JP3897132B2 - Rotating regenerative heat exchanger - Google Patents

Rotating regenerative heat exchanger Download PDF

Info

Publication number
JP3897132B2
JP3897132B2 JP01779597A JP1779597A JP3897132B2 JP 3897132 B2 JP3897132 B2 JP 3897132B2 JP 01779597 A JP01779597 A JP 01779597A JP 1779597 A JP1779597 A JP 1779597A JP 3897132 B2 JP3897132 B2 JP 3897132B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer element
heat
low
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01779597A
Other languages
Japanese (ja)
Other versions
JPH10206050A (en
Inventor
正 野口
Original Assignee
アルストム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルストム株式会社 filed Critical アルストム株式会社
Priority to JP01779597A priority Critical patent/JP3897132B2/en
Publication of JPH10206050A publication Critical patent/JPH10206050A/en
Application granted granted Critical
Publication of JP3897132B2 publication Critical patent/JP3897132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ロータに装填した伝熱エレメントを蓄熱体として、高温の燃焼ガスと低温の燃焼用空気を交互に接触させることにより、燃焼ガスの熱を燃焼用空気に伝達させて、該燃焼用空気を予熱する回転再生式熱交換装置に関する。
【0002】
【従来の技術】
一般に、火力発電所において使用される回転再生式熱交換装置は、石油系燃料、石炭系燃料あるいはLNG(液化天然ガス)燃料を用いるボイラに予熱した燃焼用空気を供給するために、該ボイラからの高温の燃焼ガスの熱を一旦伝熱エレメントに蓄熱し、ローターの回転に伴って燃焼用空気に伝達させることにより、該燃焼用空気を予熱する。
【0003】
従来の回転再生式熱交換装置において、硫黄分を含む石油あるいは石炭系燃料のボイラの場合には、特に低温部の伝熱エレメントに硫酸凝縮が生じて、該伝熱エレメントが腐食を受ける。一方、硫黄分を含まないLNG燃料系のボイラでは、燃焼ガス中の水分の凝縮により、伝熱エレメントがいわゆる水腐食を受ける。腐食を受けた伝熱エレメントは、伝熱効率が低下するだけでなく、寿命が短くなる等の問題点を有する。
【0004】
上記低温部の伝熱エレメントの腐食に対しては、低合金耐食鋼(CRLS:Corrosion Resistant Low alloy Steel)やエナメル被覆鋼が適用されて、ほぼ問題は解決されている。一方、高温部や中温部の伝熱エレメントには軟鋼(SPCC)が使用されている。これは、高温部や中温部は温度が高く、露点凝縮による腐食は発生しないからである。
【0005】
【発明が解決しようとする課題】
しかしながら、運転中には腐食が発生しない上記高温部や中温部でも、停止中に実施する水洗やその乾燥中に、或いは保管中の外気の進入による結露等に起因して腐食が発生し、さらに、腐食に伴う生成物である浮錆へと発展する。
【0006】
この浮錆は、伝熱エレメントの内部に発生し、停止中に進行するために、その発見は難しく、停止後の立ち上げ時に圧力損失が異常に大きくなってから初めて発見される。浮錆が発生すると、回転再生式熱交換装置の圧力損失は1.5倍程度になり、全負荷に対処できない場合もある。また、そのまま運用すると、圧力損失の増大による押込通風ファンの動力費の負担が相当大きくなる等の問題点がある。なお、本熱交換装置の停止中に発生する高温部や中温部の浮錆による圧力損失の増大の対象は、ボイラーの燃料系を問わない。
【0007】
本発明は、上記従来の課題を解決するためになされたもので、その目的とするところは、水に関連する湿食に強く、また、固着錆から浮錆への進行が非常に少なく、更に、価格がステンレス鋼よりも十分に安価であり、しかも、適度な強度を有し、加工性は軟鋼と変わらない材質を備えた伝熱エレメントを有する回転再生式熱交換装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の回転再生式熱交換装置は、ロータに装填した伝熱エレメントを蓄熱体として、高温の燃焼ガスと低温の燃焼用空気とを交互に接触させることにより、燃焼ガスの熱を燃焼用空気に伝達させて、該燃焼用空気を予熱すると共に、上記伝熱エレメントの水洗や定期検査等の運転停止を行う回転再生式熱交換装置において、上記ロータの高温部および/または中温部の伝熱エレメントが低C-5%Cr鋼から成ることを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の一実施例について図面を参照しながら説明する。図1において、1はボイラであって、その排ガスは必要に応じて脱硝装置2により脱硝処理され、高温側気体として回転再生式熱交換装置3に送られる。
【0010】
上記回転再生式熱交換装置3において、高温側気体である上記排ガスは、ロータ3a内に装填されている伝熱エレメントを加熱する。伝熱エレメントを加熱した排ガスは電気集塵機4に送られ、該排ガス中のダスト等が除去されて、煙突5から大気中に放出される。
【0011】
一方、6は押込送風機であって、低温側気体としての外気すなわち燃焼用空気を蒸気式空気予熱装置7に送る。該蒸気式空気予熱装置7において、上記燃焼用空気は60〜90℃に予熱された上で上記回転再生式熱交換装置3に送られる。
【0012】
該回転再生式熱交換装置3において、低温側気体である燃焼用空気は、上記排ガスにより加熱されて高温となった上記伝熱エレメントから熱を受けて温度が上昇し、上記ボイラ1に供給される。
【0013】
上記回転再生式熱交換装置3は、図2に模式的に示すように、回転軸3aを中心に所定速度で回転するロータ3bと、該ロータ3b中に装填された伝熱エレメントE等により構成されている。なお、ロータ3bの左方部分が高温部伝熱エレメントE1、中間部分が中温部伝熱エレメントE2、そして右方部分が低温部伝熱エレメントE3である。
【0014】
上記構成の回転再生式熱交換装置3は、ロータ3bに装填した伝熱エレメントEを蓄熱体として、高温のボイラ排ガス8と低温のボイラ燃焼用空気9を交互に接触させることにより、ボイラ排ガス8の熱をボイラ燃焼用空気9に伝達させて、予熱空気として上記ボイラ1に供給する。
【0015】
上記伝熱エレメントEの特に高温部伝熱エレメントE1および中温部伝熱エレメントE2は、低C‐5%Cr鋼から成り、その型式は、NF(ノッチド・フラット)、CU(コルゲート・アンジュレーテッド)、DU(ダブルアンジュレーテッド)およびFNC(フラット・ノッチド・クロスド)等、従来公知のエレメント型式のいずれでもよい。
【0016】
【実施例】
LNG燃料系ボイラ用回転再生式空気予熱装置の中温部伝熱エレメントへの適用試験
波型のエレメントクリッピング加工を施したテスト用伝熱エレメントを、実機大型の再生式空気予熱装置の中温部に、CRSL(低合金耐食鋼)、低C‐5%Cr鋼、および比較ベース材として、SPCC(軟鋼)の現用材の3鋼種を装着して、1年3ヶ月(1定期検査期間)の運用後の停止直後と停止1ヶ月保管後の2回調査した。なお、伝熱エレメントの型式はDU(ダブルアンジュレーテッド)、寸法は200W×1150H×1t、各n=6である。ここで、5%Cr鋼のDU型式へのフリンピングには全く問題はなかった。試験結果を表1、表2および表3に示す。
【0017】
【表1】

