JP3578227B2 - Easy fibrillated polynosic fiber and method for producing the same - Google Patents

Easy fibrillated polynosic fiber and method for producing the same Download PDF

Info

Publication number
JP3578227B2
JP3578227B2 JP25049794A JP25049794A JP3578227B2 JP 3578227 B2 JP3578227 B2 JP 3578227B2 JP 25049794 A JP25049794 A JP 25049794A JP 25049794 A JP25049794 A JP 25049794A JP 3578227 B2 JP3578227 B2 JP 3578227B2
Authority
JP
Japan
Prior art keywords
fiber
yarn
bath
temperature
polynosic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25049794A
Other languages
Japanese (ja)
Other versions
JPH08113820A (en
Inventor
靖彦 野村
伸一郎 稲富
武夫 作本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP25049794A priority Critical patent/JP3578227B2/en
Publication of JPH08113820A publication Critical patent/JPH08113820A/en
Application granted granted Critical
Publication of JP3578227B2 publication Critical patent/JP3578227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明はフィブリル化しやすいポリノジック繊維及びその製造方法を提供するものである。
【0002】
【従来の技術】
セルロース繊維は分子が集合し、ミクロフィブリル、さらにミクロフィブリルが集合してフィブリルを形成している。
【0003】
しかしながら、セルロースは分子間に強固な水素結合が多数存在するため、フィブリルを更に小さい単位にすることは通常の方法では困難であるとされていた。セルロース繊維を微細化あるいはフィブリル化する方法は従来から リファイナー、ボールミル等の機械的な処理 爆砕等の物理的な処理 微結晶化処理等の化学的な処理が行われている。又、特にビスコース繊維を限定した場合は特開平6−128874号公報の場合は平均重合度が600以上の高重合度のポリノジック繊維で構成された織編物を常圧ワッシャー、連続リラックス機、液流染色機、ウィンス染色機中で湿潤状態において揉布処理したり、ストーンウオッシュ法により摩擦する方法でフィブリル化させる製造方法がある。又、特開平6−108306号公報の場合は標準状態で引張強度が4〜6g/d引張伸度が8%以下である高強力、低伸度ポリノジック繊維を湿潤状態において外力によりフィブリル化させる製造方法がある。
【0004】
しかしながら、特開平6−128874号公報に記載されている方法は、平均重合度が600以上という高重合度のポリノジック繊維で構成されている。又、特開平6−108306号公報の場合は標準状態で引張強度が4〜6g/d引張伸度が8%以下である高強力、低伸度ポリノジック繊維で構成されている。これらの高重合度、高強力(必然的に低伸度となる)ポリノジック繊維によって得られる繊維のフィブリル化潜在能力は低く、その後の湿潤状態での揉布処理、摩擦処理、あるいは叩解処理等で所定の状態まで叩解させるには、例えば処理時間を大幅に長くする等の過程が必要である。湿潤状態での長時間処理は得られる製品の品位を著しく損なう等の欠点となる。
【0005】
【発明が解決しようとする課題】
本発明は上述のような問題を解決すべく行われたものである。即ち、フィブリル化潜在能力が著しく高いポリノジック繊維及びその製造方法を提供するものである。
【0006】
【課題を解決するための手段】
上記課題を解決すめたの手段、即ち本発明は、高重合度ビスコースの低酸低温紡糸法によるポリノジック繊維の製造工程において、再生未完結であって残存γ価1〜20の糸条を得て、直ちに硫酸濃度30〜300g/リットル、温度70℃以上の酸浴を通して再生を完結させることを特徴とするポリノジック繊維の製造方法及びカナディアン標準形で測定した叩解時間30分の濾水度が600cc以下である請求項1に記載の方法で得られるポリノジック繊維である。
【0007】
