JPH09316608A - Rotary regeneration type heat exchanger - Google Patents

Rotary regeneration type heat exchanger

Info

Publication number
JPH09316608A
JPH09316608A JP15186696A JP15186696A JPH09316608A JP H09316608 A JPH09316608 A JP H09316608A JP 15186696 A JP15186696 A JP 15186696A JP 15186696 A JP15186696 A JP 15186696A JP H09316608 A JPH09316608 A JP H09316608A
Authority
JP
Japan
Prior art keywords
heat transfer
low
transfer element
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15186696A
Other languages
Japanese (ja)
Inventor
Tadashi Noguchi
正 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB KK
Original Assignee
ABB KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB KK filed Critical ABB KK
Priority to JP15186696A priority Critical patent/JPH09316608A/en
Publication of JPH09316608A publication Critical patent/JPH09316608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide new heat transfer elements which are capable of sufficiently withstanding the corrosion by moisture condensation, are inexpensive and are free from the worry about crack. SOLUTION: This rotary regeneration type heat exchanger preheats air A1 for combustion by using the heat transfer elements 2c loaded in a rotor 2b as heat accumulation bodies and bringing a high-temp. combustion gas G1 and the low-temp. air A1 for combustion into alternate contact with each other to transfer the heat of the combustion gas G1 to the air A1 for combustion. The heat transfer elements 2c consist of a 7% Cr steel of low C and low Si.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ロータに装填した
伝熱エレメントを蓄熱体として、高温の燃焼ガスと低温
の燃焼用空気を交互に接触させることにより、燃焼ガス
の熱を燃焼用空気に伝達させて、該燃焼用空気を予熱す
る回転再生式熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a heat transfer element loaded in a rotor as a heat storage body to alternately contact a high temperature combustion gas and a low temperature combustion air to heat the combustion gas into the combustion air. The present invention relates to a rotary regeneration heat exchanger for transmitting and preheating the combustion air.

【0002】[0002]

【従来の技術】一般に、火力発電所において使用される
回転再生式熱交換器は、石油系燃料、石炭系燃料あるい
はLNG(液化天然ガス)燃料を用いるボイラに予熱し
た燃焼用空気を供給するために、該ボイラからの高温の
燃焼ガスの熱を一旦伝熱エレメントに蓄熱し、ローター
の回転に伴って燃焼用空気に伝達させることにより、該
燃焼用空気を予熱する。
2. Description of the Related Art Generally, a rotary regenerative heat exchanger used in a thermal power plant supplies preheated combustion air to a boiler using petroleum-based fuel, coal-based fuel or LNG (liquefied natural gas) fuel. First, the heat of the high-temperature combustion gas from the boiler is temporarily stored in the heat transfer element, and is transferred to the combustion air as the rotor rotates, so that the combustion air is preheated.

【0003】従来の回転再生式熱交換器において、硫黄
分を含む石油あるいは石炭系燃料のボイラの場合には、
特に低温側の伝熱エレメントに硫酸凝縮が生じて、該伝
熱エレメントが腐食を受ける。一方、硫黄分を含まない
LNG燃料系のボイラでは、燃焼ガス中の水分の凝縮に
より、該伝熱エレメントがいわゆる水腐食を受ける。腐
食を受けた伝熱エレメントは、伝熱効率が低下するだけ
でなく、寿命が短くなる等の問題点を有する。
In the conventional rotary regenerative heat exchanger, in the case of a boiler of petroleum or coal fuel containing sulfur,
In particular, sulfuric acid condensation occurs in the heat transfer element on the low temperature side, and the heat transfer element is corroded. On the other hand, in a LNG fuel system boiler that does not contain sulfur, the heat transfer element undergoes so-called water corrosion due to the condensation of water in the combustion gas. A heat transfer element that has been corroded has problems such as a decrease in heat transfer efficiency and a shortened life.

