JPH0931744A - Man-made cellulosic fiber - Google Patents

Man-made cellulosic fiber

Info

Publication number
JPH0931744A
JPH0931744A JP18412695A JP18412695A JPH0931744A JP H0931744 A JPH0931744 A JP H0931744A JP 18412695 A JP18412695 A JP 18412695A JP 18412695 A JP18412695 A JP 18412695A JP H0931744 A JPH0931744 A JP H0931744A
Authority
JP
Japan
Prior art keywords
cellulose
fiber
ray
degree
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18412695A
Other languages
Japanese (ja)
Inventor
Chihiro Yamane
千弘 山根
Toshihiko Matsui
敏彦 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP18412695A priority Critical patent/JPH0931744A/en
Publication of JPH0931744A publication Critical patent/JPH0931744A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain cellulosic fibers having crystalline properties of cellulose II type having respectively prescribed X-ray crystallinity, X-ray orientation and viscosity-average polymerization degree, high in wet strength, wet elastic modulus, excellent in resistance to fibrillation and suitable for clothing. SOLUTION: This cellulosic fiber has crystalline properties of cellulose II type having >=40% X-ray crystallinity, 80-90% X-ray orientation, >=258 deg.C at the maximum tanδ in dynamic viscoelasticity in >=200 deg.C. The cellulosic fiber is obtained by, e.g. preparing a spinning solution by dissolving purified cotton linters in a cuprammonium solution, filtered and deaerating, then extruding the spinning solution from spinning nozzles into a coagulant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,強度、及び弾性率
が高く、且つフィブリル化し難い衣料用途に適した再生
セルロース繊維に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerated cellulose fiber which has high strength and elastic modulus and is suitable for use in clothing which is difficult to be fibrillated.

【0002】[0002]

【従来の技術】ビスコースレーヨンは、機械物性、特に
湿潤時の機械物性が低い。衣料用途で使用される代表的
なビスコースレーヨンの強伸度物性について例示する
と、乾弾性率85g/d、湿弾性率5g/d、乾強度
1.8g/d、湿強度は0.85g/d等で対抗する衣
料用の化学繊維と比べて著しく劣っている。反面、フィ
ブリル化し難く,加工時の取扱性や,耐洗濯性などの消
費性能に優れている。一方、テンセル(商品名、コート
ールズ社製品)等の有機溶剤紡糸による人造セルロース
繊維は、機械強度に優れているものの加工時や洗濯時あ
るいは着用過程で容易にフィブリル化し,耐擦れ性が低
い欠点がある。キュプラアンモニウムレーヨンは、耐フ
ィブリル性について、テンセルなどの有機溶媒紡糸系セ
ルロース繊維よりもやや優れているものの,満足のでき
るレベルの耐フィブリル化性を有するセルロース繊維素
材ではない。 人造セルロース繊維の耐擦れ性を向上さ
せるために、例えば特開平5−117970号公報等に
記載される人造セルロース繊維の架橋処理の発明がなさ
れたが,耐擦れ性を実用上満足できるできる程度にまで
改良できる処理方法ではない。高い機械的強度を確保し
つつ優れた耐フィブリル性を有する人造セルロース繊
維、特に衣料用のセルロース繊維については知られてい
ない。
BACKGROUND OF THE INVENTION Viscose rayon has low mechanical properties, especially when wet. To illustrate the strength and elongation properties of a typical viscose rayon used for clothing, the dry elastic modulus is 85 g / d, the wet elastic modulus is 5 g / d, the dry strength is 1.8 g / d, and the wet strength is 0.85 g / d. It is significantly inferior to the chemical fiber for clothing which is opposed by d and the like. On the other hand, it is difficult to fibrillate, and has excellent handling performance during processing and consumption performance such as washing resistance. On the other hand, artificial cellulosic fibers produced by organic solvent spinning such as TENCEL (trade name, a product of Courtalls Co., Ltd.) have excellent mechanical strength, but easily fibrillize during processing, washing or wearing, and have a drawback of low rubbing resistance. is there. Although cupra ammonium rayon is slightly superior in fibril resistance to organic solvent-spun cellulose fibers such as Tencel, it is not a cellulose fiber material having a satisfactory level of fibrillation resistance. In order to improve the abrasion resistance of the artificial cellulose fiber, for example, the invention of the crosslinking treatment of the artificial cellulose fiber described in JP-A-5-117970 and the like has been made, but the abrasion resistance is practically satisfactory. It is not a processing method that can be improved to. Artificial cellulose fibers having excellent fibril resistance while ensuring high mechanical strength, particularly cellulose fibers for clothing, are not known.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は,フィ
ブリル化し難く、それでいて湿潤強度や弾性率が高い人
造セルロース繊維を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an artificial cellulose fiber which is difficult to be fibrillated and yet has high wet strength and elastic modulus.

【0004】[0004]

【課題を解決するための手段】本発明の目的は、X線結
晶化度が40%以上であり,X線配向度が80%以上9
0%未満、かつ200℃以上の動的粘弾性におけるta
nδの極大温度が258℃以上である粘度平均重合度が
100以上1300未満のセルロースII型の結晶性を有
するセルロース繊維によって達成される。
The object of the present invention is to have an X-ray crystallinity of 40% or more and an X-ray orientation of 80% or more.
Ta in dynamic viscoelasticity below 0% and above 200 ° C
It is achieved by a cellulose fiber having a type II crystallinity of which the maximum temperature of nδ is 258 ° C. or higher and the viscosity average degree of polymerization is 100 or more and less than 1300.