本発明における第1工程は、第1浴でのビスコースの凝固工程であるが一般に行われている低酸濃度、低温浴で良い。第1浴の最適条件はビスコース条件および紡糸速度、浴温度、浴長等の紡糸条件と関連するので、これのみを単独に規制することはできないが、一般的な範囲として硫酸濃度15〜30g/リットル硫酸亜鉛濃度0.1〜3g/リットル硫酸ソーダー濃度100g/リットル以下温度28℃以下である。第2工程を一般に行われている第2浴での糸条の再生工程であるが一般に行われている低酸濃度、低温浴で良い。第2浴の最適条件は前述の第1浴と同様に紡糸条件と関連するので、これのみを単独に規制することはできないが硫酸濃度5〜15g/リットル硫酸亜鉛濃度3g/リットル以下硫酸ソーダー濃度50g/リットル以下温度28℃以下である。第3工程は糸条の延伸工程であるが、所望の糸物性が得られる延伸倍率まで延伸する。第4工程は第3工程で固定された糸条を分解再生する工程であるが一般に行われている高温、低酸濃度で良い。第3浴の最適条件は前述の第1浴と同様に紡糸条件と関連するので、これのみを単独に規制することはできないが硫酸濃度5g/リットル以下、温度95℃以上である。第4工程を通過した糸条の残存γ価は通常1〜20の間に入る。第5工程は本発明において特に重要であり、本発明で特定する条件を満足する場合にはじめて本発明の所期となる効果が得られる。
【0008】
本発明の第5工程は第4工程を通過した残存γ価が1〜20の糸条を硫酸濃度30〜300g/リットル温度70℃以上、浴滞留時間1〜300秒で処理する工程である。より好ましい硫酸濃度は範囲は50〜250g/リットルである。ここで、硫酸濃度30g/リットル以下では所望のフィブリル化しやすいポリノジック繊維は得られない。逆に硫酸濃度300g/リットル以上では繊維の強伸度か低下して実用的でない。浴温度については70℃以上が好ましい。70℃以下では糸条に含まれる二硫化炭素が揮発しがたく繊維の強伸度が低下して実用的でない。浴滞留時間については、硫酸濃度条件と関連するので、これのみを単独に規制することはできないが、一般的な範囲として1〜300秒が最適範囲である。第5工程を通過した糸条の残存γ価は0〜1となる。その後、必要に応じて最終の熱浴中に導入して完全に分解再生させてもよい。
【0009】
本発明は残存γ価が1〜20という未分解でかつ膨潤状態の糸条を、高酸濃度及び高温で処理することによって達成される。これは、本発明の範囲でセルロース分子の水素結合が一部切断して、フィブリル、あるいはミクロフィブリルの繊維軸に対する直角方向の結合力が弱まるためと考えられる。この結果フィブリル化潜在能力の高い繊維となり、その後の湿潤状態における機械的、物理的外力により容易にミクロフィブリル化するものと思われる。
【0010】
【実施例】
以下、実施例により本発明を詳述する。
【0011】
実施例において、評価に用いたγ価、カナデアン標準形の濾水度の測定方法について以下に記述する。
【0012】
γ価
セルロース0.25〜0.35gに相当する再生未完結の切断糸条を0〜4℃に冷却したアンモニア、アルカリ性アンモニウム塩飽和溶液中に採取し、分解を停止せしめると共に5分間放置し、すべての残存ザンテート基をアンモニウムカチオンで置換する。次いで0〜4℃に冷却した水、アルコール4:6混液により数回にわたり液を交換しつつ充分洗浄し、遊離のアンモニウムイオンを除去する。精製終了後予め50℃に加温した0.5%塩酸により分解しNH4 Cを生成せしめこの分解液を濾別洗浄し、糸条は乾燥し繊維素量(Sg)とする。濾液はフラスコ中に入れ20%NaOHでアルカリ性となしコンデンサーを連結して蒸留して溜出するアンモニアを0.1N H2 SO4 (Acc)中に導き、完全にアンモニアが溜出したことを確認した後、NaOHで逆滴定する。
(Bcc)前記測定より糸条中に残存するザンテート基量は次の通り示される。
残存γ価(%)=(A−B)/S×1.62
【0013】
カナデンアン標準形の濾水度
JIS P8121に準じて測定した。
繊維300g(絶乾量換算)を10リットルの水に離解し、王研式ビーターで30分叩解した。叩解された繊維を目標秤量80g/cm でタッピー抄紙し、脱水後湿紙を120℃で乾燥し測定した。濾水度の値は小さいほど、フィブリル化して繊維の絡みが大きくなっていることを示す。
【0014】
実施例1〜2,比較例1〜2
常法によりセルロース含有量4.7%、アルカリ濃度2.5%、γ価75、落玉粘度230秒、平均重合度550のビスコースを調整した。これを孔径0.06mm、孔数27000のノズルより硫酸18.0g/リットル硫酸亜鉛0.5g/リットル及び硫酸ソーダ20g/リットルを含有し温度28℃の1浴中に紡糸しビスコースを凝固させた。次に硫酸7.0g/リットル硫酸ソーダ23g/リットルを含有し温度27℃の2浴中にて糸条を再生せしめて後、糸条を55%延伸した。次に浴温97℃、硫酸1.0g/リットルの3浴にて再生分解させた。得られた糸条の残存γ価は10であった。次に硫酸250g/リットル(実施例1)及び50g/リットル(実施例2)温度90℃、浴長2m(浴滞留時間5秒)の第4浴にて糸条を処理した。得られた糸条の残存γ価は1であった。かかる糸条を空気中に取り出した後、最終工程の熱浴にて完全に分解した。次に常法により精練処理、乾燥処理を行った。比較例として第4浴の硫酸濃度のみ変更した場合を記載する。得られた糸の特性を表1に示す。又、実施例1で得られた繊維の走査型電子顕微鏡写真(500倍)から写し取った図を図1、上記実施例1で得られた繊維を王研式ビーターで30分間叩解した後の繊維の走査型電子顕微鏡写真(500倍)から写し取った図を図2に示す。
【0015】
【表1】