【0004】上記硫酸凝縮による腐食を受ける伝熱エレ
メントは、微量のCuやCrを添加した低合金耐食鋼
(CRLS:Corrosion Resistant
Low alloy Steel)の鋼板を使用して
製造することにより、上記問題点が解決される。
The heat transfer element which is corroded by the sulfuric acid condensation is a low alloy corrosion resistant steel (CRLS: Corrosion Resistant) to which a trace amount of Cu or Cr is added.
The above problems are solved by manufacturing using a low alloy steel plate.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、LNG
燃料のボイラにおける回転再生式熱交換器の伝熱エレメ
ントは、上記低合金耐食鋼の鋼板では十分に解決され
ず、また、既存のエナメル被覆鋼やステンレス鋼では端
面割れの心配やコストが高い等の理由により、水分凝縮
による腐食に十分に耐えられ、しかも、安価で割れの心
配がない新たな伝熱エレメントの開発が要請されてい
た。
SUMMARY OF THE INVENTION However, LNG
The heat transfer element of the rotary regenerative heat exchanger in the fuel boiler is not sufficiently solved by the steel plate of the low alloy corrosion-resistant steel, and the existing enamel-coated steel and stainless steel are worried about end face cracking and the cost is high. For this reason, there has been a demand for the development of a new heat transfer element that is sufficiently resistant to corrosion due to water condensation and is inexpensive and free from the risk of cracking.

【0006】[0006]

【課題を解決するための手段】本発明は上記要請に応え
るためになされたものである。本発明の回転再生式熱交
換器は、ロータに装填した伝熱エレメントを蓄熱体とし
て、高温の燃焼ガスと低温の燃焼用空気を交互に接触さ
せることにより、燃焼ガスの熱を燃焼用空気に伝達させ
て、該燃焼用空気を予熱する回転再生式熱交換器におい
て、上記伝熱エレメントが低C‐低Si‐7%Cr鋼か
ら成ることを特徴とする。
The present invention has been made in order to meet the above demand. The rotary regenerative heat exchanger of the present invention uses the heat transfer element loaded in the rotor as a heat storage body to alternately contact the high-temperature combustion gas and the low-temperature combustion air, thereby converting the heat of the combustion gas into the combustion air. A rotary regenerative heat exchanger that transfers and preheats the combustion air, characterized in that the heat transfer element is made of low C-low Si-7% Cr steel.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施例について図
面を参照しながら説明する。図1において、1は火力発
電プラントのLNG焚きボイラであって、その燃焼ガス
G1は回転再生式熱交換器2に送られ、温度が下げられ
る。低温となった燃焼ガスG2は、回転再生式熱交換器
2から煙突3に送られ、大気中に放出される。一方、燃
焼用空気A1は上記回転再生式熱交換器2により予熱さ
れ、予熱空気A2として上記LNG焚きボイラ1に供給
される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 1 is an LNG-fired boiler of a thermal power plant, the combustion gas G1 of which is sent to a rotary regeneration heat exchanger 2 to lower the temperature. The combustion gas G2 having a low temperature is sent from the rotary regeneration heat exchanger 2 to the chimney 3 and released into the atmosphere. On the other hand, the combustion air A1 is preheated by the rotary regeneration heat exchanger 2 and supplied to the LNG-fired boiler 1 as preheated air A2.

【0008】上記回転再生式熱交換器2は、図2に模式
的に示すように、回転軸2aを中心に所定速度で回転す
るロータ2bと、該ロータ2b中に装填された伝熱エレ
メント2c等により構成されている。2dはロータハウ
ジング、2eはセクタープレートである。なお、本実施
例において、ロータ2bの下方部分が低温側であり、上
方部分が高温側である。
As shown schematically in FIG. 2, the rotary regenerative heat exchanger 2 has a rotor 2b which rotates at a predetermined speed around a rotary shaft 2a, and a heat transfer element 2c loaded in the rotor 2b. Etc. 2d is a rotor housing and 2e is a sector plate. In this embodiment, the lower part of the rotor 2b is on the low temperature side and the upper part is on the high temperature side.

【0009】上記構成の回転再生式熱交換器2は、ロー
タ2bに装填した伝熱エレメント2cを蓄熱体として、
高温の燃焼ガスG1と低温の燃焼用空気A1を交互に接
触させることにより、燃焼ガスG1の熱を燃焼用空気A
1に伝達させて、予熱空気A2として上記LNG焚きボ
イラ1に供給する。
The rotary regenerative heat exchanger 2 having the above-described structure uses the heat transfer element 2c loaded in the rotor 2b as a heat storage body.
By alternately contacting the high temperature combustion gas G1 and the low temperature combustion air A1, the heat of the combustion gas G1 is transferred to the combustion air A1.
1 to supply it to the LNG-fired boiler 1 as preheated air A2.

【0010】図3は上記伝熱エレメント2cであって、
平面部2c′とダブルアンジュレート部2c″から構成
されている。該伝熱エレメント2cの形状は、これに限
定するものではない。
FIG. 3 shows the heat transfer element 2c,
It is composed of a flat surface portion 2c 'and a double undulate portion 2c ". The shape of the heat transfer element 2c is not limited to this.

【0011】水分凝縮による腐食に十分に耐えられる伝
熱エレメント2cの材料は、以下の予備実験、テスト用
伝熱エレメントによる実機暴露試験を経て、開発され
た。
The material of the heat transfer element 2c which can sufficiently withstand the corrosion due to the water condensation was developed through the following preliminary experiments and the actual exposure test with the test heat transfer element.

【0012】予備実験 燃焼排ガスに近い組成のガスを通気させた乾湿繰り返し
予備腐食実験をラボラトリーにて続け、その結果を解析
した結果、腐食量が少ない等の観点から、次の材料に着
目した。 (1)低C‐P‐Cu‐Ni系 (2)低C‐5%Cr (3)低C‐7%Cr
Preliminary Experiment A dry and wet repeated precorrosion experiment in which a gas having a composition close to that of the combustion exhaust gas was aerated was continued in the laboratory, and the results were analyzed. (1) Low CP-Cu-Ni system (2) Low C-5% Cr (3) Low C-7% Cr

【0013】しかし、上記予備実験における低C‐P‐
Cu‐Ni系は、ラボテストでは良好であったが、テス
トピースによる実機暴露試験では、従来品との有意差が
認められず、次のテスト用伝熱エレメントによる実機暴
露試験は実施しなかった。
However, in the above preliminary experiment, the low CP-
The Cu-Ni system was good in the lab test, but in the actual machine exposure test with the test piece, no significant difference from the conventional product was observed, and the next actual machine exposure test with the heat transfer element for test was not carried out.

【0014】テスト用伝熱エレメントによる実機暴露試
験 波形のクリンピング加工を施したテスト用伝熱エレメン
トを製作して、実機に装備し、耐食性能を調べてみた。
その実機暴露試験の条件は次のごとくであった。 場 所: 関東地区火力発電所 プラント名: 発電プラントボイラ空気予熱器 期 間: 1994年5月〜1995年5月(約1年
間) 空気予熱器型式: 34‐HX‐2200 伝熱エレメント型式: FNC テスト用伝熱エレメント: 幅200×高さ300×厚
み1.0〜1.1mm (1)低C‐5%Cr (2)低C‐7%Cr (3)対照(従来品) CRLS(低合金耐食鋼) テスト用伝熱エレメントの初期重量:480〜530g
/枚(切断位置、鋼種比重による差) n: 3
Exposure test on actual machine by heat transfer element for test A heat transfer element for test, which was crimped in a waveform, was manufactured and mounted on an actual machine to examine the corrosion resistance performance.
The conditions of the actual machine exposure test were as follows. Venue: Kanto area thermal power plant Plant name: Power generation plant Boiler air preheater Period: May 1994-May 1995 (about 1 year) Air preheater model: 34-HX-2200 Heat transfer element model: FNC Test heat transfer element: Width 200 x Height 300 x Thickness 1.0 to 1.1 mm (1) Low C-5% Cr (2) Low C-7% Cr (3) Control (conventional product) CRLS (Low) Alloy corrosion resistant steel) Initial weight of heat transfer element for testing: 480-530g
/ Sheet (difference due to cutting position and specific gravity of steel type) n: 3

