for measuring the air gap distance between the photoconductor and the roller-shaped member, the fact that there is a constant relationship between the discharge start voltage and the gap distance between the photoconductor and the predetermined voltage applied to the roller-shaped member flows. A certain relationship (relational expression (C)) with the current relationship is calculated in advance, and a typical voltage-current relationship at one or several points that represents the characteristics is measured. The discharge start voltage is calculated by applying it, and the gap distance between the photoconductor and the roller-shaped member is measured from the relational expression (D) calculated in advance.

【0011】請求項4記載の発明は、請求項1,2また
は3記載の部材間の空隙距離測定方法において、測定対
象が湿式電子写真装置における部材間の空隙距離の場合
には、計測時に現像剤等の補給を止めて、前記距離を空
隙にして測定する。
According to a fourth aspect of the present invention, in the method for measuring the air gap distance between members according to the first, second or third aspects, when the object of measurement is the air gap distance between the members in the wet electrophotographic apparatus, development is performed at the time of measurement. Stop the replenishment of the agent, etc., and make the distance a void, and measure.

【0012】請求項5記載の発明は、請求項1,2,3
または4記載の部材間の空隙距離測定方法において、部
材Aである感光体もしくはローラー状部材Bもしくは両
者間の空隙を軸方向で複数領域に分割もしくは制限して
測定することにより、感光体とローラー状部材との間の
距離を軸方向に対して精度を上げて測定する。
The invention according to claim 5 is the invention as claimed in claims 1, 2, and 3.
Alternatively, in the method for measuring the gap distance between members described in 4, the photoreceptor and the roller, which are member A, or the roller-like member B, or the gap between the members is divided or restricted into a plurality of regions in the axial direction, and the measurement is performed. The distance to the member is measured with high accuracy in the axial direction.

【0013】請求項6記載の発明は、電子写真装置の制
御方法であって、感光体との間に一定の距離をおいて設
置されたローラー状の部材に電圧を印加するような系を
持つ電子写真装置において、放電を生じるローラー状部
材と同一の感光体周辺にある現像ローラーと感光体との
空隙距離が、請求項1,2,3,4,5の何れかに記載
の測定方法により求められた放電を生じさせるローラー
状部材と感光体との空隙距離によって一意に決まる場
合、得られた距離を用いてあらかじめ算出されている関
係式から現像ローラーの回転速度を決定する。
According to a sixth aspect of the present invention, there is provided a method of controlling an electrophotographic apparatus, which has a system for applying a voltage to a roller-shaped member installed at a fixed distance from a photoconductor. In the electrophotographic apparatus, the gap distance between the developing roller and the photoconductor, which is located around the same photoconductor as the roller-shaped member that causes discharge, is measured by the measuring method according to any one of claims 1, 2, 3, 4, and 5. When the determined distance is uniquely determined by the gap distance between the roller-shaped member and the photoconductor, the rotation speed of the developing roller is determined from the relational expression calculated in advance using the obtained distance.

【0014】請求項7記載の発明は、電子写真装置の制
御方法であって、感光体との間に一定の距離をおいて設
置されたローラー状の部材に電圧を印加するような系を
持つ電子写真装置において、放電を生じるローラー状部
材と同一の感光体周辺にあるリバースローラーと感光体
との空隙距離が、請求項1,2,3,4,5の何れかに
記載の測定方法により求められた放電を生じさせるロー
ラー状部材と感光体との空隙距離によって一意に決まる
場合、得られた距離を用いてあらかじめ算出されている
関係式からリバースローラーの回転速度を決定する。
According to a seventh aspect of the present invention, there is provided a method for controlling an electrophotographic apparatus, which has a system for applying a voltage to a roller-shaped member installed at a fixed distance from a photoconductor. In the electrophotographic apparatus, the gap distance between the photoconductor and the reverse roller around the photoconductor that is the same as the roller-shaped member that causes discharge is measured by the measuring method according to any one of claims 1, 2, 3, 4, and 5. When the determined distance is uniquely determined by the gap distance between the roller-shaped member and the photoconductor, the rotation speed of the reverse roller is determined from the relational expression calculated in advance using the obtained distance.

【0015】請求項8記載の発明は、電子写真装置の制
御方法であって、感光体との間に一定の距離をおいて設
置されたローラー状の部材に電圧を印加するような系を
持つ電子写真装置において、感光体やローラー状部材等
を交換した後、これらの空隙距離の請求項1,2,3,
4,5の何れかに記載の測定方法による測定、調整、及
び請求項6または7記載の制御方法による制御を自動で
行う。
An eighth aspect of the present invention is a method for controlling an electrophotographic apparatus, which has a system for applying a voltage to a roller-shaped member installed at a fixed distance from a photoconductor. In the electrophotographic apparatus, after the photoconductor, the roller-shaped member, and the like are exchanged, the gap distances of these are set as claimed in claims 1, 2, 3,
Measurement and adjustment by the measurement method according to any one of claims 4 and 5 and control by the control method according to claim 6 or 7 are automatically performed.

【0016】請求項9記載の発明は、請求項1,2,
3,4または5記載の部材間の空隙距離測定方法におい
て、電子写真装置内部での測定だけでなく、外部での生
産や検査時等に部材間の距離を測定し、各々の部品の精
度測定等に応用する。
The invention according to claim 9 is based on claims 1, 2 and
In the method for measuring the gap distance between members described in 3, 4, or 5, not only the measurement inside the electrophotographic apparatus but also the distance between the members at the time of external production or inspection, and the accuracy measurement of each component is measured. And so on.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1に本発明が実施される湿式電子写真装
置の現像部の構成の概略を示す。図1(a)において、
感光体(PC)1の周りに配置された三本のローラー
は、感光体1の回転方向(図中の矢印方向)上流側から
それぞれ現像ローラー(DR)2、リバースローラー
(RR)3、セットローラー(SR)4である。それぞ
れのローラー2,3,4は、感光体1との間に50〜1
00μm程度の空隙(Gap)GDR,GRR,GSRをもっ
て配置されている。この空隙GDR,GRR,GSRを決める
のは図1(b)に示すように、各ローラーのローラー部
5と同軸でローラー端部に取り付けられているベアリン
グ6であり、このベアリング6の外周面が感光体端部の
素管部1bに接触している。従って、このベアリング6
の外径とローラー部5の外径との差、および感光体1の
感光層1aと感光体端部の素管部1bとの段差が感光体
1とローラー部5との空隙距離を決定している。この三
本のローラーのうち、現像ローラー2には現像バイアス
が、また、セットローラー4にはセット電圧が印加され
ている。このうちセットローラー4は印加電圧が高いた
め、感光体表面に対して放電を起こす。
FIG. 1 schematically shows the construction of a developing section of a wet electrophotographic apparatus in which the present invention is carried out. In FIG. 1A,
The three rollers arranged around the photoconductor (PC) 1 are a developing roller (DR) 2, a reverse roller (RR) 3, and a set from the upstream side in the rotation direction (arrow direction in the figure) of the photoconductor 1 respectively. The roller (SR) 4. Each of the rollers 2, 3 and 4 has a distance of 50 to 1 between it and the photoconductor 1.
They are arranged with gaps (Gap) G DR , G RR , and G SR of about 00 μm. The gaps G DR , G RR , and G SR are determined by the bearing 6 mounted coaxially with the roller portion 5 of each roller at the roller end, as shown in FIG. 1B. The outer peripheral surface is in contact with the raw tube portion 1b at the end of the photoconductor. Therefore, this bearing 6
The difference between the outer diameter of the photosensitive member 1 and the outer diameter of the roller portion 5 and the step between the photosensitive layer 1a of the photosensitive member 1 and the raw tube portion 1b at the end portion of the photosensitive member determine the gap distance between the photosensitive member 1 and the roller portion 5. ing. Of these three rollers, a developing bias is applied to the developing roller 2 and a set voltage is applied to the set roller 4. Of these, the set roller 4 has a high applied voltage, and therefore discharges to the surface of the photoconductor.

【0019】次に本発明の基となる概念を示す。図2は
ローラー(例えばセットローラー)と感光体との放電特
性の一例を示したものである。横軸にはローラーへの印
加電圧V、縦軸はそのとき流れた電流Iである。図2に
示すように、印加電圧を次第に上げていくとあるところ
で電流が流れ出す。この電圧を放電開始電圧Vs と呼
ぶ。その後、印加電圧を上げると電流も傾きθをもって
増大していくが、その曲線はローラー材質、及び感光体
表面の材質、及び電圧を印加する回路の回路定数に依存
するものである(ここでは簡便のため直線で示してあ
る)。ここで、傾きθはローラー材質、感光体の抵抗等
により決定されるパラメーター、放電開始電圧Vs はロ
ーラーと感光体との空隙(Gap)で決まるパラメータ
ーである。尚、このような現象は感光体とローラーに限
ったことではなく、どのような材質、どのような形態を
持った材質であっても生じる現象であり、本発明は種々
の部材間の微少空隙距離の測定等、多様な方面に応用が
利く技術であると言える。
Next, the concept underlying the present invention will be shown. FIG. 2 shows an example of discharge characteristics between a roller (for example, a set roller) and a photoconductor. The horizontal axis represents the voltage V applied to the roller, and the vertical axis represents the current I flowing at that time. As shown in FIG. 2, when the applied voltage is gradually increased, a current starts flowing at a certain point. This voltage is called the discharge start voltage Vs. After that, when the applied voltage is increased, the current also increases with a slope θ, but the curve depends on the material of the roller, the material of the surface of the photoconductor, and the circuit constant of the circuit to which the voltage is applied. Therefore, it is indicated by a straight line). Here, the inclination θ is a parameter determined by the roller material, the resistance of the photoconductor, and the like, and the discharge start voltage Vs is a parameter determined by the gap (Gap) between the roller and the photoconductor. It should be noted that such a phenomenon is not limited to the photoconductor and the roller, and is a phenomenon that occurs regardless of the material and the material having any shape. It can be said that this technology can be applied to various fields such as distance measurement.

【0020】ここで注意しなければならないことは、感
光体は半導体であり比較的抵抗が高いため、対応するロ
ーラー類は金属導体のような低抵抗体でも安定に放電開
始する。また、空隙が500μmと比較的大きな場合は
ローラーの表面抵抗が高いか回路に高抵抗体が挿入され
ている方が安定放電になる。また、50μm以下の空隙
ならローラーの抵抗に依存せず放電開始電圧は安定す
る。さらに、感光体でない部材と金属面間では、回路に
高抵抗体を挿入(空隙の抵抗と直列になるように挿入)
し、空隙も100μm以下で適応できる。もちろん高抵
抗体である酸化金属皮膜がローラーの表面上にあれば非
常に空隙の計測に余裕が生じる。尚、図3,4,5にセ
ットローラ(SR)を例に上げてそのローラー種、回路
抵抗等で電圧−電流特性の傾きが変化する様子を実測し
たデーターを示す。図3はハードアルマイト皮膜を施し
たセットローラーの例、図4は金属ローラーの例、図5
はTiO2(10%)溶射皮膜を施したローラーの例で
あり、回路に抵抗を接続しない場合と接続した場合とが
示されている。
It should be noted here that since the photosensitive member is a semiconductor and has a relatively high resistance, the corresponding rollers can stably start discharging even a low resistance member such as a metal conductor. Further, when the gap is relatively large as 500 μm, stable discharge occurs when the surface resistance of the roller is high or a high resistance body is inserted in the circuit. Further, if the gap is 50 μm or less, the discharge starting voltage becomes stable without depending on the resistance of the roller. In addition, insert a high-resistance element in the circuit between the non-photosensitive member and the metal surface (insert it in series with the resistance of the air gap).
However, the gap can be adapted to 100 μm or less. Of course, if a metal oxide film, which is a high resistance material, is present on the surface of the roller, there will be a great margin in measuring the voids. Incidentally, FIGS. 3, 4 and 5 show data obtained by actually measuring how the inclination of the voltage-current characteristics changes depending on the roller type, circuit resistance, etc. of the set roller (SR) as an example. 3 is an example of a set roller having a hard alumite coating, FIG. 4 is an example of a metal roller, and FIG.
Shows an example of a roller coated with a TiO 2 (10%) sprayed coating, and shows the case where a resistor is not connected to the circuit and the case where it is connected.

【0021】ここで放電開始電圧はこの物体と物体の空
隙距離によって決まるパラメーターである。この関係は
パッシェンの法則と呼ばれ、空隙距離が10μm以上の
領域ではほぼ空隙距離と放電開始電圧との関係は一次式
で近似できる(図6参照)。よって、放電開始電圧を求
めることができれば物体間の距離を得ることができる
(請求項1)。また、この例の場合では、電子写真装置
における感光体と各ローラーとの空隙距離を得ることが
できる(請求項2)。
Here, the discharge starting voltage is a parameter determined by the gap distance between the objects. This relation is called Paschen's law, and in the region where the gap distance is 10 μm or more, the relation between the gap distance and the discharge start voltage can be approximated by a linear expression (see FIG. 6). Therefore, if the discharge starting voltage can be obtained, the distance between the objects can be obtained (Claim 1). Further, in the case of this example, it is possible to obtain the gap distance between the photoreceptor and each roller in the electrophotographic apparatus (claim 2).

【0022】放電開始電圧を求めるには幾つかの方法が
ある。一つは図7(a)に示すように、電源から流れる
電流量をモニターしておきながら電圧の低い方から徐々
に印加電圧を上げていき、電流が流れ出した電圧を求め
て放電開始電圧Vs とする方法。もう一つは図7(b)
に示すように、放電が起こるある程度高い電圧を最初に
かけておき、徐々に電圧を下げていき放電しなくなり電
流が流れなくなる電圧を求めて放電開始電圧Vs とする
方法である。このようにして放電開始電圧Vs が求まれ
ば、あらかじめ判っている実機内でのパッシェンの方程
式に当てはめて(例えば図6の関係から)感光体とロー
ラー部材との空隙距離が得られる。
There are several methods for obtaining the discharge start voltage. First, as shown in FIG. 7A, while monitoring the amount of current flowing from the power supply, the applied voltage is gradually increased from the lower voltage side, and the voltage at which the current has flowed out is obtained to determine the discharge start voltage Vs. And how to. The other is Figure 7 (b).
As shown in FIG. 5, a voltage that causes a certain amount of discharge is first applied, and then the voltage is gradually lowered to obtain a voltage at which discharge stops and no current flows and the discharge start voltage Vs is obtained. When the discharge start voltage Vs is obtained in this way, the gap distance between the photoconductor and the roller member can be obtained by applying the Paschen's equation in the actual machine that is known in advance (for example, from the relationship of FIG. 6).