Figure 0003897132
【0018】
【表2】
Figure 0003897132
【0019】
【表3】
Figure 0003897132
【0020】
当該缶および多くの脱硝装置付きLNG燃料系ボイラ用回転再生式熱交換装置では、従来より中温部の伝熱エレメントに圧力損失増大の要因となる浮錆が、特に停止中に発生する事象が確認されており、当該試験結果でもSPCCとCRLSに再現された。すなわち、テスト伝熱エレメントの表裏で30g以上の浮錆+固着錆は、伝熱エレメント内流路を狭少させ、圧力損失を50%以上増加させる。
【0021】
本発明の回転再生式熱交換装置に備えられた伝熱エレメントは、結果からも明らかなように、発錆量は、現用材のSPCCおよびCRLSの1/10程度で、浮錆が少ないことからも、停止中の固着錆から浮錆への転化が少なく(腐食が少ない)、圧力損失増大の事象に対して非常に有効であることが解った。なお、錆のX線回折分析結果では、水酸化鉄とアンモニオジャロサイトが同定された。アンモニオジャロサイトは脱硝装置よりの残留アンモニアと燃焼ガス中の硫黄分と水分による酸性硫安化合物が伝熱エレメント上に析出して腐食させたものである。水酸化鉄は高温酸化ではできない化合物で、明らかに停止中に結露またはアンモニオジャロサイトが吸湿して湿食による腐食生成物と考察できる。これら腐食生成物は3鋼種で同じであった。
【0022】
重油燃料系ボイラ用回転再生式空気予熱装置の高温部伝熱エレメントへの適用試験
上記試験と同様に、波型のクリンピング加工を施したテスト伝熱エレメントを、実機大型の再生式空気予熱装置の高温部に、CRLS、低C‐5%Cr鋼およびSPCC(軟鋼現用材)からなる伝熱エレメントを装着し、1年6ヶ月(1定期検査期間)運用後の停止直後と停止1ヶ月保管後の2回調査した。伝熱エレメントの型式はFNC(フラット・ノッチド・クロスド)、寸法は650W×1050H×0.6t、各n=10。クリンピングに問題なし。なお、運用期間中に1回と、停止直後に1回の水洗を実施した。試験結果は、表4、表5および表6に示す。
【0023】
【表4】
Figure 0003897132
【0024】
【表5】
Figure 0003897132
【0025】
【表6】
Figure 0003897132
【0026】
高温部の伝熱エレメントの腐食は、基本的にはなく、微弱な高温酸化のみである。これは、当該部における腐食要因物質の析出(凝縮)やダスト付着が無いからである。従って、停止直後の若干の発錆は運用期間中に実施した水洗によるものと推察される。ところが、同じ水洗1回でも、停止期間(定期検査)中に実施して、その後1ヶ月保管しておくと、更に発錆が進行して、層状の浮錆に変化することがSPCCおよびCRLSで認められた。
【0027】
一方、低C‐5%Cr鋼には、層状の浮錆はほとんどなく、固着錆が主体で、発錆量も他鋼の1/10以下と非常に少ない。中温部の場合と同様に、この浮錆は再生式空気予熱装置の圧力損失の増加は数%程度と推定される。
【0028】
錆のX線回折分析結果では、α−Fe2O3とFe3O4が同定され、これらは高温酸化でも生成される酸化鉄であるが、α−FeO(OH)は明らかに水錆(湿食)であるので、浮錆の発生はこの水錆、すなわち停止中の水洗及び乾燥と保管中の結露による腐食の進行によるものと考えられる。
【0029】
【発明の効果】
回転再生式空気予熱装置の特に高温部および/または中温部の伝熱エレメント鋼材を低C‐5%Cr鋼とすることで、従来材のSPCC製伝熱エレメントに比較して、発錆量は1/10以下となり、また、剥離性浮錆も非常に少ないので、圧力損失増大のリスクを低減できる効果が顕著に認められた。価格面でも、ステンレス鋼より十分に安価であり、対価効果の面でもメリットがある。さらに、機材強度面でも、伝熱エレメントとしてSPCCやCRLSと遜色なく、エレメント形状へのクリンピングにも全く問題なく、従って、生産設備への負担増もない等の利点がある。
【図面の簡単な説明】
【図1】火力発電所プラントのフロー図である。
【図2】回転再生式熱交換装置の模式図である。
【符号の説明】
1 ボイラ
2 脱硝装置
3 回転再生式熱交換装置
3a 回転軸
3b ロータ
4 電気集塵機
5 煙突
6 押込送風機
7 蒸気式空気予熱装置
8 ボイラ排ガス
9 ボイラ燃焼用空気
E 伝熱エレメント
E1 高温部伝熱エレメント
E2 中温部伝熱エレメント
E3 低温部伝熱エレメント[0001]
BACKGROUND OF THE INVENTION
The present invention uses a heat transfer element loaded in a rotor as a heat accumulator to alternately contact a high-temperature combustion gas and a low-temperature combustion air, thereby transferring the heat of the combustion gas to the combustion air. The present invention relates to a rotary regenerative heat exchanger that preheats air.
[0002]
[Prior art]
In general, a rotary regenerative heat exchange device used in a thermal power plant uses a boiler that supplies preheated combustion air to a boiler that uses petroleum-based fuel, coal-based fuel, or LNG (liquefied natural gas) fuel. The heat of the combustion gas is temporarily stored in the heat transfer element, and is transferred to the combustion air as the rotor rotates, so that the combustion air is preheated.
[0003]
In a conventional rotary regenerative heat exchanger, in the case of a petroleum or coal-based fuel boiler containing sulfur, sulfuric acid condensation occurs particularly in the heat transfer element in the low temperature portion, and the heat transfer element is corroded. On the other hand, in an LNG fuel boiler that does not contain sulfur, the heat transfer element undergoes so-called water corrosion due to condensation of moisture in the combustion gas. A heat transfer element that has undergone corrosion has problems such as not only a decrease in heat transfer efficiency but also a shortened life.
[0004]
For corrosion of the heat transfer element in the low temperature part, low alloy corrosion resistant steel (CRLS) and enamel coated steel are applied, and the problem is almost solved. On the other hand, mild steel (SPCC) is used for the heat transfer elements in the high temperature part and the medium temperature part. This is because the high temperature part and the intermediate temperature part are high in temperature, and corrosion due to dew point condensation does not occur.