【0005】本発明のセルロースII型の結晶性を有する
セルロース繊維(以下、II型セルロース繊維という)
は、後述の実施例で定義する耐フィブリル化値が90以
上好ましくは95以上を示し、その耐フィブリル化性は
汎用のヴィスコースレーヨンに匹敵するもので有りなが
ら、機械的物性、特に湿潤下の機械物性が高いレベルを
有する。本発明のII型セルロース繊維ついて得られる代
表的な機械物性(JISL 1013)は、次の通りで
ある。
Cellulose fibers of the present invention having type II crystallinity (hereinafter referred to as type II cellulose fibers)
Shows a fibrillation resistance value of 90 or more, preferably 95 or more, which is defined in Examples described later, and the fibrillation resistance thereof is comparable to that of a general-purpose viscose rayon, but mechanical properties, especially under wet conditions. It has a high level of mechanical properties. Typical mechanical properties (JISL 1013) obtained for the type II cellulose fiber of the present invention are as follows.

【0006】 乾物性 湿潤物性 強度(g/d) 2〜3 1.0〜1.5 伸度(%) 10〜15 15〜20 弾性率(g/d) 100〜200 10〜20 本発明による人造セルロース繊維の動的粘弾性における
200℃以上のtanδの極大温度(Tmax)は、2
58℃以上である。Tmaxに上限は、設定しないが、
330℃以上の温度ではセルロースの分解が始まるの
で、これ以上の高い温度で実用の繊維素材としてのセル
ロース繊維の物性を特定する意味がなくなる。ここで、
本発明でいう動的粘弾性におけるtanδの値は、セイ
コー電子工業株式会社製DMS200型粘弾性スペクト
ロメーターを用いて周波数100Hz,温度100℃〜
350℃で測定したものである。
Dry physical properties Wet physical properties Strength (g / d) 2-3 1.0-1.5 Elongation (%) 10-15 15-20 Elastic modulus (g / d) 100-200 10-20 According to the present invention The maximum temperature (Tmax) of tan δ of 200 ° C. or higher in the dynamic viscoelasticity of artificial cellulose fiber is 2
It is 58 ° C or higher. Although no upper limit is set for Tmax,
Since the decomposition of cellulose begins at a temperature of 330 ° C. or higher, it becomes meaningless to specify the physical properties of cellulose fiber as a practical fiber material at a temperature higher than this. here,
The value of tan δ in the dynamic viscoelasticity referred to in the present invention is 100 Hz at a frequency of 100 Hz using a DMS200 type viscoelasticity spectrometer manufactured by Seiko Denshi Kogyo Co., Ltd.
It is measured at 350 ° C.

【0007】II型セルロース繊維の場合,200℃以上
のtanδ値の極大ピークは、セルロース分子主鎖のミ
クロブラウン運動に基づくもので、α分散といわれる
(Polymer Journal Vol.18、N
o.1、pp1〜14〔1986〕)。このピーク温度
(Tmax)は、セルロース繊維の非晶密度を相対的に
表しており,温度が高いほど非晶密度が高いことを示
す。本発明者等は、このピーク温度(Tmax)とII型
セルロース繊維のフィブリル化し易さにとの間に顕著な
相関が認められること、そしてTmaxが258℃以上
を示すII型セルロース繊維は、後述の水中20分間のホ
ームミキサーで撹拌処理後においても繊維の表面に微細
なフィブリルが発生するのみで、原繊維の形態が保持さ
れ、原繊維の機械的物性、繊維の耐磨耗性能も実用上実
質的に保持されることを知った。一方、Tmaxが25
8℃未満の非晶密度のII型セルロース繊維は、水存在下
の機械的刺激により容易にフィブリル化するので、液流
染色工程で被る擦れにより著しくフィブリル化すること
や,着用者の運動,洗濯の過程で被る擦れによってさえ
フィブリル化を起こすことが避けられない。したがっ
て、Tmaxが258°Cに至らないII型セルロース繊
維は、裏地やサンドウォッシュ加工を受ける繊維製品等
ごく限られた分野の用途以外に汎用外衣料用繊維として
好ましい素材ではない。
In the case of type II cellulose fiber, the maximum peak of the tan δ value at 200 ° C. or higher is based on the micro Brownian motion of the cellulose molecular main chain and is called α dispersion (Polymer Journal Vol. 18, N.
o. 1, pp 1-14 [1986]). This peak temperature (Tmax) relatively represents the amorphous density of the cellulose fiber, and the higher the temperature, the higher the amorphous density. The present inventors have found that a remarkable correlation is found between the peak temperature (Tmax) and the ease of fibrillation of the type II cellulose fiber, and that the type II cellulose fiber having Tmax of 258 ° C. or higher is described later. Even after stirring with a home mixer for 20 minutes in water, only fine fibrils are generated on the surface of the fiber, the morphology of the fibril is retained, and the mechanical properties of the fibril and abrasion resistance of the fiber are practically used. I learned that it is practically retained. On the other hand, Tmax is 25
Type II cellulose fibers with an amorphous density of less than 8 ° C are easily fibrillated by mechanical stimulation in the presence of water. Therefore, the fibers may be significantly fibrillated by rubbing in the jet dyeing process, and the wearer's movement and washing may be It is inevitable that fibrillation will occur even by rubbing in the process of. Therefore, the type II cellulose fiber having Tmax of less than 258 ° C is not a preferable material as a fiber for a general outer garment, except for applications in a very limited field such as a lining and a textile product subjected to sandwashing.