【0015】試験結果 伝熱エレメントの腐食は、初期段階では、金属の酸化に
伴う重量増加として現れるが、数ヶ月後には、ロータの
回転運動に伴う振動によって腐食部分が破損し、その結
果、重量の減少として現れる。試験結果として、腐食減
量を図4に示す。なお、高さ300mmの内、いわゆる
「水腐食」による腐食域は低温端より約100mmまで
の範囲のみであるので、シート毎の初期重量との差を腐
食量とした。
Test Results Corrosion of the heat transfer element appears as an increase in weight due to metal oxidation in the initial stage, but after a few months, the corroded portion is damaged due to vibration associated with the rotational movement of the rotor, resulting in weight loss. Appears as a decrease in As a test result, the corrosion weight loss is shown in FIG. Since the corrosion area due to so-called “water corrosion” is only within a range from the low temperature end to about 100 mm within the height of 300 mm, the difference from the initial weight of each sheet is defined as the amount of corrosion.

【0016】図4から明らかなように、7%Cr系の腐
食減量が最も少なかった。図5は付着錆量の試験結果を
示すもので、該付着錆のうち剥離性浮錆は5%および7
%Cr系のいずれも少ないことが分かった。
As is clear from FIG. 4, the corrosion weight loss of the 7% Cr system was the smallest. FIG. 5 shows the test results of the amount of adhered rust. Of the adhered rust, peelable floating rust was 5% and 7%.
It was found that each of the% Cr-based materials was small.

【0017】以上の比較耐食試験の結果、炭素(C)が
0.01重量%、珪素(Si)が0.05重量%、マンガ
ン(Mn)が0.3重量%、リン(P)が0.005重量
%、硫黄(S)が0.003重量%、およびクロム(C
r)が7.0重量%の鋼板が加工性および耐食性に最も
優れていることが分かった。
As a result of the above comparative corrosion resistance test, carbon (C) is 0.01% by weight, silicon (Si) is 0.05% by weight, manganese (Mn) is 0.3% by weight, and phosphorus (P) is 0%. 0.005% by weight, sulfur (S) 0.003% by weight, and chromium (C
It was found that the steel sheet having r) of 7.0% by weight had the best workability and corrosion resistance.

【0018】特に、上記クロムCrの添加量が7重量%
であることにより、従来の鋼板製の伝熱エレメントに比
べて約2倍の耐食性を有し、剥離性浮錆が少ない等の有
効性があることが分かった。
In particular, the amount of chromium Cr added is 7% by weight.
From the above, it was found that the heat transfer element has a corrosion resistance about twice as high as that of the conventional heat transfer element made of steel plate, and has an effect such as less peelable rust.

【0019】[0019]

【発明の効果】回転再生式熱交換器の伝熱エレメントの
素材を低C‐低Si‐7%Cr鋼とすることにより、従
来の鋼板製の伝熱エレメントに比べて約2倍の耐食性を
有し、剥離性浮錆が少ない等の効果が顕著に認められ
た。
EFFECTS OF THE INVENTION By using low C-low Si-7% Cr steel as the material for the heat transfer element of the rotary regenerative heat exchanger, the corrosion resistance is about twice as high as that of the conventional steel plate heat transfer element. In addition, the effect such as less peelable floating rust was recognized.

【図面の簡単な説明】[Brief description of drawings]

【図1】火力発電所プラントのフロー図である。FIG. 1 is a flowchart of a thermal power plant.

【図2】回転再生式熱交換器の模式図である。FIG. 2 is a schematic diagram of a rotary regeneration heat exchanger.

【図3】伝熱エレメントの斜視図である。FIG. 3 is a perspective view of a heat transfer element.

【図4】実機暴露試験における腐食減量の試験結果を示
すグラフである。
FIG. 4 is a graph showing test results of corrosion weight loss in an actual machine exposure test.

【図5】実機暴露試験における付着物重量の試験結果を
示すグラフである。
FIG. 5 is a graph showing test results of weight of deposits in an actual machine exposure test.