[0005]
[Problems to be solved by the invention]
However, even in the high temperature and medium temperature areas where corrosion does not occur during operation, corrosion occurs due to dew condensation caused by the ingress of outside air during storage, washing or drying performed during stoppage, and storage. It develops into floating rust which is a product accompanying corrosion.
[0006]
Since this rust is generated inside the heat transfer element and proceeds during the stop, it is difficult to find it, and it is detected only after the pressure loss becomes abnormally large at the start-up after the stop. When rusting occurs, the pressure loss of the rotary regenerative heat exchanger increases by about 1.5 times and may not be able to cope with the full load. Further, if it is operated as it is, there is a problem that the burden of the power cost of the forced draft fan due to an increase in pressure loss becomes considerably large. In addition, the fuel system of a boiler does not ask | require the object of the increase in the pressure loss by the high temperature part which generate | occur | produces during a stop of this heat exchange apparatus, or the rusting of an intermediate temperature part.
[0007]
The present invention has been made in order to solve the above-described conventional problems, and its object is to be resistant to water-related wet corrosion, and the progress from fixed rust to floating rust is very small. An object of the present invention is to provide a rotary regenerative heat exchange device having a heat transfer element that is sufficiently cheaper than stainless steel, has moderate strength, and has the same workability as mild steel. .
[0008]
[Means for Solving the Problems]
The rotary regenerative heat exchange device of the present invention uses the heat transfer element loaded in the rotor as a heat storage body, and alternately contacts the high-temperature combustion gas and the low-temperature combustion air to thereby heat the combustion gas to the combustion air. In the rotary regenerative heat exchanger that preheats the combustion air and stops operation such as water washing and periodic inspection of the heat transfer element, heat transfer in the high temperature part and / or medium temperature part of the rotor Element is made of low C-5% Cr steel.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 denotes a boiler, and the exhaust gas is denitrated by a denitration device 2 as necessary, and is sent to a rotary regeneration type heat exchange device 3 as a high-temperature side gas.
[0010]
In the rotary regenerative heat exchange device 3, the exhaust gas, which is a high temperature side gas, heats the heat transfer element loaded in the rotor 3a. The exhaust gas that has heated the heat transfer element is sent to the electric dust collector 4, dust and the like in the exhaust gas are removed, and the exhaust gas is discharged from the chimney 5 to the atmosphere.
[0011]
On the other hand, 6 is a forced air blower, which sends outside air as a low temperature side gas, that is, combustion air, to the steam type air preheating device 7. In the steam type air preheating device 7, the combustion air is preheated to 60 to 90 ° C. and then sent to the rotation regeneration type heat exchange device 3.
[0012]
In the rotary regenerative heat exchanger 3, the combustion air, which is a low-temperature side gas, is heated by the exhaust gas and receives a heat from the heat transfer element that has become high temperature, and is supplied to the boiler 1. The
[0013]