【0008】II型セルロース繊維の代表例の一つで有る
汎用のレギュラービスコースレーヨンは、Tmaxが2
70°C前後以上若しくは若しくは280℃を越えるレ
ベルに有り、フィブリルカ化抵抗性が著しく大きい素材
では有るが、ビスコースレーヨンのX線結晶化度は低く
いので前記したように機械的物性、特に湿潤下の強度1
g/d前後以下、弾性率5〜40g/d前後以下等と機
械物性が著しく劣り特に外衣用途に向けた人造セルロー
ス繊維の用途が阻まれている。II型セルロース繊維の他
の代表例であるキュプランモニウムーヨン及びリヨセル
のTmaxは、市販の原糸素材で245°C〜256°
C及び230°C〜250°Cのレベルであり、後記す
る水中20分間のホームミキサー撹拌処理後フィブリル
化度評価値が前記の汎用のレギュラービスコースレーヨ
ンの100であるのに対して、それぞれ70前後以下を
示し、耐フィブリル化性が著しく劣る素材であるが確か
められた。
A general-purpose regular viscose rayon, which is one of the representative examples of type II cellulose fibers, has a Tmax of 2
Although it is a material with a fibrillarization resistance of around 70 ° C or higher, or over 280 ° C, the viscose rayon has a low X-ray crystallinity, so that mechanical properties, particularly wetness, are as described above. Lower strength 1
The mechanical properties are remarkably inferior, such as around g / d or less, and an elastic modulus around 5 to 40 g / d or less, which hinders the use of artificial cellulose fibers for outerwear applications. The Tmax of cupranmonium-yeon and lyocell, which are other typical examples of type II cellulose fibers, is 245 ° C to 256 ° for commercially available raw yarn materials.
C and 230 ° C. to 250 ° C., and the fibrillation degree evaluation value after the home mixer agitation treatment for 20 minutes in water described below is 100 for the general-purpose regular viscose rayon, while it is 70 for each. It was confirmed that it is a material with significantly inferior fibrillation resistance, indicating the following before and after.

【0009】本発明によるII型セルロース繊維は、X線
結晶化度40% 以上を示すセルロース繊維である。X線
結晶化度が40%未満のII型セルロース繊維は、機械的
物性、特に湿純下の機械物性が外衣用途向けセルロース
繊維素材適当ではない。本発明でいう結晶化度は、広角
X線回折パターンをシンチレーションカウンター付きの
理学電気株式会社製Rotor Flex RU−20
0PL型X線回折装置で反射法で測定から算出したもの
で有る。測定においては、結晶配向の影響をなくすた
め,繊維を細かくきざんでパウダー状にし,タブレット
に成型してから測定した。結晶化度は,(101)面に
相当する2θ=12°の回折ピーク(ピーク高さIt)
に対し2θ=10,16°に接する接線を引き,12°
の該接線の高さ(Iu)を求め,次式より計算した[磯
貝(A.Isogai)等:繊維学会誌,Vol.4
6,No.8、1990参照)。
The type II cellulose fiber according to the present invention is a cellulose fiber having an X-ray crystallinity of 40% or more. The type II cellulose fibers having an X-ray crystallinity of less than 40% are not suitable as a cellulose fiber material for outer garment applications because of their mechanical properties, particularly those under wet conditions. The crystallinity referred to in the present invention is the Rotor Flex RU-20 manufactured by Rigaku Denki Co., Ltd., which has a wide angle X-ray diffraction pattern and a scintillation counter.
It is calculated from the measurement by the reflection method with the 0PL type X-ray diffractometer. In the measurement, in order to eliminate the influence of the crystal orientation, the fiber was finely chopped into a powder and molded into a tablet before the measurement. The crystallinity is a diffraction peak (peak height It) at 2θ = 12 ° corresponding to the (101) plane.
Draw a tangent line tangent to 2θ = 10 and 16 °, and
The height (Iu) of the tangent line of the above was calculated and calculated from the following equation [A. Isogai et al .: Journal of the Textile Society, Vol. Four
6, No. 8, 1990).

【0010】 X線結晶化度=〔It−Iu〕/It〕×100 本発明のII型セルロース繊維のX線結晶化度の上限は、
限定的なものではない。一般に、セルロース濃度が3〜
20重量%のドープを紡糸して得られるセルロース繊維
のX線結晶化度は、60%を超えることはない。従来の
II型セルロース繊維でも強力レーヨン、キュプラアンモ
ニウムレーヨン、セルロースの溶媒にNMMOを使用し
た有機溶媒紡糸繊維等で、結晶化度が40%以上で乾強
度は2.0g/d以上,弾性率は200g/d以上を有
する繊維はあったが、これらの従来のII型セルロース繊
維のTmaxは258℃未満であり、耐フィブリル化性
について満足なものではない。
X-ray crystallinity = [It-Iu] / It] × 100 The upper limit of the X-ray crystallinity of the type II cellulose fiber of the present invention is
Not limited. Generally, the cellulose concentration is 3 to
The X-ray crystallinity of the cellulose fibers obtained by spinning 20% by weight of dope does not exceed 60%. Traditional
Type II cellulose fibers such as strong rayon, cupraammonium rayon, organic solvent spun fiber using NMMO as a solvent for cellulose, etc., have a crystallinity of 40% or more, a dry strength of 2.0 g / d or more, and an elastic modulus of 200 g / Although there were fibers having d or more, Tmax of these conventional type II cellulose fibers was less than 258 ° C, and the fibrillation resistance was not satisfactory.

【0011】本発明によるII型セルロース繊維のX線配
向度(fc)は、80%以上90%未満である。X線配
向度(fc)が80%未満のII型セルロース繊維は、耐
フィブリル性は良好であるが,強度や弾性率などの機械
的物性が低い。例えば、キュプラアンモニウムレーヨン
用の原液を低ドラフトで11wt%NaOH水溶液に中
に押し出し凝固させ延伸無しで精練乾燥した人工腎臓用
の中空糸では,Tmax261℃,X線結晶化度46%
であったが,X線配向度が79%と80%未満で、乾強
度1.2g/d,弾性率43g/dであった。一方、X
線配向度(fc)が90%以上のII型セルロース繊維
は、強度や弾性率などの機械物性がより高く繊維となる
が,繊維のTmaxが258℃以上であっても耐フィブ
リル化性の劣る繊維しか得られない。
The X-ray orientation degree (fc) of the type II cellulose fiber according to the present invention is 80% or more and less than 90%. Type II cellulose fibers having an X-ray orientation degree (fc) of less than 80% have good fibril resistance, but have low mechanical properties such as strength and elastic modulus. For example, a hollow fiber for artificial kidney, which is obtained by extruding a stock solution for cupra ammonium rayon into an 11 wt% NaOH aqueous solution at a low draft, coagulating it, and scouring and drying without stretching, has Tmax of 261 ° C. and an X-ray crystallinity of 46%.
However, the X-ray orientation degree was 79% and less than 80%, the dry strength was 1.2 g / d, and the elastic modulus was 43 g / d. On the other hand, X
Type II cellulose fibers having a degree of linear orientation (fc) of 90% or more have higher mechanical properties such as strength and elastic modulus and become fibers, but have poor fibrillation resistance even when the Tmax of the fibers is 258 ° C or higher. Only fiber can be obtained.

【0012】ここで、X線配向度(fc)は,透過法で
求めた値である。シンチレーションカウンターを(10
1)面の回折角度に相当する2θ=20.1°に固定
し,繊維束を入射X線に対し垂直に回転させ,方位角ψ
の回折X線強度を測定し、E.Ott、M.Spurl
in編「Cellulose and Cellulo
se Derivatives」2nd.ed.、Vo
l.II,Interscience publishe
rs,New York(1954)の第 頁に記載さ
れる次式により算出したものである。式中、ψ1/2 は、
方位角度(degrees)で表した半値幅である。
Here, the X-ray orientation degree (fc) is a value obtained by a transmission method. Set the scintillation counter (10
1) Fix at 2θ = 20.1 °, which corresponds to the diffraction angle of the plane, rotate the fiber bundle perpendicular to the incident X-ray, and set the azimuth angle ψ
The diffracted X-ray intensity of E. Ott, M .; Spurl
in edition “Cellulose and Cellulo
se Derivatives "2nd. ed. , Vo
l. II, Interscience publicize
It is calculated by the following formula described on page 1 of rs, New York (1954). Where ψ 1/2 is
It is a full width at half maximum represented by an azimuth angle (degrees).

【0013】fc={1−(ψ1/2 /180)} 本発明のII型セルロース繊維の重合度は、100以上1
300未満である。重合度が100未満のセルロース繊
維は、繊維の機械的強度が著しく低い。重合度が130
0を超えると、繊維製造の際のセルロース溶液の粘度の
急激な増加、溶液の安定性の減少等がにより、安定して
セルロース繊維を紡糸することが困難である。ここで、
重合度は,セルロース/カドキセン溶液の[η]を求
め、Euro.,Polym.,J.,1,1(196
6)に記載されるブラウン、ウイクストローム(Bro
wn, Wikstrom)の粘度式に代入して得た粘
度平均分子量Mwを,162で割って粘度平均重合度と
した。
Fc = {1- (ψ 1/2 / 180)} The type II cellulose fiber of the present invention has a degree of polymerization of 100 or more and 1 or more.
It is less than 300. Cellulose fibers having a degree of polymerization of less than 100 have extremely low mechanical strength. Degree of polymerization is 130
When it exceeds 0, it is difficult to stably spin the cellulose fibers due to a rapid increase in the viscosity of the cellulose solution during the fiber production, a decrease in the stability of the solution, and the like. here,
For the degree of polymerization, the [η] of the cellulose / cadoxene solution was determined, and the value obtained according to Euro. , Polym. , J. et al. , 1, 1 (196
6), Brown, Wikstrom
The viscosity average molecular weight Mw obtained by substituting it into the viscosity formula of wn, Wikstrom) was divided by 162 to obtain the viscosity average polymerization degree.

【0014】[η]=3.85×10-2・Mw0.76 本発明の人造セルロース繊維は、繊度やフィラメント数
及びフィラメントの断面形状について任意の条件を選ぶ
ことができる。衣料用のセルロース繊維素材としては,
25〜1000デニールの繊維が、長繊維糸として使用
する場合には、10〜100フィラメントで構成される
10乃至500デニールの糸とするのが一般的である。
[Η] = 3.85 × 10 -2 Mw 0.76 In the artificial cellulose fiber of the present invention, arbitrary conditions can be selected with respect to the fineness, the number of filaments and the cross-sectional shape of the filament. As a cellulose fiber material for clothing,
When 25 to 1000 denier fibers are used as long-fiber yarn, it is generally 10 to 500 denier yarn composed of 10 to 100 filaments.