Figure 0003578227
【0016】
実施例3〜4,比較例3
実施例1と同一条件で製造されたビスコースを実施例1の第4浴の硫酸濃度を250g/リットルに保持して浴温度を変更した。得られた糸の特性を表2に示す。
【0017】
【表2】
Figure 0003578227
【0018】
【発明の効果】
本発明により製造される繊維はフィブリル化潜在能力の高い特性を備えている。本発明によって得られたポリノジック繊維を用いると合理化された手段でもって抄紙分野、衣料分野等に適合する。
【図面の簡単な説明】
【図1】本発明繊維の走査型電子顕微鏡写真(500倍)から写し取った図である。
【図2】本発明繊維を王研式ビーターで30分間叩解した後の繊維の走査型電子顕微鏡写真(500倍)から写し取った図である。
【符号の説明】
1:ファイバー, 2:フィブリル, 3:ミクロフィブリル[0001]
[Industrial applications]
The present invention provides a polynosic fiber which is easily fibrillated and a method for producing the same.
[0002]
[Prior art]
In the cellulose fiber, molecules aggregate, microfibrils, and microfibrils aggregate to form fibrils.
[0003]
However, since cellulose has a large number of strong hydrogen bonds between molecules, it has been said that it is difficult to make fibrils into smaller units by an ordinary method. Conventionally, as a method for making cellulose fibers finer or fibrillated, mechanical treatment such as refiner and ball mill, physical treatment such as explosion, and chemical treatment such as microcrystallization treatment have been performed. In particular, when the viscose fiber is limited, in the case of JP-A-6-128874, a woven or knitted fabric composed of polynosic fiber having a high degree of polymerization having an average degree of polymerization of 600 or more is subjected to a normal pressure washer, a continuous relaxation machine, and a liquid. There is a production method in which a wet dyeing process is performed in a flow dyeing machine or a wince dyeing machine, or fibrillation is performed by a method of rubbing by a stone wash method. In the case of JP-A-6-108306, a high-strength, low-elongation polynosic fiber having a tensile strength of 4 to 6 g / d and a tensile elongation of 8% or less in a standard state is fibrillated by an external force in a wet state. There is a way.
[0004]
However, the method described in JP-A-6-128874 is composed of polynosic fibers having a high degree of polymerization of an average degree of polymerization of 600 or more. Japanese Patent Application Laid-Open No. 6-108306 discloses a high-strength, low-elongation polynosic fiber having a tensile strength of 4 to 6 g / d and a tensile elongation of 8% or less under standard conditions. The fibrillation potential of the fiber obtained by these high polymerization degree, high strength (necessarily low elongation) polynosic fiber is low, and it can be obtained by subsequent wet rubbing, friction, or beating. In order to beat to a predetermined state, for example, a process of greatly increasing the processing time is required. Long-term treatment in a wet state has disadvantages such as remarkably impairing the quality of the obtained product.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems. That is, the present invention provides a polynosic fiber having extremely high fibrillation potential and a method for producing the same.
[0006]
[Means for Solving the Problems]
Means for solving the above-mentioned problems, that is, the present invention provides a process for producing a polynosic fiber by a low-acid low-temperature spinning method of viscose having a high degree of polymerization to obtain a yarn that has not been completely regenerated and has a residual γ value of 1 to 20. And immediately complete the regeneration through an acid bath having a sulfuric acid concentration of 30 to 300 g / liter and a temperature of 70 ° C. or higher, and a freeness of 600 cc measured by a Canadian standard type with a beating time of 30 minutes. A polynosic fiber obtained by the method according to claim 1 which is as follows.
[0007]
The first step in the present invention is a viscose coagulation step in the first bath, but may be a low acid concentration, low temperature bath generally used. Since the optimum conditions for the first bath are related to the viscose conditions and the spinning conditions such as spinning speed, bath temperature, bath length, etc., it is not possible to control only these conditions alone, but as a general range, the sulfuric acid concentration is 15 to 30 g. The concentration is 0.1 to 3 g / liter zinc sulfate / 100 g / liter sodium sulfate concentration and 28 ° C. or lower. The second step is a regenerating step of the yarn in the second bath which is generally performed, but may be a low acid concentration and low temperature bath which is generally performed. Since the optimum conditions of the second bath are related to the spinning conditions as in the first bath described above, it is not possible to regulate only this, but the sulfuric acid concentration is 5 to 15 g / l, the zinc sulfate concentration is 3 g / l or less, and the sodium sulfate concentration is The temperature is not more than 50 g / liter and the temperature is not more than 28 ° C. The third step is a yarn drawing step, in which the yarn is drawn to a draw ratio at which desired yarn physical properties are obtained. The fourth step is a step of decomposing and regenerating the yarn fixed in the third step, but may be performed at a generally high temperature and a low acid concentration. Since the optimum conditions of the third bath are related to the spinning conditions as in the case of the above-mentioned first bath, it is not possible to regulate only this, but the sulfuric acid concentration is 5 g / l or less and the temperature is 95 ° C. or more. The residual γ value of the yarn that has passed through the fourth step usually falls between 1 and 20. The fifth step is particularly important in the present invention, and the intended effects of the present invention can be obtained only when the conditions specified in the present invention are satisfied.
[0008]