【符号の説明】[Explanation of symbols]

1 LNG焚きボイラ 2 回転再生式熱交換器 2a 回転軸 2b ロータ 2c 伝熱エレメント 2c′平面部 2c″ダブルアンジュレート部 2d ロータハウジング 2e セクタープレート 3 煙突 A1 燃焼用空気 A2 予熱空気 G1、G2 燃焼ガス DESCRIPTION OF SYMBOLS 1 LNG-fired boiler 2 Rotational regeneration type heat exchanger 2a Rotating shaft 2b Rotor 2c Heat transfer element 2c 'Plane part 2c "Double undulate part 2d Rotor housing 2e Sector plate 3 Chimney A1 Combustion air A2 Preheating air G1, G2 Combustion gas

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ロータに装填した伝熱エレメントを蓄熱体
として、高温の燃焼ガスと低温の燃焼用空気とを交互に
接触させることにより、燃焼ガスの熱を燃焼用空気に伝
達させて、該燃焼用空気を予熱する回転再生式熱交換器
において、上記伝熱エレメントが低C‐低Si‐7%C
r鋼から成ることを特徴とする回転再生式熱交換器。
1. A heat transfer element loaded in a rotor is used as a heat storage body to alternately contact a high temperature combustion gas and a low temperature combustion air to transfer the heat of the combustion gas to the combustion air. In a regenerative heat exchanger for preheating combustion air, the heat transfer element has a low C-low Si-7% C
A rotary regenerative heat exchanger characterized by comprising r steel.
JP15186696A 1996-05-24 1996-05-24 Rotary regeneration type heat exchanger Pending JPH09316608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15186696A JPH09316608A (en) 1996-05-24 1996-05-24 Rotary regeneration type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15186696A JPH09316608A (en) 1996-05-24 1996-05-24 Rotary regeneration type heat exchanger

Publications (1)

Publication Number Publication Date
JPH09316608A true JPH09316608A (en) 1997-12-09

Family

ID=15527948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15186696A Pending JPH09316608A (en) 1996-05-24 1996-05-24 Rotary regeneration type heat exchanger

Country Status (1)

Country Link
JP (1) JPH09316608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275485A (en) * 2005-03-30 2006-10-12 Daikin Ind Ltd Humidity control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275485A (en) * 2005-03-30 2006-10-12 Daikin Ind Ltd Humidity control device
JP4706303B2 (en) * 2005-03-30 2011-06-22 ダイキン工業株式会社 Humidity control device

Similar Documents

Publication Publication Date Title
US4396058A (en) Heat transfer element assembly
EP0083665B1 (en) Heat pipe heat exchanger
CN101358770B (en) Method for utilizing flue gas low-temperature heat quantity for industrial furnace
US20060090468A1 (en) Efficiency improvement for a utility steam generator with a regenerative air preheater
JPH09316608A (en) Rotary regeneration type heat exchanger
CN208620384U (en) A kind of composite board type flue gas heat-exchange unit
CN104136659B (en) The surface treatment method of steel coating and heat-transfer pipe
CN210107340U (en) Anticorrosive type exhaust-heat boiler system
JP3897132B2 (en) Rotating regenerative heat exchanger
JP4872204B2 (en) Reformer for hydrogen production
JPH0311229Y2 (en)
Natesan et al. High-temperature corrosion in advanced combustion systems
Liang et al. Characterization of the ash deposits along deep-cooling of the exhaust gas in coal-fired power plants
JP2004028371A (en) Rotary regenerative heat exchanger
JPH0245644Y2 (en)
JPH09210260A (en) Anticorrosive steel pipe
JPS59229200A (en) Heat exchanger
CN1024691C (en) Low-alloy steel to resist dew point corrosion of sulphuric acid
JPH0599586A (en) Combustion gas heat exchanger unit and its preparation
KR890005130B1 (en) Inorganic coating compositions with a corrosion resistant to a steel
JPH0129406Y2 (en)
JPH0443755Y2 (en)
SU777350A1 (en) Boiler unit
Wingert et al. Design of a large coal-fired steam generator for 200° F exit-gas temperature and operating experience with pilot plant
KR900005280B1 (en) Anticorrosion hot water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040205

A131 Notification of reasons for refusal

Effective date: 20040224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817