【0023】これらの方法は簡便であるが、電流が流れ
出す時、または流れなくなるときの微少な電流を検知せ
ねばならず増幅器が必要なこと、また徐々に電圧を上
げ、もしくは下げなければならないなど印加電圧のスキ
ャニング回路を加えなければならないことなど、技術的
なコストが伴う。
Although these methods are simple, a minute current must be detected when the current starts to flow or stops flowing, and an amplifier is required, and the voltage must be gradually raised or lowered. Technical costs are involved, such as having to add a scanning circuit for the applied voltage.

【0024】そこで、その点を改善した請求項3記載の
方法を説明する。印加電圧(V)と電流(I)の関係は
ローラー材質及び感光体表面の材質、及び電圧を印加す
る回路に依存し一意に決まるものである。従って、放電
開始電圧がVs ならば、この関係式は、 V=f(I) のように表わせる(請求項3中に記載の関係式
(C))。ここでI=0の時、すなわちf(0)の時のV
がVs となる。よって、この関係を利用して、図8
(a)に示すように、電圧Vをかけたときの流れる電流
Iを代表的に数点測定して、関係式V=f(I)をフィッ
ティングすることによって求めて、そこから放電開始電
圧(Vs=f(0))を算出する。すなわち、図8(a)
の例ではf(I)として一次関数で近似しているから、 V=a×I+Vs (aは直線の傾きから求まる係数) になり、電流I=0のときV=Vs となる。あとは請求
項2と同様にパッシェンの方程式(請求項3の中の関係
式D)から空隙距離が算出できる。尚、図8(b)は高
次(二次以上)の関数でフィッティングした場合の電圧
−電流特性の例を示す図である。
Therefore, a method according to claim 3 in which that point is improved will be described. The relationship between the applied voltage (V) and the current (I) is uniquely determined depending on the material of the roller, the material of the surface of the photoconductor, and the circuit for applying the voltage. Therefore, if the discharge start voltage is Vs, this relational expression can be expressed as V = f (I) (relational expression (C) described in claim 3). Here, when I = 0, that is, V when f (0)
Becomes Vs. Therefore, by utilizing this relationship, FIG.
As shown in (a), the current I flowing when a voltage V is applied is measured at several points, and the relational expression V = f (I) is obtained by fitting, and the discharge start voltage ( Vs = f (0)) is calculated. That is, FIG.
In the above example, since f (I) is approximated by a linear function, V = a × I + Vs (a is a coefficient obtained from the slope of the straight line) and V = Vs when the current I = 0. After that, the void distance can be calculated from Paschen's equation (relational expression D in claim 3) as in claim 2. It should be noted that FIG. 8B is a diagram showing an example of voltage-current characteristics when fitting is performed by a high-order (second or higher order) function.

【0025】次に図9、図10、図11に示す例は、上
記のセットローラーとして、それぞれハードアルマイト
皮膜または酸化金属溶射膜(図示の例ではTiO210
%溶射膜)を持ったアルミニウム製のローラーを用い、
該ローラーを感光体と図中に示された距離だけ離して設
置し、電圧を印加したときに流れた電流を示したもので
ある。V=f(I)は、ハードアルマイト膜を持ったロー
ラーではほぼ1次の関数で、酸化金属溶射膜をもったロ
ーラーはほぼ二次の関数で近似できる電圧−電流特性を
持ち、その傾きは空隙距離によらず略一定である。よっ
て、これらの傾きの曲線関数があらかじめ判っていれ
ば、代表的な数点を測定するだけで、関数に当てはめて
放電開始電圧Vs を求めることが可能である。
Next, in the examples shown in FIGS. 9, 10 and 11, as the above-mentioned set roller, a hard alumite film or a metal oxide sprayed film (TiO 2 10 in the illustrated example) is used.
Using a roller made of aluminum with (% sprayed film),
It shows the current that flows when a voltage is applied and the roller is placed at a distance shown in the drawing from the photoconductor. V = f (I) is almost a linear function for a roller having a hard alumite film, and a roller having a metal oxide sprayed film has a voltage-current characteristic that can be approximated by a quadratic function, and its slope is It is almost constant regardless of the air gap distance. Therefore, if the curve functions of these slopes are known in advance, it is possible to find the discharge start voltage Vs by fitting them to the function only by measuring representative points.

【0026】尚、図9〜11はハードアルマイト皮膜ロ
ーラーまたは酸化金属溶射膜皮膜ローラーで、空隙距離
(放電間隙)を50μm〜200μmの間で振って電圧
−電流特性を測定したデータから得たグラフであり、そ
れぞれのグラフでI=0の点が放電開始電圧であるか
ら、図9〜11のグラフから放電開始電圧対空隙距離の
関係が得られる。従って放電開始電圧が求められていれ
ば、これらの図から空隙距離を求めることができる。
9 to 11 are graphs obtained from data obtained by measuring the voltage-current characteristics by shaking the air gap distance (discharge gap) between 50 μm and 200 μm with a hard alumite coating roller or a metal oxide sprayed coating roller. Since the point at which I = 0 is the discharge start voltage in each graph, the relationship between the discharge start voltage and the air gap distance can be obtained from the graphs of FIGS. Therefore, if the discharge start voltage is obtained, the air gap distance can be obtained from these figures.

【0027】ここで説明した実施例は湿式電子写真装置
の感光体とローラー部材との空隙距離測定に関するもの
であるが、湿式電子写真装置の場合は空隙に現像液が溜
るため、そのままでは正確な空隙距離を出すことが難し
い。そのため、湿式電子写真装置にこの発明を応用する
ときは、あらかじめ現像液の供給を止め、ローラーと感
光体との間に液体が存在しないようにして測定すること
が大切である(請求項4)。
The embodiment described here relates to the measurement of the gap distance between the photosensitive member and the roller member of the wet electrophotographic apparatus. However, in the case of the wet electrophotographic apparatus, the developing solution is accumulated in the gap, so that it is accurate as it is. It is difficult to get the gap distance. Therefore, when applying the present invention to a wet electrophotographic apparatus, it is important to stop the supply of the developing solution in advance so that the liquid does not exist between the roller and the photoconductor (Claim 4). .

【0028】以上の測定方法は感光体、ローラーの各々
を止めた状態でも、どちらか一方、もしくは両方とも回
転させている状態でも測定することが可能であるが、放
電現象を利用しているため、静止状態での放電よりも回
転状態での放電の方が各々の部材を劣化させることなく
測定できるため、回転状態での測定が望ましい。その場
合、得られた空隙距離は平均的なものとなる。また、静
止状態で測定した場合は、測定位置での各々の最隣接距
離を表わすものとなる。
The above-mentioned measuring method can be carried out with the photosensitive member and the roller stopped, or with one or both of them being rotated, but the discharge phenomenon is used. Since the discharge in the rotating state can be measured without deteriorating each member, the discharge in the rotating state is preferable to the discharge in the stationary state. In that case, the obtained void distance becomes average. Further, when the measurement is performed in a stationary state, each distance represents the nearest neighbor distance at the measurement position.

【0029】尚、感光体もしくはローラーもしくはその
空隙を軸方向に対して分割または制限して測定すること
により、軸方向の測定精度の向上を図ることができる。
例えば、図12に示すように一部分だけ導体(または半
導体)で他の部分は非導体(高抵抗絶縁体等)であるよ
うな測定専用の治具ドラムを作り、その治具ドラムを用
いて測定したり、図13に示すように感光体とローラー
の間の測定したい所以外の空隙に高抵抗のマイラフィル
ム等を挿入して狙いの位置だけを測定するなどが考えら
れ、これらの方法により、感光体とローラー部材との間
の距離を軸方向に対して精度を上げて測定することがで
きる。(請求項5)
The measurement accuracy in the axial direction can be improved by dividing or limiting the photosensitive member or the roller or the gap between them in the axial direction.
For example, as shown in FIG. 12, a jig drum dedicated to measurement is prepared in which only one part is a conductor (or semiconductor) and the other part is a non-conductor (high resistance insulator, etc.), and the jig drum is used for measurement. It is conceivable to insert a high-resistance Mylar film or the like into a space other than the place to be measured between the photoconductor and the roller as shown in FIG. 13 and measure only the target position. The distance between the photoconductor and the roller member can be measured with high accuracy in the axial direction. (Claim 5)

【0030】本実施例である湿式電子写真装置の現像部
では、図1に示したように3本のローラー2,3,4が
感光体1の周りに配置されているが、あらかじめ3本の
ローラーのベアリング径とローラー径の関係を測定して
おけば、感光体と各ローラーを設置したとき、そのうち
一本のローラーと感光体との空隙距離がわかれば残りの
二本の空隙距離も得られる。例えば前述の測定法による
空隙距離の測定でセットローラー(SR)4と感光体1
との空隙距離が判れば、現像ローラー(DR)2やリバ
ースローラー(RR)3と感光体1との空隙距離も判る
のである。
In the developing section of the wet electrophotographic apparatus of this embodiment, the three rollers 2, 3 and 4 are arranged around the photosensitive member 1 as shown in FIG. By measuring the relationship between the roller bearing diameter and the roller diameter, when the photoconductor and each roller are installed, if the air gap distance between one roller and the photoconductor is known, the remaining two air gap distances can be obtained. To be For example, the set roller (SR) 4 and the photoconductor 1 are measured by measuring the gap distance by the above-described measuring method.
If the distance between the photoconductor 1 and the developing roller (DR) 2 or the reverse roller (RR) 3 is known, the distance between the photoconductor 1 and the developing roller (DR) 2 is also known.

【0031】ここで図14に示すように、現像ローラー
(DR)2やリバースローラー(RR)3と感光体1と
の空隙距離は、それぞれ現像液供給量と余剰液除去量を
決定する重要なパラメータであり、空隙間距離が変化し
たときその量を一定にするためにはローラーの回転速度
を変更するのが一般的である。例えば、感光体1への現
像液供給量は現像ローラー(DR)2の回転数と感光体
1と現像ローラー(DR)2との空隙距離で決まり、距
離が変わったら回転数を変えることにより現像液供給量
を一定に調整できる。リバースローラー(RR)3の場
合も同様に、余剰液の除去量は、感光体1とリバースロ
ーラー(RR)3との空隙距離と、リバースローラー
(RR)3の回転数で決まる。このように、空隙距離と
現像液供給量もしくは余剰液除去量の間には一定の関係
があるので、前述のように空隙距離の測定法でセットロ
ーラー4と感光体1との空隙距離を測定し、その空隙距
離から現像ローラー2やリバースローラー3の空隙距離
を算出すれば、得られた距離を用いてあらかじめ算出さ
れている関係式から現像ローラーの回転速度やリバース
ローラーの回転速度を決定して、これらのプロセスを最
適な状態に制御することができる(請求項6,7)。従
って、感光体が交換されたとき、または3本のローラー
のうちのどれかが交換されたときなど、いちいち外部で
ローラー外径などを測定せずとも実機内に組み込んだ状
態で各々の位置関係が得られ、プロセスの制御を行うこ
とができる。
Here, as shown in FIG. 14, the gap distance between the developing roller (DR) 2 or the reverse roller (RR) 3 and the photoconductor 1 is important for determining the developer supply amount and the excess liquid removal amount, respectively. This is a parameter, and it is common to change the rotation speed of the roller in order to keep the amount constant when the air gap distance changes. For example, the amount of developer supplied to the photoconductor 1 is determined by the number of revolutions of the developing roller (DR) 2 and the gap distance between the photoconductor 1 and the developing roller (DR) 2, and when the distance changes, the number of revolutions is changed to develop. The liquid supply amount can be adjusted to be constant. Similarly, in the case of the reverse roller (RR) 3, the amount of excess liquid removed is determined by the gap distance between the photoconductor 1 and the reverse roller (RR) 3 and the rotation speed of the reverse roller (RR) 3. As described above, since there is a fixed relationship between the void distance and the developer supply amount or the excess liquid removal amount, the void distance between the set roller 4 and the photoconductor 1 is measured by the void distance measuring method as described above. Then, if the gap distance of the developing roller 2 or the reverse roller 3 is calculated from the gap distance, the rotation speed of the developing roller or the rotation speed of the reverse roller is determined from the relational expression calculated in advance using the obtained distance. Therefore, these processes can be controlled to an optimum state (claims 6 and 7). Therefore, when the photoconductor is replaced, or when any of the three rollers is replaced, the positional relationship between the rollers is not required to measure the outside diameter of the rollers, etc. And the process can be controlled.

【0032】また、湿式電子写真装置の実機内の制御部
(マイクロコンピュータやメモリ、各種制御回路で構成
される)に、空隙間距離の請求項1,2,3,4,5の
何れかに記載の測定方法による測定、調整、及び請求項
6または7記載の制御方法による制御を自動で行えるよ
うなプログラムをあらかじめ用意しておけば、感光体や
ローラー部材などを交換したときに自動でパラメーター
の再設定を行うことができるので、メンテナンス時間が
省略され、生産性が向上する(請求項8)。
Further, according to any one of claims 1, 2, 3, 4, and 5, the control unit (comprising a microcomputer, a memory, and various control circuits) in the actual machine of the wet electrophotographic apparatus is provided with an empty gap distance. If a program that can automatically perform measurement and adjustment according to the measurement method described above and control according to the control method according to claim 6 or 7 is prepared in advance, parameters will be automatically set when the photoconductor or roller member is replaced. Since the resetting can be performed, the maintenance time is omitted and the productivity is improved (claim 8).

【0033】さらに本発明では、以上に述べた部材間の
空隙距離測定方法を、電子写真装置内部での測定だけで
なく、外部での生産や検査時等に部材間の距離を測定
し、各々の部品の精度測定等に応用する。すなわち、こ
れらの方法は実機内だけに限らず、ローラー部材や感光
体の生産現場、仕上げ検査などの場面においても簡便に
空隙距離を測定する方法となり得、部品の精度測定の生
産性の向上や精度の向上に寄与できる(請求項9)。
Further, in the present invention, the above-described method for measuring the gap distance between members is performed not only by measuring inside the electrophotographic apparatus but also by measuring the distance between members during external production or inspection. It is applied to the accuracy measurement of parts of. That is, these methods can be a method of simply measuring the air gap distance not only in the actual machine but also in the production site of roller members and photoconductors, finish inspection, etc., and improve the productivity of accuracy measurement of parts and It can contribute to the improvement of accuracy (claim 9).

【0034】[0034]

【発明の効果】以上説明したように、請求項1記載の部
材間の空隙距離測定方法においては、ある電気抵抗体ま
たは導体である部材Aの表面から微小空隙をおいて前記
Aと同様の部材Bが設置された場合、あらかじめ一定の
関係にある電圧−電流特性から部材A,B間の空隙距離
を算出する、すなわち、放電開始電圧をパラメーターと
して部材間の空隙距離を得ることにより、非接触で簡便
に空隙距離を測定することができる。
As described above, in the method for measuring the gap distance between members according to the first aspect, a member similar to A is provided with a minute gap from the surface of the member A which is an electric resistor or conductor. When B is installed, the air gap distance between the members A and B is calculated from the voltage-current characteristics having a constant relationship in advance, that is, the air gap distance between the members is obtained by using the discharge start voltage as a parameter, and thus non-contact The void distance can be easily measured with.

【0035】請求項2記載の部材間の空隙距離測定方法
においては、感光体とローラー状部材との空隙距離と、
放電開始電圧との間には一定の関係があることを利用し
て、ローラー状部材に印加した電圧と流れた電流を測定
することにより放電開始電圧を求め、あらかじめ算出さ
れている関係式から感光体とローラー状部材間の空隙距
離を測定する、すなわち、放電開始電圧をパラメーター
として部材間の空隙距離を得ることにより、より簡便
に、感光体とローラー状部材間のように外部からの測定
が不可能のような場所においても精度良く空隙距離を測
定することができる。また、既存の設備(例えばセット
ローラとその電源)を用いることができるのでコストの
かからない測定ができる。
In the method for measuring the gap distance between members according to claim 2, the gap distance between the photoconductor and the roller-shaped member,
Taking advantage of the fact that there is a fixed relationship with the discharge start voltage, the discharge start voltage is determined by measuring the voltage applied to the roller-shaped member and the flowing current, and the photosensitive formula is calculated from the previously calculated relational expression. By measuring the gap distance between the body and the roller-like member, that is, by obtaining the gap distance between the members using the discharge start voltage as a parameter, it is possible to more easily measure from the outside such as between the photoreceptor and the roller-like member. The air gap distance can be accurately measured even in a place where it is impossible. In addition, since existing equipment (for example, a set roller and its power source) can be used, measurement can be performed at low cost.

【0036】請求項3記載の部材間の空隙距離測定方法
においては、感光体とローラー状部材との空隙距離と、
放電開始電圧との間には一定の関係があることを利用し
て、ローラー状部材に印加した所定の電圧と流れる電流
の関係との一定の関係(関係式(C))をあらかじめ算
出しておき、その特性を表わす代表的な1点または数点
の電圧対電流の関係を測定し、関係式(C)に当てはめ
て放電開始電圧を求め、あらかじめ算出されている関係
式(D)から感光体とローラ状部材間の空隙距離を測定
する、すなわち、部材の性質により放電時の印加電圧−
電流の傾向が常に一定であることを利用して代表的な数
点の電圧−電流の測定により放電開始電圧を算出して空
隙距離を求める方法なので、前記請求項1の方法に比べ
てより正確に放電開始電圧を算出することができ、正確
に測定することができる。また、請求項1の方法は簡便
であるが、電流が流れ始める微少な電流を検知せねばな
らないが、請求項3の方法ならば既に定常的に流れてい
る電流を測定するので、測定誤差が少なく測定が容易で
ある。
In the method for measuring the gap distance between members according to claim 3, the gap distance between the photoconductor and the roller-shaped member,
By utilizing the fact that there is a constant relationship with the discharge start voltage, a constant relationship (relational expression (C)) between the predetermined voltage applied to the roller-shaped member and the flowing current is calculated in advance. Then, a typical voltage or current relationship at one or several points representing the characteristic is measured and applied to the relational expression (C) to obtain the discharge start voltage, and the photosensitivity is calculated from the previously calculated relational expression (D). Measure the gap distance between the body and the roller-shaped member, that is, the applied voltage at the time of discharge depending on the property of the member
This method is more accurate than the method of claim 1 because it is a method of calculating the discharge start voltage by measuring the voltage-current at several typical points by utilizing the fact that the tendency of the current is always constant, and obtaining the air gap distance. The discharge starting voltage can be calculated, and accurate measurement can be performed. Further, although the method of claim 1 is simple, it is necessary to detect a minute current at which the current starts to flow. However, the method of claim 3 measures the current that is already constantly flowing, so that a measurement error is generated. Less and easier to measure.

【0037】請求項4記載の部材間の空隙距離測定方法
においては、請求項1,2または3記載の部材間の空隙
距離測定方法において、測定対象が湿式電子写真装置に
おける部材間の空隙距離の場合には、計測時に現像剤等
の補給を止めて、前記距離を空隙にして測定するので、
現像液が空隙に介在することによる測定不良や測定誤差
の発生を防止でき、より正確な測定が可能となる。
In the method for measuring the gap distance between members according to claim 4, in the method for measuring the gap distance between members according to claim 1, 2 or 3, the object of measurement is the gap distance between the members in the wet electrophotographic apparatus. In this case, stop the replenishment of developer etc. at the time of measurement and make the distance a void,
It is possible to prevent the occurrence of measurement failure and measurement error due to the developer intervening in the gap, and more accurate measurement becomes possible.

【0038】請求項5記載の部材間の空隙距離測定方法
においては、請求項1,2,3または4記載の部材間の
空隙距離測定方法において、部材Aである感光体もしく
はローラー状部材Bもしくは両者間の空隙を軸方向で複
数領域に分割もしくは制限して測定することにより、感
光体とローラー状部材との間の距離を軸方向に対して精
度を上げて測定することができる。従って、ローラー状
部材が傾いて設置されている等の設置不良を検知するこ
とができる。
In the method for measuring a gap distance between members according to claim 5, in the method for measuring a gap distance between members according to claim 1, 2, 3 or 4, the member A is a photoreceptor or a roller member B or The distance between the photoconductor and the roller-shaped member can be measured with high accuracy in the axial direction by dividing or limiting the gap between the two in a plurality of regions in the axial direction and measuring. Therefore, it is possible to detect installation failure such as the roller-shaped member being installed at an inclination.