The fifth step of the present invention is a step of treating the yarn having a residual γ value of 1 to 20 that has passed through the fourth step with a sulfuric acid concentration of 30 to 300 g / liter at a temperature of 70 ° C. or more and a bath residence time of 1 to 300 seconds. A more preferred concentration of sulfuric acid is in the range of 50-250 g / l. Here, at a sulfuric acid concentration of 30 g / liter or less, a desired polynosic fiber which is easily fibrillated cannot be obtained. Conversely, if the concentration of sulfuric acid is 300 g / liter or more, the strength and elongation of the fiber decrease, which is not practical. The bath temperature is preferably 70 ° C. or higher. If the temperature is lower than 70 ° C., carbon disulfide contained in the yarn hardly volatilizes, and the strength and elongation of the fiber decrease, which is not practical. Since the bath residence time is related to the sulfuric acid concentration condition, it cannot be regulated alone, but the optimal range is 1 to 300 seconds as a general range. The residual γ value of the yarn that has passed through the fifth step is 0 to 1. Thereafter, if necessary, it may be introduced into a final heat bath to completely decompose and regenerate.
[0009]
The present invention is achieved by treating an undecomposed and swollen yarn having a residual γ value of 1 to 20 at a high acid concentration and a high temperature. This is presumably because, within the scope of the present invention, the hydrogen bond of the cellulose molecule is partially broken, and the bonding force of fibrils or microfibrils in the direction perpendicular to the fiber axis is weakened. As a result, it is considered that the fiber has a high fibrillation potential and is easily microfibrillated by a subsequent mechanical or physical external force in a wet state.
[0010]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
[0011]
In the examples, methods for measuring the γ value used in the evaluation and the freeness of the Canadian standard form are described below.
[0012]
An unregenerated cut yarn equivalent to 0.25 to 0.35 g of γ-cellulose is collected in a saturated solution of ammonia and an alkaline ammonium salt cooled to 0 to 4 ° C., the decomposition is stopped, and the mixture is left for 5 minutes. Replace any remaining xanthate groups with ammonium cations. Then, the mixture is thoroughly washed several times with a mixture of water and alcohol 4: 6 cooled to 0 to 4 ° C. while exchanging the solution several times to remove free ammonium ions. After completion of the purification, it is decomposed with 0.5% hydrochloric acid preliminarily heated to 50 ° C. to produce NH 4 C. This decomposed liquid is filtered and washed, and the yarn is dried to obtain a fibrous content (Sg). The filtrate is put into a flask, made alkaline with 20% NaOH, connected to a condenser and distilled to distill and distill the ammonia into 0.1N H2SO4 (Acc). After confirming that the ammonia is completely distilled, , Back titration with NaOH.
(Bcc) From the above measurement, the amount of xanthate groups remaining in the yarn is shown as follows.
Residual γ value (%) = (AB) /S×1.62
[0013]
Freeness of canadenian standard form Measured according to JIS P8121.
300 g of the fiber (in terms of absolute dry weight) was disintegrated in 10 liters of water, and beaten with an Oken beater for 30 minutes. The beaten fiber was subjected to tapping paper making at a target weight of 80 g / cm 2 , and after dehydration, the wet paper was dried at 120 ° C. and measured. The smaller the value of the freeness, the greater the fibrillation and the greater the entanglement of the fibers.
[0014]
Examples 1-2, Comparative Examples 1-2
Viscose having a cellulose content of 4.7%, an alkali concentration of 2.5%, a γ value of 75, a falling ball viscosity of 230 seconds and an average degree of polymerization of 550 was adjusted by a conventional method. This was spun from a nozzle having a hole diameter of 0.06 mm and a number of holes of 27,000 in a bath containing 18.0 g / l of sulfuric acid, 0.5 g / l of zinc sulfate and 20 g / l of sodium sulfate at a temperature of 28 ° C to solidify viscose. Was. Next, the yarn was regenerated in two baths containing 27 g / liter of sulfuric acid and 23 g / liter of sodium sulfate at a temperature of 27 ° C., and the yarn was stretched by 55%. Next, it was regenerated and decomposed in three baths at a bath temperature of 97 ° C. and sulfuric acid of 1.0 g / liter. The resulting yarn had a residual γ value of 10. Next, the yarn was treated in a fourth bath having a temperature of 90 ° C. and a bath length of 2 m (bath residence time of 5 seconds) at 250 g / liter of sulfuric acid (Example 1) and 50 g / liter (Example 2). The residual γ value of the obtained yarn was 1. After the yarn was taken out into the air, it was completely decomposed in a heat bath in the final step. Next, a scouring treatment and a drying treatment were performed by a conventional method. As a comparative example, a case where only the sulfuric acid concentration of the fourth bath was changed will be described. Table 1 shows the properties of the obtained yarn. FIG. 1 is a photograph taken from a scanning electron micrograph (× 500) of the fiber obtained in Example 1, and the fiber obtained after beating the fiber obtained in Example 1 with an Oken beater for 30 minutes. 2 is a photograph taken from a scanning electron micrograph (× 500) of FIG.
[0015]
[Table 1]
Figure 0003578227
[0016]
Examples 3 to 4, Comparative Example 3
The temperature of the viscose produced under the same conditions as in Example 1 was changed while maintaining the sulfuric acid concentration in the fourth bath of Example 1 at 250 g / liter. Table 2 shows the properties of the obtained yarn.
[0017]
[Table 2]
Figure 0003578227
[0018]
【The invention's effect】
The fibers produced according to the present invention have properties of high fibrillation potential. When the polynosic fiber obtained by the present invention is used, it is adapted to the papermaking field, the garment field, and the like by rationalized means.
[Brief description of the drawings]
FIG. 1 is a photograph taken from a scanning electron micrograph (× 500) of a fiber of the present invention.
FIG. 2 is a photograph taken from a scanning electron micrograph (× 500) of the fiber of the present invention after beating it with an Oken beater for 30 minutes.
[Explanation of symbols]
1: fiber, 2: fibril, 3: microfibril