【0015】本発明の再生セルロース繊維は,任意のセ
ルロース原料を使用して以下に方法によって製造するこ
とができる。天然セルロース原料には、重合度100〜
1300の範囲にある木材パルプ,綿リンター等を用い
ることができる。セルロース原料をセルロース濃度3w
t%〜15wt%の紡糸ドープ(原液ということがあ
る)を調製して、アルカリ性の凝固浴乃至凝固・再生浴
に押出し、押出しフィラメントに殆どドラフトをかけな
いか若しくは比較的小さいドラフト好ましくは3以下の
ドラフトをかけながら適当な巻き取手段により巻き取り
ことによって調製することができる。凝固液には、0.
5wt%〜15wt%好ましくは1〜5wt%のNaOH
水溶液を用いその浴温度は、所定濃度NaOH水溶液の
凍結温度温度以上50℃以下が望ましい。紡糸用原液
は、ビスコース法、銅アンモニア法、Nーメチルモルホ
リン等の適当なセルロース溶解性の溶剤による溶解法に
よって調製することができる。
The regenerated cellulose fiber of the present invention can be produced by the following method using any cellulose raw material. The natural cellulose raw material has a degree of polymerization of 100 to
Wood pulp, cotton linter, etc. in the range of 1300 can be used. Cellulose raw material has a cellulose concentration of 3w
A spinning dope of t% to 15% by weight (sometimes referred to as a stock solution) is prepared and extruded into an alkaline coagulation bath or coagulation / regeneration bath, and the extruded filament is hardly drafted or has a relatively small draft, preferably 3 or less. It can be prepared by winding with a suitable winding means while applying the draft. The coagulation liquid contains 0.
5 wt% to 15 wt% NaOH, preferably 1 to 5 wt%
An aqueous solution is used and the bath temperature is preferably not lower than the freezing temperature of the NaOH aqueous solution having a predetermined concentration and not higher than 50 ° C. The stock solution for spinning can be prepared by a viscose method, a cuprammonium method, a dissolution method using a suitable cellulose-soluble solvent such as N-methylmorpholine.

【0016】一例として、銅アンモニア法による本発明
の繊維の調製方法について述べると、まず精製綿リンタ
ーを銅アンモニア溶液に溶解し、濾過、脱泡して紡糸用
原液を調製する。原液中のセルロース濃度は、セルロー
スの重合度によって決定すべき問題であるが,経済的観
点から3wt%以上が好ましい。この原液を0.05m
mφ〜0.5mmφのオリフィスを有する紡糸ノズルか
ら凝固液中に吐出させる。オリフィス径の選定は得られ
る繊維の単糸デニールと,紡糸用原液のセルロース濃度
とドラフトによって決定される。ドラフトは1〜3であ
る。凝固液には、0.5wt%〜15wt%のNaOH
水溶液を用いその浴温度50℃以下に維持して紡糸す
る。紡糸方法は特に限定しないが、一般的な横引き静止
浴,ビスコースレーヨンフィラメントの高速紡糸で使用
されている直管流管の流動浴紡糸法など紡糸速度や設備
コスト等に応じて選定し用いることができる。ただし、
キュプラアンモニウムレーヨンフィラメントの製造で用
いられている流下緊張紡糸方法は,凝固がキュプラアン
モニウムレーヨン系よりも速いので適用が(?)困難で
ある。凝固が完了した糸条は無緊張状態で精練するか若
しくは1.5倍延伸までの延伸をかけた後、精練して乾
燥する。乾燥は、無緊張状態,一定長状態のいずれでも
かまわない。
As an example, the method for preparing the fiber of the present invention by the copper ammonia method will be described. First, a purified cotton linter is dissolved in a copper ammonia solution, filtered and defoamed to prepare a spinning dope. The concentration of cellulose in the stock solution is a problem to be determined depending on the degree of polymerization of cellulose, but from the economical viewpoint, it is preferably 3 wt% or more. 0.05m of this stock solution
It is discharged into the coagulating liquid from a spinning nozzle having an orifice of mφ to 0.5 mmφ. The selection of the orifice diameter is determined by the single yarn denier of the fiber obtained and the cellulose concentration and draft of the spinning dope. The draft is 1-3. The coagulating liquid contains 0.5 wt% to 15 wt% of NaOH.
Spin using an aqueous solution while maintaining the bath temperature at 50 ° C or lower. The spinning method is not particularly limited, but it is selected and used according to the spinning speed, equipment cost, etc., such as the general horizontal static bath, the flow bath spinning method of the straight tube used in the high-speed spinning of viscose rayon filament. be able to. However,
The down-flow tension spinning method used in the production of cupra ammonium rayon filaments is difficult to apply because the coagulation is faster than that of cupra ammonium rayon type. The coagulated yarn is scoured without tension or subjected to stretching up to 1.5 times and then scoured and dried. Drying may be either tension-free or constant length.

【0017】以下実施例により本発明を説明するが,本
発明はこれになんら限定されるものではない。
The present invention is described below with reference to examples, but the present invention is not limited thereto.

【0018】[0018]

【実施例】実施例において、繊維の機械物性及びフィブ
リル化度の測定・評価は下記によるものである。 (1)繊維構造物性の測定 X線結晶化度、X線配向度(fc)及び200℃以上の
動的粘弾性におけるtanδの極大温度は、前述した方
法により測定した。 (2)セルロ−ス繊維、セルロース原料の重合度測定 前述した粘度法により算出した。 (3)機械物性の測定 JIS L 1013に準じて測定した。 (4)フィブリル化度の測定・評価 1)フィブリル化処理 各繊維試料約0.5gを70℃,3wt%硫酸水溶液3
00gに30分間浸漬した後,イオン交換水で洗浄し
て、該繊維試料をイオン交換水300ml,o温度70
°Cを媒体にしてホームミキサー(消費電力260W,
容量1200ml)中で5分間撹拌した。
EXAMPLES In the examples, the mechanical properties of fibers and the degree of fibrillation were measured and evaluated as follows. (1) Measurement of Physical Properties of Fiber Structure The X-ray crystallinity, the X-ray orientation (fc), and the maximum temperature of tan δ in dynamic viscoelasticity of 200 ° C. or higher were measured by the methods described above. (2) Measurement of degree of polymerization of cellulose fiber and cellulose raw material It was calculated by the viscosity method described above. (3) Measurement of mechanical properties It was measured according to JIS L 1013. (4) Measurement and evaluation of degree of fibrillation 1) Fibrillation treatment About 0.5 g of each fiber sample was treated at 70 ° C. and 3 wt% sulfuric acid aqueous solution 3
After immersing in 00 g for 30 minutes, it was washed with ion-exchanged water, and the fiber sample was treated with 300 ml of ion-exchanged water at a temperature of 70
Home mixer (power consumption 260W,
It was stirred in a volume of 1200 ml) for 5 minutes.

【0019】2)フィブリル化度の測定・評価 スラリー状態のまま繊維を拡大倍率200倍の光学顕微
鏡下での破壊状況を観測し、この観測に結果を以下の繊
維の破壊状態を下記の基準に照らして評価して、評価点
数を割り付けた。各試料について3回の試験をいその平
均値をフィブリル化度とした。フィブリル化度が90点
以上の繊維は、加工時や洗濯時もしくは着用過程におい
てフィブリル化の問題は発生しない。
2) Measurement and Evaluation of Degree of Fibrillation The state of rupture of the fiber in a slurry state was observed under an optical microscope with a magnifying power of 200, and the result of this observation was based on the following state of rupture of the fiber. The evaluation was made by illuminating and the evaluation points were assigned. Each sample was tested three times, and the average value was used as the degree of fibrillation. Fibers having a degree of fibrillation of 90 or more do not cause the problem of fibrillation during processing, washing or wearing.

【0020】 繊維の破壊状態 評価点数 全く破壊の認められない繊維 100 単糸長さあたりのフィブリル発生個数1〜2 80 単糸長さあたりのフィブリル発生個数4〜6 50 単糸長さあたりのフィブリル発生個数10以上 20 原直径が認められない破壊繊維 0 実施例1 アンモニア水と塩基性硫酸銅を混合し銅アンモニア溶液
を調製した。この溶液に所定量の精製綿リンターを加
え,さらに10重量%のNaOH水溶液を徐々に加えな
がら撹拌し、セルロースを溶解してセルロース濃度10
wt%の均一な溶液を得た。かかる溶液を300メッシ
ュの金属網2枚とポリアミド不織布2枚を重ねた濾過層
をへて濾過した後、減圧、脱泡し紡糸用ドープを調製し
た。このドープをギアポンプ付きの押し出し機を用いて
孔径0.065mmφのオリフィスが100個開いた紡
糸ノズルから1重量%〜30重量%NaOH水溶液の凝
固液浴(25°C)中に吐出量5ml/minで押出し
た。凝固液浴の浸漬長25cmの条件で10倍のドラフ
トをかけながら凝固させた後、連続して室温の水で洗浄
し、油剤を付与して120℃の熱ロール上で定長乾燥さ
せ,15m/minの条件で紙管に巻き取り、330d
/100fの多フィラメント糸を調製した。得られたそ
れぞれのセルロース繊維について、重合度及び繊維の諸
物性並びにフィブリル化度及び機械的性質の測定結果を
表1に示す。参考までに、市販のII型セルロース繊維で
あるレギュラービスコースレーヨンフィラメント、キュ
プラアンモニウムレーヨンフィラメント、「テンセル」
及びポリノジックレーヨンのTmax,X線結晶化度,
X線配向度,重合度,フィブリル化度,機械的物性を表
2に示す。
Fiber breakage evaluation score Fibers in which no breakage is observed 100 Number of fibrils generated per single yarn length 1 to 280 Number of fibrils generated per single yarn length 4 to 650 Fibrils per single yarn length Number of generation 10 or more 20 Broken fiber in which the original diameter is not recognized 0 Example 1 Aqueous ammonia and basic copper sulfate were mixed to prepare a copper ammonia solution. A predetermined amount of purified cotton linter was added to this solution, and 10% by weight of NaOH aqueous solution was gradually added and stirred to dissolve cellulose to a cellulose concentration of 10%.
A homogenous solution of wt% was obtained. The solution was filtered through a filter layer in which two 300-mesh metal nets and two polyamide nonwoven fabrics were stacked, and then depressurized and defoamed to prepare a spinning dope. Using a extruder equipped with a gear pump, this dope was discharged from a spinning nozzle having 100 orifices with a hole diameter of 0.065 mmφ opened into a coagulating liquid bath (25 ° C.) of a 1 wt% to 30 wt% NaOH aqueous solution at 5 ml / min. Extruded. After coagulating while applying a draft of 10 times under the condition that the immersion length of the coagulating liquid bath is 25 cm, it is continuously washed with water at room temperature, oiled and dried at a constant length on a hot roll at 120 ° C. for 15 m. It is wound around a paper core under the condition of / min, 330d
/ 100f multifilament yarn was prepared. Table 1 shows the measurement results of the degree of polymerization, various physical properties of the fiber, the degree of fibrillation, and the mechanical properties of each of the obtained cellulose fibers. For reference, commercially available type II cellulose fiber, regular viscose rayon filament, cupra ammonium rayon filament, "TENCEL"
And Tmax of polynosic rayon, X-ray crystallinity,
Table 2 shows the degree of X-ray orientation, the degree of polymerization, the degree of fibrillation, and the mechanical properties.