As shown schematically in FIG. 2, the rotary regenerative heat exchanger 3 includes a rotor 3b that rotates at a predetermined speed around a rotating shaft 3a, a heat transfer element E that is loaded in the rotor 3b, and the like. Has been. The left part of the rotor 3b is the high temperature part heat transfer element E1, the middle part is the medium temperature part heat transfer element E2, and the right part is the low temperature part heat transfer element E3.
[0014]
The rotary regenerative heat exchange device 3 having the above-described configuration uses the heat transfer element E loaded in the rotor 3b as a heat storage body, and alternately contacts the high-temperature boiler exhaust gas 8 and the low-temperature boiler combustion air 9 so that the boiler exhaust gas 8 Is transferred to the boiler combustion air 9 and supplied to the boiler 1 as preheated air.
[0015]
The heat transfer element E, especially the high temperature part heat transfer element E1 and the medium temperature part heat transfer element E2, are made of low C-5% Cr steel, and the types thereof are NF (notched flat), CU (corrugated undulated). ), DU (double undulated) and FNC (flat notched crossed), etc., any of the conventionally known element types may be used.
[0016]
【Example】
Application to the middle temperature part heat transfer element of the regenerative air preheater for LNG fuel boilers The test heat transfer element with the wave-shaped element clipping process applied to the middle temperature part of the actual large regenerative air preheater, After operation for 1 year and 3 months (one periodic inspection period) with three steel grades of CRSL (low alloy corrosion resistant steel), low C-5% Cr steel, and SPCC (soft steel) as the comparative base material Immediately after the stoppage and after the storage for 1 month, the survey was conducted twice. The type of the heat transfer element is DU (double undulated), the dimensions are 200 W × 1150H × 1 t, and each n = 6. Here, there was no problem with the 5% Cr steel to the DU type. The test results are shown in Tables 1, 2 and 3.
[0017]
[Table 1]
Figure 0003897132
[0018]
[Table 2]
Figure 0003897132
[0019]
[Table 3]
Figure 0003897132
[0020]
In the rotary regeneration heat exchanger for LNG fuel boilers with this can and many denitration devices, it has been confirmed that rusting, which is a cause of increased pressure loss, has occurred in the heat transfer element in the middle temperature section, especially during stoppage. The test results were also reproduced in SPCC and CRLS. That is, floating rust + fixed rust of 30 g or more on the front and back of the test heat transfer element narrows the flow path in the heat transfer element and increases the pressure loss by 50% or more.
[0021]
As is apparent from the results, the heat transfer element provided in the rotary regenerative heat exchange device of the present invention has a rust generation amount of about 1/10 of the SPCC and CRLS of the current material, and has less floating rust. However, it was found that there was little conversion from fixed rust during suspension to floating rust (corrosion was low), and it was very effective for the phenomenon of increased pressure loss. In addition, in the result of X-ray diffraction analysis of rust, iron hydroxide and ammoniojarosite were identified. Ammoniojarosite is a product of the residual ammonia from the denitration device, the sulfur content in the combustion gas, and the acidic ammonium sulfate compound due to moisture deposited on the heat transfer element and corroded. Iron hydroxide is a compound that cannot be oxidized at high temperature, and can be considered as a corrosion product due to wet corrosion due to moisture absorption by dew or ammonio jarosite during the suspension. These corrosion products were the same for the three steel types.
[0022]
Application test of rotating regenerative air preheater for heavy oil fuel boilers to high temperature section heat transfer element Similar to the above test, a test heat transfer element with wave-shaped crimping was used for a large-scale regenerative air preheater. A heat transfer element consisting of CRLS, low C-5% Cr steel and SPCC (soft steel working material) is installed in the high temperature part, immediately after shutdown for 1 year and 6 months (1 periodic inspection period) and after storage for 1 month after shutdown Was investigated twice. The type of the heat transfer element is FNC (flat notched crossed), the dimensions are 650 W × 1050 H × 0.6 t, and each n = 10. No problem with crimping. In addition, the water was washed once during the operation period and once immediately after the stoppage. The test results are shown in Table 4, Table 5, and Table 6.
[0023]
[Table 4]
Figure 0003897132
[0024]
[Table 5]
Figure 0003897132
[0025]
[Table 6]
Figure 0003897132
[0026]
Corrosion of the heat transfer element in the high temperature part is basically not, and is only weak high temperature oxidation. This is because there is no precipitation (condensation) of corrosion-causing substances or dust adhesion in the part. Therefore, it is inferred that the slight rusting immediately after the stoppage is due to the water washing performed during the operation period. However, even with the same water wash once, during suspending period (periodic inspection), if it is stored for one month after that, further rusting will progress and it will change into layered rusting by SPCC and CRLS Admitted.
[0027]
On the other hand, the low C-5% Cr steel has almost no layered floating rust, is mainly fixed rust, and the amount of rusting is very low, 1/10 or less of other steels. As in the case of the middle temperature section, this rusting is estimated to increase the pressure loss of the regenerative air preheater by several percent.
[0028]
As a result of X-ray diffraction analysis of rust, α-Fe 2 O 3 and Fe 3 O 4 are identified, and these are iron oxides that are generated even at high temperature oxidation, but α-FeO (OH) is clearly water rust (wet corrosion). The occurrence of floating rust is considered to be due to the progress of corrosion due to this water rust, that is, water washing during stoppage and drying and condensation during storage.
[0029]
【The invention's effect】
By using low C-5% Cr steel for the heat transfer element steel in the high temperature part and / or medium temperature part of the rotary regenerative air preheater, the amount of rusting is smaller than that of the conventional SPCC heat transfer element. The effect of reducing the risk of increased pressure loss was remarkably recognized because it was 1/10 or less and there was very little peelable rust. In terms of price, it is sufficiently cheaper than stainless steel, and there is a merit in terms of price effect. Further, in terms of equipment strength, there are advantages that the heat transfer element is not inferior to SPCC or CRLS, there is no problem in crimping to the element shape, and therefore there is no increase in the burden on production equipment.
[Brief description of the drawings]
FIG. 1 is a flow diagram of a thermal power plant.
FIG. 2 is a schematic view of a rotary regenerative heat exchange device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Boiler 2 Denitration apparatus 3 Rotating regenerative heat exchange apparatus 3a Rotating shaft 3b Rotor 4 Electric dust collector 5 Chimney 6 Forced blower 7 Steam air preheater 8 Boiler exhaust gas 9 Boiler combustion air E Heat transfer element E1 High temperature part heat transfer element E2 Medium temperature heat transfer element E3 Low temperature heat transfer element

Claims (1)

ロータに装填した伝熱エレメントを蓄熱体として、高温の燃焼ガスと低温の燃焼用空気とを交互に接触させることにより、燃焼ガスの熱を燃焼用空気に伝達させて、該燃焼用空気を予熱すると共に、上記伝熱エレメントの水洗や定期検査等の運転停止を行う回転再生式熱交換装置において、上記ロータの高温部および/または中温部の伝熱エレメントが低C-5%Cr鋼から成ることを特徴とする回転再生式熱交換装置。Using the heat transfer element loaded in the rotor as a heat storage element, the high-temperature combustion gas and the low-temperature combustion air are alternately brought into contact with each other, whereby the heat of the combustion gas is transmitted to the combustion air and the combustion air is preheated. In addition, in the rotary regenerative heat exchanger that stops operation such as water washing and periodic inspection of the heat transfer element, the heat transfer element in the high temperature part and / or medium temperature part of the rotor is made of low C-5% Cr steel. Rotating regenerative heat exchange device characterized by the above.
JP01779597A 1997-01-16 1997-01-16 Rotating regenerative heat exchanger Expired - Lifetime JP3897132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01779597A JP3897132B2 (en) 1997-01-16 1997-01-16 Rotating regenerative heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01779597A JP3897132B2 (en) 1997-01-16 1997-01-16 Rotating regenerative heat exchanger

Publications (2)

Publication Number Publication Date
JPH10206050A JPH10206050A (en) 1998-08-07
JP3897132B2 true JP3897132B2 (en) 2007-03-22

Family

ID=11953658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01779597A Expired - Lifetime JP3897132B2 (en) 1997-01-16 1997-01-16 Rotating regenerative heat exchanger

Country Status (1)

Country Link
JP (1) JP3897132B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106783A (en) * 2001-10-01 2003-04-09 Mitsubishi Heavy Ind Ltd Rotary regenerative heat exchanger

Also Published As

Publication number Publication date
JPH10206050A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
US4444128A (en) Heat generator
CA1253812A (en) Efficient waste heat recovery process from sulfur containing flue gas
CN103574630B (en) Improve the method for temperature of smoke discharged by chimney of thermal power and flue gas heating system and fired power generating unit
CN100358800C (en) Electric furnace method yellow phosphorus tail gas residual heat comprehensive balance utilizing system
WO2014073268A1 (en) Exhaust gas treatment system and method
JP3897132B2 (en) Rotating regenerative heat exchanger
CN111550819A (en) Ultra-low emission system of supercritical carbon dioxide coal-fired boiler flue gas
JP3572139B2 (en) Heat exchanger and flue gas treatment device provided with the same
CN109442453A (en) A kind of electricity generation boiler tail flue gas based on high-temperature dust removal disappears white device
JPH10110935A (en) Discharged smoke processing device by rotary regenerative type heat exchanger
WO2021131345A1 (en) Water treatment device and power generation plant, and water treatment method
CN210107340U (en) Anticorrosive type exhaust-heat boiler system
EP0080542B1 (en) Improved heat generator
Cox et al. Components susceptible to dew-point corrosion
CN212204588U (en) Flue gas system of coal-fired boiler
JP2001000833A (en) Boiler flue gas treating device
CN211854932U (en) Waste heat and residual gas power generation device
JP2003106783A (en) Rotary regenerative heat exchanger
JPH09316608A (en) Rotary regeneration type heat exchanger
CN210114940U (en) Industrial furnace flue gas whitening device
CN205717155U (en) Economizer
JP3641043B2 (en) Judgment method of completion of drying of apparatus after washing in regenerative heat exchanger
CN111365726A (en) Flue gas system of coal-fired boiler
CA1177709A (en) Heat generator
JPS60227844A (en) Treating equipment of stack gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250