Claims (2)

高重合度ビスコースの低酸低温紡糸法によるポリノジック繊維の製造工程において、再生未完結であって残存γ価1〜20の糸条を得て、直ちに硫酸濃度30〜300g/リットル、温度70℃以上の酸浴を通して再生を完結させることを特徴とするポリノジック繊維の製造方法。In the production process of polynosic fiber by low acid low temperature spinning method of high polymerization degree viscose, a yarn which is not completely regenerated and has a residual γ value of 1 to 20 is obtained, and a sulfuric acid concentration of 30 to 300 g / liter and a temperature of 70 ° C are immediately obtained. A method for producing a polynosic fiber, wherein regeneration is completed through the above acid bath. カナディアン標準形で測定した叩解時間30分の濾水度が600cc以下である請求項1に記載の方法で得られるポリノジック繊維。The polynosic fiber obtained by the method according to claim 1, wherein the freeness measured in Canadian standard form for 30 minutes is 600 cc or less.
JP25049794A 1994-10-17 1994-10-17 Easy fibrillated polynosic fiber and method for producing the same Expired - Fee Related JP3578227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25049794A JP3578227B2 (en) 1994-10-17 1994-10-17 Easy fibrillated polynosic fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25049794A JP3578227B2 (en) 1994-10-17 1994-10-17 Easy fibrillated polynosic fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08113820A JPH08113820A (en) 1996-05-07
JP3578227B2 true JP3578227B2 (en) 2004-10-20