【0021】表1から明らかなように、実施例1(N
o.1〜4)のセルロース繊維はTmaxが258℃以
上でありX線配向度が90未満の試料1〜4は,いずれ
もフィブリル化度が95点以上であって、耐フィブリル
性に優れ、機械的物性、特に湿潤強度、湿潤弾性率が汎
用のビスコースレーヨンと比べて著しく改善されでい
る。表1、2を参照すれば、II型セルロース繊維のTm
axが耐フィブリルに付いて臨界性を示すことが明らか
である。レギュラービスコースレーヨンフィラメントを
除いては、キュプラアンモニウムレーヨンフィラメン
ト,NMMO系溶媒の有機溶媒紡糸繊維「テンセル」,
ポリノジックレーヨンは、機械的物性は優れているが何
れもTmaxが244℃以下で容易にフィブリル化し耐
フィブリル化性にの劣るである。 実施例2 実施例1の方法に準拠して調製したドープをギアポンプ
付きの押出し機を用いて,孔径が0.065mmφ、
0.080mmφ、0.131mmφと異なるそれぞれ
孔数100を有する3種の紡糸ノズルを通して5重量%
のNaOH水溶液からなる25°C凝固浴に吐出量5m
l/minで押出し引き取速度が15m/分でフィラメ
ント糸を巻き取った。各紡糸におけるドラフトはそれぞ
れ1、1.5及び4で25°Cの凝固液浸漬長25cm
の条件で凝固させた後,室温の水で洗浄し,油剤を付与
して10m/minの表面速度で回転している120℃
の熱ロール上で定長乾燥させ、紡糸中のドラフト条件に
ついて相違する3種類の多フィラメント繊糸(ドラフト
の小さい順に、No.7、8及び9とする)を調製し
た。得られた繊維の重合度は、816〜830であっ
た。表3に本例で得られたセルロース繊維の物性、及び
性能評価値を示す。
As is clear from Table 1, Example 1 (N
o. Samples 1 to 4 having a Tmax of 258 ° C. or higher and an X-ray orientation degree of less than 90 have a fibrillation degree of 95 points or more, and have excellent fibril resistance and mechanical properties. The physical properties, particularly the wet strength and the wet elastic modulus, are remarkably improved as compared with general-purpose viscose rayon. Referring to Tables 1 and 2, Tm of type II cellulose fiber
It is clear that ax is critical to fibril resistance. With the exception of regular viscose rayon filament, cupra ammonium rayon filament, organic solvent spun fiber of NMMO type solvent "TENCEL",
Although polynosic rayon has excellent mechanical properties, it easily fibrillates at Tmax of 244 ° C. or less and is inferior in fibrillation resistance. Example 2 Using an extruder equipped with a gear pump, the dope prepared according to the method of Example 1 had a hole diameter of 0.065 mmφ,
5% by weight through three kinds of spinning nozzles each having 100 holes different from 0.080 mmφ and 0.131 mmφ
Discharge rate of 5m into a 25 ° C coagulation bath consisting of an aqueous NaOH solution
The filament yarn was wound at an extrusion take-up speed of 15 m / min at 1 / min. The draft in each spinning is 1, 1.5 and 4, respectively, and the immersion length of the coagulating liquid at 25 ° C is 25 cm.
After coagulating under the conditions described above, wash with water at room temperature, apply an oil agent, and rotate at a surface speed of 10 m / min.
Was dried for a fixed length on a hot roll of No. 3 to prepare three types of multifilament yarns (No. 7, 8 and 9 in descending order of draft) having different draft conditions during spinning. The degree of polymerization of the obtained fiber was 816 to 830. Table 3 shows the physical properties and performance evaluation values of the cellulose fiber obtained in this example.

【0022】試料No.7〜8のドラフト1〜1.5の
繊維については,Tmax,X線結晶化度,X線配向
度,重合度ともに本発明の範囲内にあり、フィブリル化
度はいずれも95以上を呈し,耐フィブリル性に優れ、
機械物性もビスコースレーヨンよりも著しく優れたII型
セルロース繊維である。試料No.9の繊維は、機械的
性能が高いがフィブリル化度は62と、耐フィブリル性
が著しく劣っている。試料No.9の繊維は、高いドラ
フトによって優れた機械物性を示すが、耐フィブリル性
が劣っていることを示している。
Sample No. Regarding the fibers of draft 1 to 1.5 of 7 to 8, all of Tmax, X-ray crystallinity, X-ray orientation, and degree of polymerization are within the scope of the present invention, and the degree of fibrillation is 95 or more. Excellent fibril resistance,
It is a type II cellulosic fiber that has significantly better mechanical properties than viscose rayon. Sample No. The fiber No. 9 has high mechanical performance, but the degree of fibrillation is 62, and the fibril resistance is extremely poor. Sample No. Fiber No. 9 exhibits excellent mechanical properties due to its high draft, but shows poor fibril resistance.

【0023】[0023]

【発明の効果】本発明は、X線結晶化度が高く、かつT
maxの高いすなわち非晶部の密度の高い人造セルロー
ス繊維である。X線結晶化度が高いため強度や弾性率に
代表される湿潤機械的強度が高く、又Tmaxが高く非
晶部の密度が高いので耐フィブリル性に優れた外衣用途
に適したII型セルロース繊維を得ることができる。
The present invention has high X-ray crystallinity and T
It is an artificial cellulose fiber having a high max, that is, a high density in an amorphous part. Type II cellulose fiber with high X-ray crystallinity and high wet mechanical strength typified by strength and elastic modulus, and with high Tmax and high density in the amorphous part, excellent in fibril resistance and suitable for outerwear applications Can be obtained.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 X線結晶化度が40%以上、X線配向度
が80%以上90%未満、かつ200℃以上の動的粘弾
性におけるtanδの極大温度が258℃以上である粘
度平均重合度が100以上1300未満のセルロースII
型の結晶性を有するセルロース繊維。
1. A viscosity average polymerization in which the X-ray crystallinity is 40% or more, the X-ray orientation degree is 80% or more and less than 90%, and the maximum temperature of tan δ in dynamic viscoelasticity of 200 ° C. or more is 258 ° C. or more. Cellulose II with a degree of 100 or more and less than 1300
Cellulose fibers with mold type crystallinity.
JP18412695A 1995-07-20 1995-07-20 Man-made cellulosic fiber Withdrawn JPH0931744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18412695A JPH0931744A (en) 1995-07-20 1995-07-20 Man-made cellulosic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18412695A JPH0931744A (en) 1995-07-20 1995-07-20 Man-made cellulosic fiber

Publications (1)

Publication Number Publication Date
JPH0931744A true JPH0931744A (en) 1997-02-04

Family

ID=16147839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18412695A Withdrawn JPH0931744A (en) 1995-07-20 1995-07-20 Man-made cellulosic fiber

Country Status (1)

Country Link
JP (1) JPH0931744A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073172A1 (en) * 2000-03-27 2001-10-04 Sk Chemicals Co., Ltd. Cellulosic materials having composite crystalline structure
JP2002317344A (en) * 2001-02-13 2002-10-31 Asahi Kasei Corp Woven fabric
WO2013051369A1 (en) 2011-10-05 2013-04-11 ダイセルポリマー株式会社 Fiber-reinforced resin composition
JP2014221848A (en) * 2013-05-13 2014-11-27 ダイセルポリマー株式会社 Fiber-reinforced resin composition
JP2016505095A (en) * 2013-01-29 2016-02-18 コルデンカ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトCordenka GmbH & Co. KG High strength viscose multifilament yarn with low fineness
US11338475B2 (en) 2014-06-18 2022-05-24 Daicel Polymer Ltd. Fiber-reinforced resin composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073172A1 (en) * 2000-03-27 2001-10-04 Sk Chemicals Co., Ltd. Cellulosic materials having composite crystalline structure
KR100471004B1 (en) * 2000-03-27 2005-03-07 에스케이케미칼주식회사 Rayon fiber, fiber product, film and preparations thereof
JP2002317344A (en) * 2001-02-13 2002-10-31 Asahi Kasei Corp Woven fabric
KR20140080481A (en) * 2011-10-05 2014-06-30 다이셀 폴리머 가부시끼가이샤 Fiber-reinforced resin composition
JP2013091775A (en) * 2011-10-05 2013-05-16 Daicel Polymer Ltd Fiber-reinforced resin composition
CN103813893A (en) * 2011-10-05 2014-05-21 大赛璐高分子株式会社 Fiber-reinforced resin composition
WO2013051369A1 (en) 2011-10-05 2013-04-11 ダイセルポリマー株式会社 Fiber-reinforced resin composition
US20140343196A1 (en) * 2011-10-05 2014-11-20 Daicel Polymer Ltd. Fiber-reinforced resin composition
US9096750B2 (en) 2011-10-05 2015-08-04 Daicel Polymer Ltd. Fiber-reinforced resin composition
TWI558746B (en) * 2011-10-05 2016-11-21 戴西爾聚合物股份有限公司 Fiber-reinforced resin composition
JP2016505095A (en) * 2013-01-29 2016-02-18 コルデンカ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトCordenka GmbH & Co. KG High strength viscose multifilament yarn with low fineness
JP2014221848A (en) * 2013-05-13 2014-11-27 ダイセルポリマー株式会社 Fiber-reinforced resin composition
US11338475B2 (en) 2014-06-18 2022-05-24 Daicel Polymer Ltd. Fiber-reinforced resin composition

Similar Documents

Publication Publication Date Title
US6527987B1 (en) Process for producing regenerated cellulosic fibers
US6306334B1 (en) Process for melt blowing continuous lyocell fibers
CN1348023A (en) Reosale fibre and its producing method
CN1522317A (en) Lyocell fibers
JPH10204719A (en) Production of cellulosic fiber and cellulosic fiber
HU214034B (en) Lyocell type cellulose fibre and method for producing same
EP2382344A2 (en) Yarns and threads from a blend of cotton and lyocell and articles therefrom
JPH08508555A (en) Method for producing cellulose molded body
US3277226A (en) Viscose rayon fiber and method of making same
JPH0931744A (en) Man-made cellulosic fiber
US3337671A (en) Method of making regenerated cellulose filaments
US2997365A (en) Production of regenerated cellulose filaments
US3434913A (en) Viscose rayon fiber and method of making same
US3494996A (en) Method for producing high tenacity rayon
TW202235707A (en) Cellulose fiber manufacturing method
RU2766477C1 (en) Method of removing liquid from yarn or fibers with cellulose threads
JP3832000B2 (en) Modified cross-section regenerated cellulose fiber and process for producing the same
JPH09256216A (en) Regenerated cellulose fiber and its production
US3529052A (en) Method of manufacturing rayon fiber
Veit Cellulosic man-made fibers
TW201938669A (en) Lyocell fiber with novel cross section
WO1998030740A1 (en) Process for preparing low-fibrillate cellulose fibres
US3182107A (en) Method of producing all-skin viscose rayon
JP3578227B2 (en) Easy fibrillated polynosic fiber and method for producing the same
US2895788A (en) Method of forming all skin viscose rayon

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001