【0039】請求項6記載の電子写真装置の制御方法に
おいては、放電を生じるローラー状部材(例えばセット
ローラー)と同一の感光体周辺にある現像ローラーと感
光体との空隙距離が、請求項1,2,3,4,5の何れ
かに記載の測定方法により求められた放電を生じさせる
ローラー状部材と感光体との空隙距離によって一意に決
まる場合、得られた距離を用いてあらかじめ算出されて
いる関係式から現像ローラーの回転速度を決定し制御す
ることによって、感光体や各ローラー部材を交換した場
合、いちいち各々のローラーの径などを計算することな
どなしに実機内に組み込んだ状態でプロセス制御のパラ
メータを決めることができ、メンテナンスの時間を短縮
しコストを下げ、安定した画像出力を得ることができ
る。
According to a sixth aspect of the present invention, there is provided a method for controlling an electrophotographic apparatus, wherein a gap distance between a developing roller and a photoconductor is the same as that of a roller-shaped member (for example, a set roller) that causes discharge. , 2, 3, 4, 5 uniquely determined by the gap distance between the roller-shaped member that causes the discharge and the photoconductor, which is obtained by the measurement method described in any one of the above items, it is calculated in advance using the obtained distance. When the photoconductor or each roller member is replaced by determining and controlling the rotation speed of the developing roller from the relational expression, the diameter of each roller must be calculated without calculating the diameter of each roller. Process control parameters can be determined, maintenance time can be shortened, costs can be reduced, and stable image output can be obtained.

【0040】請求項7記載の電子写真装置の制御方法に
おいては、放電を生じるローラー状部材(例えばセット
ローラー)と同一の感光体周辺にある現像ローラーと感
光体との空隙距離が、請求項1,2,3,4,5の何れ
かに記載の測定方法により求められた放電を生じさせる
ローラー状部材と感光体との空隙距離によって一意に決
まる場合、得られた距離を用いてあらかじめ算出されて
いる関係式からリバースローラーの回転速度を決定し制
御することによって、感光体や各ローラー部材を交換し
た場合、いちいち各々のローラーの径などを計算するこ
となどなしに実機内に組み込んだ状態でプロセス制御の
パラメータを決めることができ、メンテナンスの時間を
短縮しコストを下げ、安定した画像出力を得ることがで
きる。
In the control method of the electrophotographic apparatus according to claim 7, the gap distance between the developing roller and the photosensitive member in the vicinity of the same photosensitive member as that of the roller-shaped member (for example, a set roller) which causes electric discharge is defined by , 2, 3, 4, 5 uniquely determined by the gap distance between the roller-shaped member that causes the discharge and the photoconductor, which is obtained by the measurement method described in any one of the above items, it is calculated in advance using the obtained distance. When the photoconductor and each roller member are replaced by determining and controlling the rotation speed of the reverse roller from the relational expression, the diameter of each roller is not calculated one by one and it is installed in the actual machine. Process control parameters can be determined, maintenance time can be shortened, costs can be reduced, and stable image output can be obtained.

【0041】請求項8記載の電子写真装置の制御方法に
おいては、感光体やローラー状部材等を交換した後、こ
れらの空隙間距離の請求項1,2,3,4,5の何れか
に記載の測定方法による測定、調整、及び請求項6また
は7記載の制御方法による制御を自動で行うことによっ
て、メンテナンスの時間を短縮し常に安定した画像出力
を得ることに寄与することができる。
In the control method of the electrophotographic apparatus according to claim 8, after replacing the photoconductor, the roller-shaped member and the like, the void distances of these are set in any one of claims 1, 2, 3, 4 and 5. By automatically performing the measurement and adjustment by the described measurement method and the control by the control method according to claim 6 or 7, it is possible to contribute to shortening the maintenance time and always obtaining a stable image output.

【0042】請求項9記載の部材間の空隙距離測定方法
においては、請求項1,2,3,4または5記載の部材
間の空隙距離測定方法において、電子写真装置内部での
測定だけでなく、外部での生産や検査時等に部材間の距
離を測定し、各々の部品の精度測定等への応用を行うこ
とによって、製造、仕上げ検査などの場合においても簡
便な方法で部品の精度を測定することができ、コストパ
フォーマンスを上げることができる。
In the method for measuring the gap distance between members according to claim 9, the method for measuring the gap distance between members according to claim 1, 2, 3, 4 or 5 is not limited to the measurement inside the electrophotographic apparatus. By measuring the distance between members during external production or inspection, and applying it to the accuracy measurement of each part, the accuracy of parts can be improved by a simple method even in the case of manufacturing and finish inspection. It can be measured and cost performance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が実施される湿式電子写真装置の現像部
の構成の概略を示す図であって、(a)は感光体とその
周りに配置される現像部の三本のローラーの配置例を示
す図、(b)は感光体に対する各ローラーの設置例を示
す図である。
FIG. 1 is a diagram showing a schematic configuration of a developing unit of a wet electrophotographic apparatus in which the present invention is carried out, in which (a) is an arrangement of three rollers of a photosensitive member and a developing unit arranged around the photosensitive member. The figure which shows an example, (b) is a figure which shows the installation example of each roller with respect to a photoconductor.

【図2】図1に示すローラーと感光体との放電特性の一
例を示す図である。
FIG. 2 is a diagram showing an example of discharge characteristics between a roller and a photoconductor shown in FIG.

【図3】ハードアルマイト皮膜を施したローラーと感光
体との放電特性(電圧−電流特性)を、ローラーに抵抗
を接続した場合と接続しない場合について実測した結果
を示す図である。
FIG. 3 is a diagram showing results of actual measurement of discharge characteristics (voltage-current characteristics) between a roller provided with a hard alumite coating and a photoconductor, with and without a resistor connected to the roller.

【図4】金属ローラーと感光体との放電特性(電圧−電
流特性)を、ローラーに抵抗を接続した場合について実
測した結果を示す図である。
FIG. 4 is a diagram showing a result of actual measurement of discharge characteristics (voltage-current characteristics) of a metal roller and a photoconductor when a resistance is connected to the roller.

【図5】酸化チタン(TiO2(10%))溶射皮膜を
施したローラーと感光体との放電特性(電圧−電流特
性)を、ローラーに抵抗を接続した場合と接続しない場
合について実測した結果を示す図である。
FIG. 5: Results of actual measurement of discharge characteristics (voltage-current characteristics) between a roller coated with a titanium oxide (TiO 2 (10%)) sprayed coating and a photoreceptor, with and without a resistor connected to the roller. FIG.

【図6】部材間の空隙(Gap)と放電開始電圧との関
係を示す図である。
FIG. 6 is a diagram showing a relationship between a gap (Gap) between members and a discharge starting voltage.

【図7】部材間の放電開始電圧の求め方の一例を示す図
であって、印加電圧を徐々に上げて、あるいは下げて電
流が0になる点を求めて放電開始電圧とする方法の説明
図である。
FIG. 7 is a diagram showing an example of how to determine a discharge start voltage between members, and a method of determining a point at which the current becomes 0 by gradually increasing or decreasing the applied voltage and setting the discharge start voltage as the discharge start voltage. It is a figure.

【図8】部材間の放電開始電圧の求め方の別の例を示す
図であって、電圧をかけた時の流れる電流を代表的に数
点測定し、その測定点を基に関係式をフィッティングし
て放電開始電圧を求める方法の説明図である。
FIG. 8 is a diagram showing another example of how to obtain a discharge start voltage between members, in which several points of current flowing when a voltage is applied are typically measured, and a relational expression is calculated based on the measured points. It is explanatory drawing of the method of fitting and calculating | requiring discharge starting voltage.

【図9】ハードアルマイト皮膜を持ったアルミニウム製
のローラーを感光体と図中に示された放電間隙だけ離し
て設置し、電圧を印加したときに流れた電流を実測した
結果を示す図である。
FIG. 9 is a view showing a result of actually measuring an electric current flowing when a voltage is applied, in which an aluminum roller having a hard alumite film is installed at a distance from a photoconductor and a discharge gap shown in the figure. .

【図10】酸化チタン(TiO2(10%))溶射膜
(厚さ75μm)を持ったアルミニウム製のローラーを
感光体と図中に示された放電間隙だけ離して設置し、電
圧を印加したときに流れた電流を実測した結果を示す図
である。
FIG. 10: An aluminum roller having a titanium oxide (TiO 2 (10%)) sprayed film (thickness: 75 μm) was placed at a distance of the discharge gap shown in the drawing from the photoconductor, and a voltage was applied. It is a figure which shows the result of having measured the electric current which sometimes flowed.

【図11】酸化チタン(TiO2(10%))溶射膜
(厚さ100μm)を持ったアルミニウム製のローラー
を感光体と図中に示された放電間隙だけ離して設置し、
電圧を印加したときに流れた電流を実測した結果を示す
図である。
FIG. 11: A roller made of aluminum having a titanium oxide (TiO 2 (10%)) sprayed film (thickness 100 μm) is placed with a distance between the photoconductor and the discharge gap shown in the figure,
It is a figure which shows the result of having measured the electric current which flowed when voltage was applied.

【図12】一部分だけ導体(または半導体)で他の部分
は非導体(高抵抗絶縁体等)であるような測定専用の治
具ドラムの一例を示す図である。
FIG. 12 is a diagram showing an example of a jig drum dedicated to measurement in which only a part is a conductor (or a semiconductor) and the other part is a non-conductor (high resistance insulator or the like).

【図13】感光体とローラーの間の測定したい所以外の
空隙に高抵抗のマイラフィルム等を挿入して狙いの位置
だけを測定する場合の、マイラフィルム等の放電規制部
材の空隙への設置例を示す図である。
[Fig. 13] Installation of a discharge control member such as mylar film in a gap when inserting a high-resistance mylar film or the like into a gap other than a place to be measured between a photoconductor and a roller and measuring only a target position It is a figure which shows an example.

【図14】湿式電子写真装置の現像部における現像ロー
ラーによる現像液供給及びリバースローラーによる余剰
液除去の説明図である。
FIG. 14 is an explanatory diagram of supply of a developing solution by a developing roller and removal of an excess solution by a reverse roller in a developing unit of a wet electrophotographic apparatus.

【符号の説明】[Explanation of symbols]

1 感光体(PC) 2 現像ローラー(DR) 3 リバースローラー(RR) 4 セットローラー(SR) 1 photoconductor (PC) 2 developing roller (DR) 3 reverse roller (RR) 4 set roller (SR)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 五男 東京都大田区中馬込1丁目3番6号・株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Goo Ikeda 1-3-6 Nakamagome, Ota-ku, Tokyo ・ Inside Ricoh Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】ある電気抵抗体または導体である部材Aの
表面から微小空隙をおいて前記Aと同様の部材Bが設置
された場合、あらかじめ一定の関係にある電圧−電流特
性から部材A,B間の空隙距離を算出することを特徴と
する部材間の空隙距離測定方法。
1. When a member B similar to A is installed with a minute gap from the surface of a member A which is an electric resistor or a conductor, the member A has a predetermined voltage-current characteristic, A method for measuring a gap distance between members, characterized in that the gap distance between B is calculated.
【請求項2】部材Aである感光体との間に一定の距離を
おいて設置されたローラー状の部材Bに電圧を印加する
ような系を持つ電子写真装置における部材間の空隙距離
測定方法において、感光体とローラー状部材との空隙距
離と、放電開始電圧との間には一定の関係があることを
利用して、ローラー状部材に印加した電圧と流れた電流
を測定することにより放電開始電圧を求め、あらかじめ
算出されている関係式から感光体とローラー状部材間の
空隙距離を測定することを特徴とする部材間の空隙距離
測定方法。
2. A method for measuring a gap distance between members in an electrophotographic apparatus having a system for applying a voltage to a roller-shaped member B installed at a constant distance from a photosensitive member which is the member A. In, the discharge distance is measured by measuring the voltage applied to the roller-shaped member and the flowing current by utilizing the fact that the gap distance between the photoconductor and the roller-shaped member and the discharge start voltage have a constant relationship. A method for measuring a gap distance between members, wherein a starting voltage is obtained and a gap distance between the photoconductor and the roller-like member is measured from a relational expression calculated in advance.
【請求項3】部材Aである感光体との間に一定の距離を
おいて設置されたローラー状の部材Bに電圧を印加する
ような系を持つ電子写真装置における部材間の空隙距離
測定方法において、感光体とローラー状部材との空隙距
離と、放電開始電圧との間には一定の関係があることを
利用して、ローラー状部材に印加した所定の電圧と流れ
る電流の関係との一定の関係(関係式(C))をあらか
じめ算出しておき、その特性を表わす代表的な1点また
は数点の電圧対電流の関係を測定し、関係式(C)に当
てはめて放電開始電圧を求め、あらかじめ算出されてい
る関係式(D)から感光体とローラ状部材間の空隙距離
を測定することを特徴とする部材間の空隙距離測定方
法。
3. A method for measuring a gap distance between members in an electrophotographic apparatus having a system for applying a voltage to a roller-shaped member B installed at a constant distance from a photosensitive member which is the member A. In the above, by utilizing the fact that there is a constant relationship between the gap distance between the photoconductor and the roller-shaped member and the discharge start voltage, the relationship between the predetermined voltage applied to the roller-shaped member and the flowing current is fixed. (Relational expression (C)) is calculated in advance, and a typical one-point or several-point voltage-current relationship representing the characteristic is measured and applied to the relational expression (C) to determine the discharge start voltage. A method for measuring a gap distance between members, wherein the gap distance between the photoconductor and the roller-like member is measured from the relational expression (D) calculated and calculated in advance.
【請求項4】請求項1,2または3記載の部材間の空隙
距離測定方法において、測定対象が湿式電子写真装置に
おける部材間の空隙距離の場合には、計測時に現像剤等
の補給を止めて、前記距離を空隙にして測定することを
特徴とする部材間の空隙距離測定方法。
4. A method for measuring a gap distance between members according to claim 1, 2 or 3, wherein when the object to be measured is the gap distance between members in a wet electrophotographic apparatus, supply of developer or the like is stopped at the time of measurement. And measuring the distance by using the distance as a void.
【請求項5】請求項1,2,3または4記載の部材間の
空隙距離測定方法において、部材Aである感光体もしく
はローラー状部材Bもしくは両者間の空隙を軸方向で複
数領域に分割もしくは制限して測定することにより、感
光体とローラー状部材との間の距離を軸方向に対して精
度を上げて測定することを特徴とする部材間の空隙距離
測定方法。
5. The method for measuring a gap distance between members according to claim 1, 2, 3 or 4, wherein the photoconductor as the member A or the roller-like member B or the gap between them is divided into a plurality of regions in the axial direction or A method for measuring a gap distance between members, wherein the distance between the photoconductor and the roller-shaped member is measured with a higher accuracy in the axial direction by limiting the measurement.
【請求項6】感光体との間に一定の距離をおいて設置さ
れたローラー状の部材に電圧を印加するような系を持つ
電子写真装置において、放電を生じるローラー状部材と
同一の感光体周辺にある現像ローラーと感光体との空隙
距離が、請求項1,2,3,4,5の何れかに記載の測
定方法により求められた放電を生じさせるローラー状部
材と感光体との空隙距離によって一意に決まる場合、得
られた距離を用いてあらかじめ算出されている関係式か
ら現像ローラーの回転速度を決定することを特徴とする
電子写真装置の制御方法。
6. An electrophotographic apparatus having a system for applying a voltage to a roller-shaped member installed at a fixed distance from the photosensitive member, and the same photosensitive member as the roller-shaped member that causes a discharge. The gap between the developing roller and the photoconductor on the periphery is a gap between the photoconductor and the roller-shaped member that causes the discharge determined by the measuring method according to any one of claims 1, 2, 3, 4, and 5. A control method for an electrophotographic apparatus, wherein when the distance is uniquely determined, the rotation speed of the developing roller is determined from a relational expression calculated in advance using the obtained distance.
【請求項7】感光体との間に一定の距離をおいて設置さ
れたローラー状の部材に電圧を印加するような系を持つ
電子写真装置において、放電を生じるローラー状部材と
同一の感光体周辺にあるリバースローラーと感光体との
空隙距離が、請求項1,2,3,4,5の何れかに記載
の測定方法により求められた放電を生じさせるローラー
状部材と感光体との空隙距離によって一意に決まる場
合、得られた距離を用いてあらかじめ算出されている関
係式からリバースローラーの回転速度を決定することを
特徴とする電子写真装置の制御方法。
7. An electrophotographic apparatus having a system for applying a voltage to a roller-shaped member installed at a fixed distance from the photoconductor, and the same photoconductor as the roller-shaped member that produces a discharge. The distance between the peripheral reverse roller and the photoconductor is a gap between the photoconductor and the roller-like member that causes the discharge determined by the measuring method according to any one of claims 1, 2, 3, 4, and 5. A control method for an electrophotographic apparatus, wherein when the distance is uniquely determined, the rotation speed of the reverse roller is determined from a relational expression calculated in advance using the obtained distance.
【請求項8】感光体との間に一定の距離をおいて設置さ
れたローラー状の部材に電圧を印加するような系を持つ
電子写真装置において、感光体やローラー状部材等を交
換した後、これらの空隙距離の請求項1,2,3,4,
5の何れかに記載の測定方法による測定、調整、及び請
求項6または7記載の制御方法による制御を自動で行う
ことを特徴とする電子写真装置の制御方法。
8. An electrophotographic apparatus having a system for applying a voltage to a roller-shaped member installed at a fixed distance from the photoconductor, after replacing the photoconductor or the roller-shaped member. , Claims 1, 2, 3, 4, of these void distances
A method of controlling an electrophotographic apparatus, comprising: automatically performing measurement and adjustment by the measurement method according to claim 5 and control by the control method according to claim 6 or 7.
【請求項9】請求項1,2,3,4または5記載の部材
間の空隙距離測定方法において、電子写真装置内部での
測定だけでなく、外部での生産や検査時等に部材間の距
離を測定し、各々の部品の精度測定等に応用することを
特徴とする部材間の空隙距離測定方法。
9. A method for measuring a gap distance between members according to claim 1, 2, 3, 4 or 5, wherein the distance between the members is not only measured inside the electrophotographic apparatus, but also during external production or inspection. A method for measuring a gap distance between members, which is characterized by measuring a distance and applying it to accuracy measurement of each component.
JP8133597A 1996-05-28 1996-05-28 Method for measuring clearance distance between members and method for controlling electrophotographic apparatus Pending JPH09318308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8133597A JPH09318308A (en) 1996-05-28 1996-05-28 Method for measuring clearance distance between members and method for controlling electrophotographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8133597A JPH09318308A (en) 1996-05-28 1996-05-28 Method for measuring clearance distance between members and method for controlling electrophotographic apparatus

Publications (1)

Publication Number Publication Date
JPH09318308A true JPH09318308A (en) 1997-12-12

Family

ID=15108540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8133597A Pending JPH09318308A (en) 1996-05-28 1996-05-28 Method for measuring clearance distance between members and method for controlling electrophotographic apparatus

Country Status (1)

Country Link
JP (1) JPH09318308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197173A (en) * 2010-03-18 2011-10-06 Fuji Xerox Co Ltd Developer layer thickness measuring device, method of the same, and method of manufacturing developing device
JP2013501232A (en) * 2009-08-04 2013-01-10 ボール パッケージング ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for performing surface treatment using an inspection station

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501232A (en) * 2009-08-04 2013-01-10 ボール パッケージング ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for performing surface treatment using an inspection station
JP2011197173A (en) * 2010-03-18 2011-10-06 Fuji Xerox Co Ltd Developer layer thickness measuring device, method of the same, and method of manufacturing developing device

Similar Documents

Publication Publication Date Title
KR20060105481A (en) Image forming apparatus
US20090279911A1 (en) Method for calibrating bid current in electro-photographic printer
JP2008158519A (en) Method of using biased charging/transfer roller as in-situ voltmeter and photoreceptor thickness detector, and method of adjusting xerographic process with results
JP2016018154A (en) Image formation device and acquisition device
JPH06194933A (en) Electrifier and image forming device
EP0666513A2 (en) Xerographic process control using developer to photoreceptor current sensing for grid voltage adjust
US8099011B2 (en) Image forming apparatus
JPH09318308A (en) Method for measuring clearance distance between members and method for controlling electrophotographic apparatus
JPH09190144A (en) Process cartridge and electrophotographic image forming device
JP2008128981A (en) Potential measuring instrument and method, and image forming device
US5383005A (en) Xerographic process control using periodic electrostatic set up to automatically adjust charging potential
JP2000338749A (en) Electrifying device and image forming device
JP7159769B2 (en) Electrostatic capacitance detection method of facing member and image forming apparatus
JP2000305342A (en) Electrostatic charger and image forming device
US5416563A (en) Xerographic process control by adjusting photoreceptor voltages by photoreceptor segments
JPH04208957A (en) Developing device
JP5821224B2 (en) Electrophotographic photosensitive member characteristic evaluation apparatus and characteristic evaluation method
JP4128232B2 (en) Method and apparatus for measuring electrical properties of electrophotographic media
JP2007187933A (en) Charging controller and inflection point detecting method
JP2004093701A (en) Developing device
JP2000019817A (en) Image forming device
JP4914250B2 (en) Method and apparatus for evaluating characteristics of electrophotographic photoreceptor
US11143978B2 (en) Charge roller gap determination
EP3731022B1 (en) Image forming apparatus
JP5800619B2 (en) Image forming apparatus