Family

ID=17208761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25049794A Expired - Fee Related JP3578227B2 (en) 1994-10-17 1994-10-17 Easy fibrillated polynosic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3578227B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021144854A1 (en) * 2020-01-14 2021-07-22 旭化成株式会社 Fibrillated regenerated cellulose fiber, and fabric using same

Also Published As

Publication number Publication date
JPH08113820A (en) 1996-05-07

Similar Documents

Publication Publication Date Title
US1989099A (en) Process of improving artificial threads
US20220112628A1 (en) A process and a spinning line unit for wet spinning of cellulose fibers from an alkaline spin bath
JPH10504858A (en) Lyocell fiber and method for producing the same
WO1998022642A1 (en) Regenerated cellulosic fibers and process for producing the same
CN109402774B (en) Anti-fibrillation cellulose fiber and preparation method thereof
EP3564417A1 (en) Lyocell fiber, nonwoven fabric aggregate comprising same, and mask pack sheet comprising same
US5358679A (en) Manufacture of regenerated cellulosic fiber by zinc free viscose process
US1829906A (en) Treatment of fibrous material
US3084021A (en) Process for producing regenerated cellulose filaments
JP3578227B2 (en) Easy fibrillated polynosic fiber and method for producing the same
US2997365A (en) Production of regenerated cellulose filaments
US3434913A (en) Viscose rayon fiber and method of making same
JPH0931744A (en) Man-made cellulosic fiber
US3494996A (en) Method for producing high tenacity rayon
US2515889A (en) Process for producing artificial filaments
US2792279A (en) Viscose composition and method of spinning
JPH11124721A (en) Easily degradable starch-containing viscose rayon fiber and its production
JPH10158924A (en) Modified cross-section regenerated cellulose yarn and its production
US2001621A (en) Treatment of artificial fibrous material
Veit Cellulosic man-made fibers
JPH0711575A (en) Cellulosic yarn-containing fiber product and its production
US2339316A (en) Wet spinning of cellulose acetate
US2906634A (en) Method of producing viscose rayon
KR100477469B1 (en) Rayon fabrics and method of production thereof
JPH09228140A (en) Cellulose fiber

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees