JPH09316516A - Method of regulating components of molten steel - Google Patents

Method of regulating components of molten steel

Info

Publication number
JPH09316516A
JPH09316516A JP9073957A JP7395797A JPH09316516A JP H09316516 A JPH09316516 A JP H09316516A JP 9073957 A JP9073957 A JP 9073957A JP 7395797 A JP7395797 A JP 7395797A JP H09316516 A JPH09316516 A JP H09316516A
Authority
JP
Japan
Prior art keywords
alloy material
molten steel
amount
alloy
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9073957A
Other languages
Japanese (ja)
Other versions
JP3746585B2 (en
Inventor
Tomomi Omori
知美 大森
Yoshihisa Otsuka
喜久 大塚
Kouichirou Semura
康一郎 瀬村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP07395797A priority Critical patent/JP3746585B2/en
Publication of JPH09316516A publication Critical patent/JPH09316516A/en
Application granted granted Critical
Publication of JP3746585B2 publication Critical patent/JP3746585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Feedback Control In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To optimally select the brand of alloy material and to accurately compute its charge by determining a charge of alloy material from the cost of the alloy material and the deviation of the estimated ultimate amount of each element after the charging of the alloy material from the desired amount by means of linear programming at the time of component regulation of a molten steel. SOLUTION: At the time of regulating components in a molten steel, the computing of components is performed by using a computer. A charge of alloy material is computed by means of linear programming, based on the desired components of the molten steel, the values in the actual conditions of the molten steel, the unit price of an alloy material to be charged, respective contents of alloying elements in the alloy material, the yield of the alloy material into the molten steel, and the amount of the molten steel. The charge of the alloy material, capable of minimizing the objective function showing the cost of the alloy material and the sum of the deviations of the estimated ultimate amounts of respective alloying elements after the charging of the alloy material from the desired components, is determined. By this method, the optimum brand of the alloy material can be selected and its charge can be accurately computed even in the case where the content of a certain component in the molten steel exceeds the desired value in the stage of the conclusion of refining, and the automation of alloy computing and the reduction of alloy material cost can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、転炉や電気炉等の
精錬炉で精錬した溶鋼を出鋼する前に、合金鉄などの合
金材や脱酸剤を添加することによって溶鋼の成分調整を
行う際に、合金材銘柄の単価や合金元素含有量などを考
慮して、より小さいコストでより目標組成に近似した成
分調整を短時間で精度よく行うことのできる方法に関す
るものである。
TECHNICAL FIELD The present invention relates to adjusting the composition of molten steel by adding an alloy material such as ferroalloy or a deoxidizing agent before tapping molten steel refined in a refining furnace such as a converter or an electric furnace. The present invention relates to a method capable of accurately adjusting the composition closer to the target composition at a lower cost in a short time by taking into consideration the unit price of the alloy material brand, the content of the alloy element, and the like.

【0002】[0002]

【従来の技術】転炉や電気炉等の精錬炉で精錬された溶
鋼を出鋼するに当たっては、最終工程として合金成分や
脱酸剤を添加することによって成分調整が行われる。こ
の成分調整作業は、精錬終了から出鋼までの極く短時間
のうちに行わなければならず、その間に、合金材の添加
量の算出、秤量、投入といった一連の作業を迅速に行わ
なければならない。こうした作業は、吹き止め後の溶鋼
成分の分析値に応じて熟練者により電卓や計算尺等が用
いられて行われてきた。
2. Description of the Related Art When tapping molten steel refined in a refining furnace such as a converter or an electric furnace, the composition of the molten steel is adjusted by adding an alloying component and a deoxidizing agent as a final step. This component adjustment work must be performed within an extremely short time from the end of refining to tapping, and in the meantime, a series of work such as calculation of the addition amount of alloy material, weighing, and charging must be performed quickly. I won't. Such work has been performed by a skilled person using a calculator, a slide rule, or the like according to the analysis value of the molten steel component after the blowing is stopped.

【0003】一方、成分調整用として納入される合金材
(通常は、主として合金鉄が用いられる)には多くの銘
柄があり、その銘柄によって単価や合金元素の含有量は
様々であり、吹き止め溶鋼の現状値(分析値)と目標成
分量に応じて最適銘柄の合金材を選択することは、成分
調整用として添加される合金材の元単位を低減して鋼材
の低コスト化を増進する上で大きな要因になってくる。
On the other hand, there are many brands of alloy materials delivered for composition adjustment (usually mainly ferroalloys are used), and the unit price and content of alloying elements vary depending on the brand, and blow-stopping is performed. Selecting the optimum brand of alloy material according to the current value (analytical value) of molten steel and the target component amount reduces the unit cost of the alloy material added for component adjustment and promotes cost reduction of steel materials. It becomes a big factor above.

【0004】しかしながら、上記の様に出鋼までの極く
短時間の間に、目標成分量に応じた最適の合金材銘柄や
投入量を手計算によって求めることは難しい。そこでそ
れらの計算を、最近急速に発達してきた計算機を用いて
短時間で実施する方法、即ち溶鋼中の各合金元素の現状
値と目標含有量、添加される合金材の各銘柄別の単価と
各合金元素の含有量、および溶鋼量に基づき、下記成分
調整式(1’)と合金材投入量の非負の式(2’)を使
用し、線形計画法によって、合金材コストの式(3’)
を最小にすることのできる合金材投入量を割り出す方法
が確立され、合金材に要するコストの低減が図られる様
になってきた。 Ti E−Ti S=[Σm=1 (Wm ・Ci m・Yi )/WFe]・・・(1’) Wm ≧0・・・(2’) Σm=1 (Am ・Wm ・Pm )・・・(3’) (式中、Ti Eは溶鋼中の合金元素iの目標含有量 Ti Sは溶鋼中の合金元素iの現状値 Wm は合金材銘柄mの投入量 Ci mは合金材銘柄m中の合金元素iの含有量 Yi は合金元素iの溶鋼中への歩留まり WFeは溶鋼量 Am は係数 Pm は合金材銘柄mの単価を表す)。
However, as described above, it is difficult to manually calculate the optimum alloy material brand and the input amount according to the target component amount in an extremely short time before tapping. Therefore, a method of performing those calculations in a short time using a computer that has been rapidly developed recently, that is, the current value and target content of each alloying element in molten steel, and the unit price of each brand of alloying material to be added Based on the content of each alloy element and the amount of molten steel, the following composition adjustment formula (1 ') and the non-negative formula (2') of the alloy material input amount are used, and the alloy material cost formula (3 ')
A method has been established for determining the amount of alloy material input that can minimize the above, and the cost required for the alloy material has been reduced. T i E −T i S = [Σ m = 1 (W m · C i m · Y i ) / W Fe ] ... (1 ′) W m ≧ 0 ... (2 ′) Σ m = 1 (A m · W m · P m ) ... (3 ′) (where T i E is the target content of alloying element i in the molten steel, T i S is the current value of alloying element i in the molten steel, W m yield W Fe is the molten steel amount a m is a coefficient P m the alloy material of the content Y i of input amount C i m is the alloy element i in the alloy material stocks m of alloy material stocks m in molten steel alloying elements i Represents the unit price of the brand m).

【0005】また、例えば「鉄鋼協会講演予講集 CP
MP−ISI」Vol.3(1990)−288には、
添加される各合金材の銘柄別の単価と合金元素含有量、
溶鋼中への歩留まり、目標成分値の上・下限値、吹き止
め温度、吹錬条件と吹き止め鋼中の酸素濃度の6項目か
ら、温度降下による影響も加味してトータル合金材コス
トが最小となる様に線形計画法に従って添加合金材の銘
柄と添加量を割り出す方法も提案されている。
[0005] For example, "Steel Association Lecture Preliminary Collection CP
MP-ISI "Vol. 3 (1990) -288,
Unit price and alloy element content of each added alloy material by brand,
From the six items of yield in molten steel, upper and lower limits of target component value, blowing temperature, blowing condition and oxygen concentration in blowing steel, the total alloy material cost is minimized by taking into consideration the effect of temperature drop. Therefore, a method of determining the brand of additive alloy material and the addition amount according to the linear programming method has also been proposed.

【0006】ところが溶製しようとする鋼種の中には、
操業上のばらつきから精錬炉での溶製終了段階で目標成
分の上限値を外れたり、或いはどの銘柄の合金材を投入
しても目標成分に調整できないことがあり、この場合、
上記の計算方法では実行解を求め得なくなって完全な自
動化を達成することができなくなる。即ち、上記線形計
画法を利用した方法でも、計算によって求められる溶鋼
成分値が精錬炉内溶鋼成分の上限値を外れるなど制約式
を満たさない場合は、実行解が求められなくなる。
However, among the steel types to be melted,
Due to operational variations, the target component may exceed the upper limit at the end of melting in the refining furnace, or the alloy composition of any brand may not be adjusted to the target component.
With the above calculation method, it is not possible to obtain an effective solution and complete automation cannot be achieved. That is, even in the method using the linear programming method, when the molten steel component value obtained by calculation does not satisfy the constraint equation such as deviating from the upper limit value of the molten steel component in the refining furnace, the execution solution cannot be obtained.

【0007】しかも上記の方法を含めて従来技術では、
投入される合金材中に含まれる不純物までも考慮に入れ
た調整法は確立されておらず、不純物含有量の多い銘柄
の合金材を選択したときには、不純物含有量が規定範囲
を超えることもしばしば経験されている。
Moreover, in the prior art including the above method,
The adjustment method that takes into account even the impurities contained in the input alloy material has not been established, and when selecting an alloy material with a high impurity content brand, the impurity content often exceeds the specified range. Have been experienced.

【0008】更に従来法では、精錬後の成分分析値(推
定値を含む)から合金材投入量を計算しているため、合
金材投入量が多い場合には、算出された合金材の秤量を
精錬終了後の短時間内に行うことができず、出鋼作業が
遅延して後に続く操業ラインに乱れを生じたり、目標通
りに成分調整できなくなるといった問題も生じてくる。
また精錬炉に設置された投入ホッパー数が限られている
場合は、袋詰め単位で投入しなければならないこともあ
り、この場合の投入単位は1袋分の重量となるが、この
様な場合は従来の線形計画法では解が得られない。
Further, in the conventional method, the amount of alloy material input is calculated from the component analysis value (including the estimated value) after refining. Therefore, when the amount of alloy material input is large, the calculated amount of alloy material is weighed. Since it cannot be performed within a short time after the refining is completed, there is a problem that the tapping work is delayed and the subsequent operation line is disturbed, or the composition cannot be adjusted as intended.
When the number of input hoppers installed in the refining furnace is limited, it may be necessary to input in bag-filling units. In this case, the input unit is the weight of one bag. Cannot be solved by conventional linear programming.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記の様な問
題点に着目してなされたものであって、その目的は、精
錬炉での溶製終了段階で溶鋼中のある成分含有量が目標
値を超えてしまった様な場合でも、最適の合金材銘柄の
選択とその投入量を正確に割り出すことができ、合金計
算の完全な自動化と合金材コストの低減を確実に達成す
ることのできる成分調整方法を確立しようとするもので
ある。
The present invention has been made by paying attention to the problems as described above, and its purpose is to ensure that the content of a certain component in molten steel at the end of melting in a refining furnace is Even if the target value is exceeded, it is possible to accurately select the optimum alloy material brand and its input amount, and to achieve complete automation of alloy calculation and reduction of alloy material cost. It is intended to establish a possible component adjustment method.

【0010】また本発明の他の目的は、成分調整に用い
られる合金材中に含まれる不純物の含有量も考慮に加
え、不純物汚染による欠陥溶鋼を生じることもなく適正
な合金材銘柄の選択と投入量割り出しを可能にしようと
するものである。
Another object of the present invention is to consider the content of impurities contained in the alloy material used for component adjustment, and to select an appropriate alloy material brand without producing defective molten steel due to impurity contamination. It aims to make it possible to calculate the input amount.

【0011】また、合金材投入量が多くなって出鋼前の
短時間内に当該合金材の秤量が間に合わなくなる様な事
態が想定される場合でも、該合金材を吹き止めの前後2
回に分けて投入することによって、出鋼作業の遅延やそ
の後の操業ラインの乱れ等を生じることなく確実な成分
調整を可能とし、更には、精錬炉に常備されているホッ
パー数が限られていて合金材を予め決められた重量単位
で投入しなければならない様な場合でも、該単位投入量
も加味して線形計画法によって最も適切な合金材銘柄の
選択と投入量を決定することのできる方法を確立しよう
とするものである。
Further, even when it is assumed that the amount of the alloy material charged becomes large and the weight of the alloy material cannot be kept in time within a short time before tapping, it is possible to prevent the alloy material from blowing 2
By inputting in batches, it is possible to make a reliable component adjustment without delaying the tapping operation and subsequent disruption of the operation line, and furthermore, the number of hoppers that are permanently equipped in the refining furnace is limited. Even if it is necessary to input the alloy material in a predetermined weight unit, it is possible to determine the most appropriate alloy material brand and input amount by linear programming considering the unit input amount. It is about trying to establish a method.

【0012】[0012]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る成分調整方法は、溶鋼に合金材を
添加して溶鋼の成分調整を行うに当たり、溶鋼中の各合
金元素の現状値と目標含有量、前記合金材の各銘柄別の
単価と各合金元素の含有量および溶鋼中への歩留まり、
並びに溶鋼量に基づいて、線形計画法によって合金材の
投入量を設定して溶鋼の成分調整を行う方法において、
合金材コストと、合金材投入後の各合金元素毎の到達見
込み量と目標含有量のずれとのバランスを考慮して合金
材の投入量を決定することを特徴とする溶鋼の成分調整
方法である。更に、各合金元素毎に予め規定されている
上限制約値および下限制約値の両方またはいずれか一方
を考慮して合金材の投入量を決定する溶鋼の成分調整方
法である。
The composition adjusting method according to the present invention, which was able to solve the above-mentioned problems, is the current state of each alloying element in the molten steel when the alloy material is added to the molten steel to adjust the composition of the molten steel. Value and target content, unit price of each brand of the alloy material and content of each alloying element and yield in molten steel,
In addition, based on the molten steel amount, in the method of adjusting the input amount of alloy material by linear programming to adjust the composition of molten steel,
A method for adjusting the composition of molten steel, characterized in that the alloy material cost is determined, and the alloy material input amount is determined in consideration of the balance between the expected arrival amount of each alloy element after the alloy material is input and the deviation of the target content. is there. Further, it is a component adjusting method for molten steel, in which the amount of alloy material to be charged is determined in consideration of both or one of an upper limit constraint value and a lower limit constraint value which are defined in advance for each alloy element.

【0013】より具体的には、本発明に係る溶鋼の成分
調整方法は、溶鋼に合金材を添加して溶鋼の成分調整を
行うに当たり、溶鋼中の各合金元素の現状値と目標含有
量、前記合金材の各銘柄別の単価と各合金元素の含有量
および溶鋼中への歩留まり、並びに溶鋼量に基づいて、
線形計画法によって合金材の投入量を設定して溶鋼の成
分調整を行う方法において、下記(1)式で示される成
分調整式と、下記(2)式で示される合金材投入量の非
負の式を使用し、線形計画法によって、合金材コストお
よび合金材投入後の各合金元素毎の到達見込み量と目標
含有量のずれの和を示す下記式(3)で示される目標関
数が最小となる様に、合金材の投入量を決定するところ
に特徴を有している。 (Ti E−Ti S)+ΔDi =[Σm=1 (Wm ・Ci m・Yi )/WFe] ・・・(1) Wm ≧0 ・・・(2) Σm=1 (Am ・Wm ・Pm )+Σi=1 (Bi ・|ΔDi |)・・・(3) (式中、Ti Eは溶鋼中の合金元素iの目標含有量 Ti Sは溶鋼中の合金元素iの現状値 Wm は合金材銘柄mの投入量 Ci mは合金材銘柄m中の合金元素iの含有量 Yi は合金元素iの溶鋼中への歩留まり WFeは溶鋼量 ΔDi は合金材の投入量および該投入される合金材中の
合金元素iの含有量と溶鋼中への歩留まりから計算され
る溶鋼中の合金元素iの到達見込み量と合金元素iの目
標含有量との差 Am ,Bi は係数 Pm は合金材銘柄mの単価を表す)。
More specifically, the method for adjusting the composition of molten steel according to the present invention, in which the alloy material is added to the molten steel to adjust the composition of the molten steel, the present value and target content of each alloying element in the molten steel, Based on the unit price of each brand of the alloy material and the content of each alloying element and the yield in molten steel, and the amount of molten steel,
In the method for adjusting the composition of molten steel by setting the composition of the alloy material by the linear programming method, the composition adjustment formula represented by the following formula (1) and the non-negative composition of the alloy material represented by the following formula (2) are used. Using a formula, the linear programming method determines that the target function shown by the following formula (3), which shows the sum of the difference between the alloy material cost and the expected arrival amount for each alloy element after the alloy material is input, and the target content is the minimum. As described above, the feature is that the amount of alloy material input is determined. (T i E −T i S ) + ΔD i = [Σ m = 1 (W m · C i m · Y i ) / W Fe ] (1) W m ≧ 0 (2) Σ m = 1 (A m · W m · P m ) + Σ i = 1 (B i · | ΔD i |) (3) (where T i E is the target content of the alloy element i in the molten steel T i S is the current value of the alloy element i in the molten steel W m is the input amount of the alloy material brand m C i m is the content of the alloy element i in the alloy material brand m Y i is the yield of the alloy element i in the molten steel W Fe is the amount of molten steel ΔD i is the amount of alloying material, the content of alloying element i in the alloying material and the yield of alloying element i in the molten steel calculated from the yield in the molten steel, and the alloy Differences from the target content of the element i A m and B i are coefficients P m is the unit price of the alloy material brand m).

【0014】或いは、予め決定されている各調整成分の
上限制約値および下限制約値と、目標値と該上限制約値
の間であれば任意に設定できる上限許容値、並びに目標
値と該下限制約値の間であれば任意に設定できる下限許
容値から下記(4)、(5)式を用いて下記〜の様
に定められる各合金元素毎のメンバシップ関数および前
記(1)、(2)式を使用し、線形計画法によって、合
金材コスト、合金材投入後の各合金元素毎の到達見込み
量と目標含有量のずれ、およびメンバシップ関数値の和
を示す下記式(6)で示される目標関数が最小となる様
に、合金材の投入量を決定するところに特徴を有してい
る。 f1= {[Σm=1 (Wm ・Ci m・Yi )/WFe]+Ti s−Uki}/(Ui −Uki) ・・・(4) f2= 1−{[Σm=1 (Wm ・Ci m・Yi )/WFe]+Ti s−Li }/(Lki−Li ) ・・・(5) λ=0 (f1≦0かつf2≦0の場合) λ=f1(f1>0かつf2≦0の場合) λ=f2(f1≦0かつf2>0の場合) Σm=1 (Am ・Wm ・Pm )+Σi=1 (Bi ・|ΔDi |)+Σi=1 αi ・λi ・・・(6) (式中、Ukiは溶鋼中の合金元素iの上限許容値 Ui は溶鋼中の合金元素iの上限制約値 Lkiは溶鋼中の合金元素iの下限許容値 Li は溶鋼中の合金元素iの下限制約値 αi は係数 λi は溶鋼中の合金元素iのメンバシップ関数値を表
す)。
Alternatively, a predetermined upper limit constraint value and a lower limit constraint value of each adjustment component, an upper limit allowable value that can be arbitrarily set between the target value and the upper limit constraint value, and the target value and the lower limit constraint. Membership function for each alloying element and the above (1) and (2) determined from the lower limit allowable value that can be set arbitrarily between the values by using the following equations (4) and (5) Using the formula, by linear programming, the following formula (6) indicating the sum of the alloy material cost, the expected arrival amount and target content of each alloy element after the alloy material is input, and the membership function value is shown. The feature is that the input amount of the alloy material is determined so that the target function to be obtained is minimized. f1 = {[Σ m = 1 (W m · C i m · Y i ) / W Fe ] + T i s −U ki } / (U i −U ki ) ... (4) f2 = 1-{[ Σ m = 1 (W m · C i m · Y i ) / W Fe ] + T i s −L i } / (L ki −L i ) ... (5) λ = 0 (f1 ≦ 0 and f2 ≦ 0) λ = f1 (when f1> 0 and f2 ≦ 0) λ = f2 (when f1 ≦ 0 and f2> 0) Σ m = 1 (A m · W m · P m ) + Σ i = 1 (B i · | ΔD i |) + Σ i = 1 α i · λ i (6) (wherein U ki is the upper limit allowable value of alloy element i in molten steel U i is the alloy element i in molten steel) Upper limit constraint value L ki is a lower limit allowable value of alloy element i in molten steel L i is a lower limit constraint value of alloy element i in molten steel α i is a coefficient λ i is a membership function value of alloy element i in molten steel ).

【0015】更に本発明に係る成分調整方法は、前記メ
ンバシップ関数に適当な上限値を設け、該メンバシップ
関数値が該上限値を超える場合には、前記(1)式で示
される成分調整式と、前記(2)式で示される合金材投
入量の非負の式を使用し、線形計画法によって、合金材
コストおよび合金材投入後の各合金元素毎の到達見込み
量と目標含有量のずれの和を示す前記式(3)で示され
る目標関数が最小となる様に、合金材の投入量を決定
し、該メンバシップ関数値が該上限値以下である場合に
は、該メンバシップ関数および前記(1)、(2)式を
使用し、線形計画法によって、合金材コスト、合金材投
入後の各合金元素毎の到達見込み量と目標含有量のず
れ、およびメンバシップ関数値の和を示す前記式(6)
で示される目標関数が最小となる様に、合金材の投入量
を決定することも可能である。
Further, in the component adjusting method according to the present invention, the membership function is provided with an appropriate upper limit value, and when the membership function value exceeds the upper limit value, the component adjusting formula (1) is used. Using the formula and the non-negative formula of the alloy material input amount shown in the above equation (2), the linear material programming is used to calculate the alloy material cost and the expected arrival amount and target content of each alloy element after the alloy material is input. The input amount of the alloy material is determined so that the target function represented by the equation (3), which indicates the sum of the deviations, is minimized. If the membership function value is equal to or less than the upper limit value, the membership function is determined. Using the function and the above equations (1) and (2), the linear programming method is used to calculate the alloy material cost, the difference between the expected arrival amount and the target content of each alloy element after the alloy material is charged, and the membership function value. Formula (6) indicating the sum
It is also possible to determine the amount of alloy material input so that the target function shown by is minimum.

【0016】上記成分調整方法を実施するに当たって
は、不純物元素要因を示す下記(7)式を加えて、線形
計画法により合金材の投入量を調整すれば、溶鋼中に混
入する可能性のある不純物に由来する不良溶鋼の発生も
未然に防止することができる。
In carrying out the above component adjusting method, if the following formula (7) indicating the factor of the impurity element is added and the amount of alloy material input is adjusted by the linear programming method, it may be mixed in the molten steel. It is possible to prevent generation of defective molten steel due to impurities.

【0017】 Tb E−Tb S≧[Σb=1 (Wm ・Cb m・Yb )/WFe]・・・(7) (式中、Tb Eは溶鋼中に含まれる不純物元素bの限界含
有量 Tb Sは溶鋼中の不純物元素bの現状値 Cb mは合金材銘柄m中の不純物元素bの含有量 Yb は不純物元素bの溶鋼への歩留まりを表す)。
T b E −T b S ≧ [Σ b = 1 (W m · C b m · Y b ) / W Fe ] (7) (where T b E is contained in the molten steel) Limit content of impurity element b T b S is current value of impurity element b in molten steel C b m is content of impurity element b in alloy material brand m Y b represents yield of impurity element b to molten steel) .

【0018】更に、設備上の制約等から合金材投入量の
上限値および下限値が制限される様な場合は、それらを
下記(8a),(8b)式として加えて合金材の投入量
を決定する方法を採用すれば、その設備に応じた実用化
を無理なく行うことができるので好ましい。 Wm ≧Lm ・・・(8a),Wm ≦Um ・・・(8b) (式中、Lm は合金材銘柄mの投入量の下限値 Um は合金材銘柄mの投入量の上限値を表す)。
Further, when the upper limit value and the lower limit value of the alloy material input amount are limited due to restrictions on equipment, etc., they are added as the following formulas (8a) and (8b) to add the alloy material input amount. It is preferable to adopt the method of determination because it can be put to practical use according to the equipment without difficulty. W m ≧ L m (8a), W m ≦ U m (8b) (where L m is the lower limit of the amount of alloy material brand m input, and U m is the amount of alloy material brand m input. Represents the upper limit of).

【0019】また更に、成分調整のための合金材投入量
が多くなって出鋼前の短時間内に当該合金材の秤量が間
に合わなくなる様な事態が想定される様な場合は、精錬
炉での精錬末期に、吹き止め前と吹き止め後の2回に分
けて合金材の添加を行う方法を採用すれば、出鋼作業の
遅延やその後の操業ラインの乱れ等も回避され、また、
精錬設備常備されているホッパー数が限られていて合金
材を予め決められた重量単位で投入しなければならない
様な場合は、前記線形計画法に分岐限定法を組合わせて
合金材投入量を決定することによって容易に対処するこ
とが可能となる。
Further, in the case where it is assumed that the amount of alloy material to be used for adjusting the composition becomes large and the weight of the alloy material cannot be met in time within a short time before tapping, the refining furnace is used. In the final stage of refining, if the method of adding alloy material in two steps before and after blowing is adopted, delay of tapping work and disturbance of the operation line after that can be avoided.
Refining equipment If the number of hoppers that are permanently equipped is limited and it is necessary to input alloy material in a predetermined weight unit, combine the branching and limiting method with the linear programming method and set the alloy material input amount. It becomes possible to deal with it easily by making a decision.

【0020】[0020]

【発明の実施の形態】本発明に係る溶鋼の成分調整法
は、従来の技術と異なり、調整を行おうとする各合金元
素毎の合金材投入後の到達見込み量と目標含有量のずれ
を考慮することにより、手持ちの合金材銘柄により溶鋼
成分を目標成分に一致させることができない場合でも、
目標成分とのずれと合金材コストとをバランス良く調整
しようとするものである。この様に合金材コストと、各
合金元素毎の合金材投入後の到達見込み量と目標含有量
のずれを考慮することにより、多少コストが高くなって
も成分のずれを抑えたい場合や、逆に成分ずれが多少大
きくてもコストを下げたい場合等にも、両者の重み付け
を変えることにより、バランスの良い調整が可能となる
ものである。
BEST MODE FOR CARRYING OUT THE INVENTION Unlike the prior art, the method for adjusting the composition of molten steel according to the present invention considers the deviation between the expected arrival amount and the target content of each alloying element to be adjusted after the alloy material is charged. By doing so, even if it is not possible to match the molten steel composition with the target composition due to the alloy material brand you have,
It is intended to adjust the balance between the deviation from the target component and the alloy material cost in a good balance. In this way, by considering the alloy material cost and the deviation of the expected arrival amount and target content after the alloy material is input for each alloy element, if you want to suppress the deviation of the components even if the cost becomes slightly higher, Even if the component deviation is somewhat large, even when the cost is desired to be reduced, by changing the weighting of the two, a well-balanced adjustment becomes possible.

【0021】更に、調整を行おうとする各合金元素毎に
予め上限制約値や下限制約値が規定されている様な場合
には、各合金元素毎の合金材投入後の上限制約値および
下限制約値の両方またはいずれか一方も考慮に加えて、
合金材コスト、各合金元素毎の合金材投入後の到達見込
み量と目標含有量のずれ、および各合金元素毎の合金材
投入後の到達見込み量と上限制約値或いは下限制約値の
ずれの3者のバランスが良くなる様に合金材の投入量を
決定しようとするものである。
Further, when the upper limit constraint value and the lower limit constraint value are defined in advance for each alloy element to be adjusted, the upper limit constraint value and the lower limit constraint after the alloy material is charged for each alloy element. In addition to taking into account either or both values,
Alloy material cost, deviation of expected arrival amount and target content after alloy material input for each alloy element, and expected arrival amount after alloy material injection for each alloy element and deviation of upper limit value or lower limit value The aim is to determine the amount of alloy material to be added so that the balance of personnel is improved.

【0022】具体的に本発明を実施するに当たっては、
合金材や脱酸剤を添加して溶鋼の成分調整を行う際の成
分計算を、計算機を用いて制御するに際し、製造すべき
溶鋼の目標成分と実際の溶鋼の現状値、投入される合金
材の単価と合金元素含有量および溶鋼中への歩留まり、
並びに溶鋼量に基づいて、 I 上記成分調整式(1)と合金材投入量の非負の式
(2)を使用し、線形計画法で合金材投入量を計算する
こととし、合金材コストおよび各合金元素毎の合金材投
入後の到達見込み量と目標成分のずれの和を示す目標関
数(3)を最小にすることのできる合金材投入量を決定
する(図1)。或いは、 II 予め決定されている各合金元素毎の上限制約値およ
び下限制約値と、目標値と該上限制約値の間であれば任
意に設定できる上限許容値、並びに目標値と該下限制約
値の間であれば任意に設定できる下限許容値から上記
(4)(5)式を用いて上記〜の様に定められる各
合金元素毎のメンバシップ関数および前記(1)、
(2)式を使用し、線形計画法で合金材投入量を計算す
ることとし、合金材コスト、合金材投入後の各合金元素
毎の到達見込み量と目標含有量のずれ、およびメンバシ
ップ関数値の和を示す目標関数(6)を最小にすること
のできる合金材の投入量を決定する(図2)。
In carrying out the present invention specifically,
When controlling the composition calculation when adjusting the composition of molten steel by adding alloy materials and deoxidizers, when controlling using a computer, the target composition of the molten steel to be manufactured, the actual value of the actual molten steel, the alloy material to be input Unit price, alloying element content and yield in molten steel,
Based on the molten steel amount, I calculate the alloy material input amount by linear programming using the above component adjustment formula (1) and the non-negative expression (2) of the alloy material input amount. The amount of alloy material that can minimize the target function (3) indicating the sum of the expected amount of arrival after the alloy material is injected and the deviation of the target component for each alloy element is determined (FIG. 1). Or II, the upper limit constraint value and the lower limit constraint value for each alloy element that are predetermined, the upper limit allowable value that can be arbitrarily set between the target value and the upper limit constraint value, and the target value and the lower limit constraint value Between the lower limit allowable values that can be set arbitrarily between the above, the membership functions for each alloy element determined as described above using the above equations (4) and (5) and the above (1),
The alloy material input amount is calculated by linear programming using the equation (2), and the alloy material cost, the difference between the expected arrival amount of each alloy element after the alloy material input and the target content, and the membership function The input amount of the alloy material that can minimize the target function (6) indicating the sum of the values is determined (FIG. 2).

【0023】ここで合金材の単価は、合金市場の動向に
より変化する合金価格を逐次インプットすればよく、合
金材の成分も実状に合わせて変えればよい。また不純物
元素アップ防止の式(7)を加味して上記目標関数
(3)或いは(6)を計算すれば、不純物要因による規
格外溶鋼の発生も未然に回避することができる。
Here, as the unit price of the alloy material, the alloy price which changes according to the trend of the alloy market may be sequentially input, and the composition of the alloy material may be changed according to the actual condition. Further, if the target function (3) or (6) is calculated in consideration of the expression (7) for preventing the increase of the impurity element, the generation of the non-standard molten steel due to the impurity factor can be avoided in advance.

【0024】また、合金材の投入量の上限値および下限
値の式(8a)、(8b)を入れて目標関数式(3)或
いは(6)を最小にすることも極めて有効であり、この
場合、合金材投入量の上限値は、合金材ホッパーの容量
や介在物混入防止量を予測して決定してもよく、また合
金材投入量の下限値は、合金材ホッパーの秤量可能な最
小切り出し量から決定すればよい。各合金成分の歩留ま
りは鋼種毎に設定した方がよい。
It is also extremely effective to minimize the target function equation (3) or (6) by inserting the equations (8a) and (8b) for the upper limit value and the lower limit value of the amount of alloy material input. In this case, the upper limit value of the alloy material input amount may be determined by predicting the capacity of the alloy material hopper and the inclusion prevention amount, and the lower limit value of the alloy material input amount is the minimum weighable amount of the alloy material hopper. It may be determined from the cut amount. The yield of each alloy component should be set for each steel type.

【0025】溶鋼成分の現状値は、実際の分析値を採用
するのが好ましいが、この他、精錬炉の操業条件や精錬
終了時の温度、フリー酸素等の組み合わせによって推定
される推定値で代用することも可能である。目標関数式
(3)或いは(6)で用いられる係数は、各項目毎に異
なる値にしてもよいし、或いは溶製する鋼種やチャージ
毎に変えても構わない。これら係数を適宜変更すること
により、バランスを取ろうとする各項目(コスト、目標
成分からのずれ、上限制約・下限制約からのずれ)の重
み付けを変えることが可能であり、操業の実体に合わせ
てこれら係数は決定することが望まれる。
As the current value of the molten steel component, it is preferable to adopt an actual analysis value, but in addition to this, an estimated value estimated by a combination of the operating conditions of the refining furnace, the temperature at the end of refining, free oxygen, etc. is used as a substitute. It is also possible to do so. The coefficient used in the target function formula (3) or (6) may be a different value for each item, or may be changed for each steel type to be melted and each charge. By appropriately changing these coefficients, it is possible to change the weighting of each item (cost, deviation from the target component, deviation from the upper limit constraint / lower limit constraint) that is going to be balanced, according to the substance of the operation. It is desirable to determine these coefficients.

【0026】また本発明では、吹き止め時の短時間の間
に秤量可能な合金材投入量を決定することが必要であ
り、この量は、数種類の合金材を1つの秤量ホッパーで
計算する場合は、その秤量ホッパーの切り出し速度と切
り出しに要する時間から決定される数種類の合金材の合
計値としてもよいし、或いは個々の合金材毎に設定して
もよく、また投入される全合金材の量について決定して
もよい。
Further, in the present invention, it is necessary to determine the amount of the alloy material that can be weighed in a short time at the time of blowing stop, and this amount is required when several kinds of alloy materials are calculated by one weighing hopper. May be a total value of several kinds of alloy materials determined from the cutting speed of the weighing hopper and the time required for cutting, or may be set for each individual alloy material, or of all the alloy materials to be charged. The amount may be determined.

【0027】下記(9)式は、個々の合金材について設
定した場合を示す。この場合、投入される全合金材のう
ち、吹止め時の短時間の間に秤量可能な合金材投入量を
差し引いて、吹止め前に予め秤量する合金材投入量とす
る。そして、吹止め後の最終成分調製段階で溶鋼成分値
(実測値あるいは推定値)から合金材投入量を計算する
に当たっては、吹止め前に予め秤量する合金材投入量で
アップする溶鋼の成分変化分を(1)式に加えた下記
(10)式を採用し、線形計画法で計算される吹止め時
の投入合金材量を算出する。 Wm1=0 (Wm ≦WmUのとき) =Wm −WmU(Wm >WmUのとき) ……(9) ΔTi E−ΔTi S−Σm=1 (Wm1・Ci m・Yi )/WFe =Σm=1 (Wm2・Ci m・Yi )/WFe+ΔDi ……(10) Wm1:吹止前に予め秤量する合金銘柄mの投入量 WmU:吹止時に投入する合金銘柄mの投入量 その他の符号の意味は前記と同じ。
The following equation (9) shows the case of setting for each alloy material. In this case, of all the alloy materials to be charged, the amount of alloy material that can be weighed in a short time at the time of blowing is subtracted to obtain the amount of alloy material to be weighed in advance before blowing. Then, when calculating the amount of alloy material input from the molten steel component value (measured value or estimated value) at the final component preparation stage after blowing, the change in the molten steel component that is increased by the amount of alloy material input that is weighed in advance before blowing The following formula (10) in which the minute is added to the formula (1) is adopted, and the amount of the injected alloy material at the time of blowing stop calculated by the linear programming method is calculated. W m1 = 0 (when W m ≦ W mU ) = W m −W mU (when W m > W mU ) (9) ΔT i E −ΔT i S −Σ m = 1 (W m1 · C i m · Y i ) / W Fe = Σ m = 1 (W m2 · C i m · Y i ) / W Fe + ΔD i …… (10) W m1 : Input of alloy brand m to be weighed in advance before stopping blowing Amount W mU : Amount of alloy brand m to be added at the time of blowout The meaning of other symbols is the same as above.

【0028】また、合金材を袋詰めで投入する際は、袋
詰めで投入される合金材を分枝限定法を用いて決定す
る。分枝限定法は、深さ優先探索をとる。分枝限定法と
線形計画法の関係は、図3,4に示す手順に沿って行な
われる。
When the alloy material is packed in a bag, the alloy material to be packed in the bag is determined by the branching and limiting method. The branch and bound method takes a depth-first search. The relation between the branch and bound method and the linear programming method is performed according to the procedure shown in FIGS.

【0029】上記において、成分調整式(1)は、溶鋼
成分の調整量と各合金材投入量の関係を示す式であり、
また合金材投入量の非負の式(2)は、合金材投入量が
0以上であるという物理的な意味をもつ。そして、目標
関数式(3)は、合金材コストと、各合金元素毎の合金
材投入後の到達見込み量と目標成分のずれの和を最小に
することを目的とする関数であり、この式を最小にする
様に線形計画法で解くことにより、合金材コストと合金
材投入後の目標成分からのずれがバランス良く設定でき
るのである。
In the above, the component adjustment formula (1) is a formula showing the relationship between the adjustment amount of the molten steel component and the amount of each alloy material input,
Further, the non-negative expression (2) of the alloy material input amount has a physical meaning that the alloy material input amount is 0 or more. Then, the target function formula (3) is a function aiming at minimizing the sum of the alloy material cost, the expected arrival amount after the alloy material is charged for each alloy element, and the deviation of the target component. By using the linear programming method so as to minimize, the alloy material cost and the deviation from the target component after the alloy material can be set in a well-balanced manner.

【0030】一方、上記目標関数式(3)式を最小とす
る様に成分調整を行う場合には、目標成分とのずれと合
金材コストとが最もバランス良くなる様な成分調整が可
能であるが、予め各合金元素に上限制約値および下限制
約値が決定されている場合には、その様な制約条件は考
慮されていないため、該制約の範囲からは外れて合金材
の銘柄と投入量を決定する可能性がある。その様な場
合、例え前記制約の範囲内に調整できなくても、全ての
元素をできるだけ目標値に近づける様に合金材の銘柄、
投入量を決定することが望まれる。また、全ての元素を
前記制約の範囲内に調整できる場合であっても、目標値
には合わせきれない場合は、ある元素だけが上限制約値
或いは下限制約値の近傍に調整されることもある。上限
制約値或いは下限制約値の近傍に調整されると、操業上
のばらつき等によって前記制約の範囲から外れる可能性
もあり、上限制約値或いは下限制約値の近傍に調整され
る元素はできるだけ目標値に近い値に調整される様にす
ることが望まれる。
On the other hand, when the components are adjusted so as to minimize the target function formula (3), the components can be adjusted so that the deviation from the target component and the alloy material cost are most balanced. However, when the upper limit constraint value and the lower limit constraint value are determined for each alloy element in advance, such constraint conditions are not taken into consideration, so that the brand of alloy material and the input amount are outside the range of the constraint. May decide. In such a case, even if it is not possible to adjust within the above-mentioned constraint range, the brand name of the alloy material should be set so that all elements should be as close to the target values as possible
It is desirable to determine the input amount. Further, even when all the elements can be adjusted within the range of the constraint, if some elements cannot be adjusted to the target value, only a certain element may be adjusted near the upper limit value or the lower limit value. . If it is adjusted near the upper limit value or the lower limit value, it may be out of the range due to operational variations, etc. It is desirable that the value be adjusted to a value close to.

【0031】上述の様な場合、予め決定されている各合
金元素の上限制約値および下限制約値と、目標値から該
上限制約値の間で任意に設定した上限許容値、並びに目
標値から該下限制約値の間で任意に設定した下限許容値
を用いて前記(4)、(5)式から前記〜の様に定
められる各合金元素毎のメンバシップ関数を導入して、
前記(6)式で示される目標関数式が最小となる様に合
金材の投入量を決定すれば、各合金元素を目標成分値に
より近づけることができる様になる。前記(4)、
(5)式から定められるメンバシップ関数とは、図5に
示す様に、各合金元素の成分値が下限許容値と上限許容
値の間にある場合は0となり、上限許容値以上或いは下
限許容値以下の場合は0から正方向に向かって上昇する
様な線形関数である。従って、該メンバシップ関数を導
入した目標関数式(6)は合金材コストと、各合金元素
毎の合金材投入後の到達見込み量と目標成分のずれに加
えて各合金元素の制約条件の重みを含んだ関数であり、
この式を最小にする様に線形計画法で解くことにより、
投入される合金材コスト、合金材投入後の目標成分から
のずれ、および各合金元素の制約条件からのずれがバラ
ンス良く設定できるのである。
In the above-described case, the upper limit constraint value and the lower limit constraint value of each alloy element which are determined in advance, the upper limit allowable value arbitrarily set between the target value and the upper limit constraint value, and the target value Introducing the membership function for each alloying element determined from the above equations (4) and (5) as described above using the lower limit allowable value arbitrarily set between the lower limit constraint values,
By determining the amount of alloy material input so that the target function equation represented by the equation (6) is minimized, each alloy element can be brought closer to the target component value. (4),
As shown in FIG. 5, the membership function defined by the equation (5) is 0 when the component value of each alloy element is between the lower limit allowable value and the upper limit allowable value, and is greater than or equal to the upper limit allowable value or the lower limit allowable value. When it is less than the value, it is a linear function that increases from 0 in the positive direction. Therefore, the target function formula (6) in which the membership function is introduced is the weight of the constraint condition of each alloy element in addition to the alloy material cost, the expected arrival amount after the alloy material is input for each alloy element, and the deviation of the target component. Is a function containing
By solving with linear programming to minimize this equation,
The cost of the alloy material to be charged, the deviation from the target component after the alloy material is charged, and the deviation from the constraint condition of each alloy element can be set in a well-balanced manner.

【0032】以上説明してきた様に、本発明では、目標
関数式(3)或いは(6)内に、投入合金材成分および
その投入量から計算される溶鋼中の合金元素の到達見込
み量と目標増加量のずれの項を含めることにより、手持
ちの合金材銘柄により溶鋼成分を目標成分に一致させる
ことができない場合でも、目標成分とのずれと合金材コ
ストとが最もバランス良く成分調整を行なえる様な合金
材の銘柄と投入量を計算することが可能になる。更に、
目標関数式(6)内には各調整成分の制約条件の重みを
加味した項が含まれているので、予め制約条件が課せら
れている様な場合にも、投入される合金材コスト、合金
材投入後の目標成分からのずれ、および各調整成分の制
約条件からのずれの3者が最もバランス良く成分調整を
行なえる様な合金材の銘柄と投入量を計算することが可
能になる。
As explained above, according to the present invention, the expected amount of alloying elements in molten steel and the target calculated in the target function equation (3) or (6) are calculated from the alloying material components and the amount thereof. By including the term of increase amount deviation, even if the molten steel composition cannot match the target composition due to the alloy material brand on hand, it is possible to adjust the composition with the best balance between the deviation from the target composition and the alloy material cost. It is possible to calculate the brand and input amount of such alloy materials. Furthermore,
Since the objective function formula (6) includes a term in which the weight of the constraint condition of each adjustment component is added, even when the constraint condition is imposed in advance, the cost of the alloy material to be input and the alloy It becomes possible to calculate the brand and the amount of alloy material that allow the three components, the deviation from the target component after the material has been introduced and the deviation from the constraint condition of each adjustment component, to make the most balanced component adjustment.

【0033】また更に、前記メンバシップ関数に適当な
上限値を設けて、該メンバシップ関数値が該上限値を超
える場合には、前記(3)式で示される目標関数が最小
となる様に合金材の投入量を決定し、該メンバシップ関
数値が該上限値以下である場合には、前記(6)式で示
される目標関数が最小となる様に合金材の投入量を決定
するという様に、予めメンバシップ関数により各調整成
分がある制約条件内に調整可能か否かを判定しておき、
前記(3)式或いは(6)式を適当に使い分けることも
実操業上は便利である(図6)。
Furthermore, by setting an appropriate upper limit value for the membership function, and when the membership function value exceeds the upper limit value, the target function expressed by the equation (3) is minimized. The amount of alloy material input is determined, and when the membership function value is equal to or less than the upper limit value, the amount of alloy material input is determined so that the target function represented by the equation (6) is minimized. Similarly, it is determined in advance by the membership function whether each adjustment component can be adjusted within a certain constraint condition,
It is also convenient in actual operation to properly use the equation (3) or the equation (6) (FIG. 6).

【0034】上記の様な成分調整方法に不純物元素アッ
プ防止の式(7)を組み込めば、投入される合金材中に
含まれる不純物元素(どんな元素でもよいが、例えば
P、S、Bなどの鋼中にあっては有害な元素)が、投入
合金材に由来して溶鋼中に混入してくる量を一定量以下
に抑えつつ、最適の合金材投入量を決定することが可能
となる。この式(7)は、不純物元素毎に2種類以上を
採用してもよい。
If the expression (7) for preventing impurity element up is incorporated into the above component adjusting method, the impurity element contained in the alloy material to be introduced (any element may be used, such as P, S, B, etc.). It is possible to determine the optimum amount of alloy material to be charged while suppressing the amount of harmful elements in steel that are derived from the input alloy material and mixed into molten steel to be below a certain amount. This formula (7) may employ two or more types for each impurity element.

【0035】更に、前述の如く合金材ホッパーの容量や
秤量可能な最小切り出し量、介在物混入防止量等によっ
て決まってくる合金材投入量の上・下限値を示す前記式
(8a),(8b)を加入して合金計算を行なえば、合
金材投入装置の設備上の制約条件等を合金計算に加味す
ることができ、また合金成分調整以外の合金材規制要因
が存在する場合(たとえば、ある合金を入れると溶鋼品
質が落ちる場合など)でも最適の合金材投入量を計算す
ることができる。
Further, as described above, the above equations (8a) and (8b) indicating the upper and lower limits of the amount of alloy material input determined by the capacity of the alloy material hopper, the minimum amount of cutout that can be weighed, the amount of inclusions prevention, etc. ) To perform the alloy calculation, it is possible to take into account the restrictions on the equipment of the alloy material charging device in the alloy calculation, and when there are alloy material regulation factors other than alloy component adjustment (for example, Even if the quality of molten steel deteriorates when alloy is added), it is possible to calculate the optimum amount of alloy material input.

【0036】また、合金材コストを最小にするには、吹
止め時点での溶鋼成分から、合金計算することが必要で
あるが、吹止時の短時間の間に秤量可能な合金材量は限
られているので、吹止め後の限られた時間内で秤量可能
な合金鉄量を超える量については、吹止め以前に合金材
投入量を秤量しておくことが必要となる。ところが吹止
め以前には、吹止め時の溶鋼成分、たとえばC濃度等も
分かっていないため、合金材投入量を正確に計算するこ
とができず、結果として、安全を見越してC含有量等の
少ない高価な合金材を使用せざるを得なくなることもあ
る。そこで、合金材コストをより確実に抑えるには、吹
止め以前に秤量される合金材量をなるべく少なくする必
要がある。一方、設備や操業条件より吹止め時に秤量可
能な合金材量は限られてくる。そこで、吹止め時の短時
間の間に秤量可能な合金材量から、吹止め前に予め秤量
される合金材銘柄mの投入量と吹止め時に投入する合金
材銘柄mの投入量を前記(9)、(10)式で計算する
様にすれば、合金材の投入を吹止めの前・後に分けて行
なう方法を採用した場合でも、合金材コストを最小に抑
えることができるのである。その結果、合金材投入量が
多い場合でも、合金材コストを最小に抑えつつ、後続の
ラインに悪影響を及ぼすことのない合金成分調整操業を
実現できる。
Further, in order to minimize the alloy material cost, it is necessary to calculate the alloy from the molten steel components at the time of blowing stop, but the amount of alloy material that can be weighed in a short time at the time of blowing stop is Since the amount is limited, it is necessary to weigh the amount of alloy material charged before blowing is stopped for the amount exceeding the amount of alloy iron that can be weighed within the limited time after blowing. However, before the blowout, the molten steel composition at the time of blowout, such as the C concentration, is not known, so it is not possible to accurately calculate the alloy material input amount, and as a result, in consideration of safety, the C content, etc. In some cases, it is necessary to use less expensive alloy materials. Therefore, in order to more reliably suppress the alloy material cost, it is necessary to reduce the amount of the alloy material to be weighed before the blowing is stopped. On the other hand, the amount of alloy material that can be weighed at the time of blowing is limited due to equipment and operating conditions. Therefore, from the amount of alloy material that can be weighed in a short time at the time of blowing, the amount of the alloy material brand m, which is weighed in advance before blowing, and the amount of the alloy material brand m, which is thrown at the time of blowing, are described above. By using the equations (9) and (10), the alloy material cost can be minimized even when the method of separately charging the alloy material before and after blowing is adopted. As a result, it is possible to realize an alloy component adjustment operation that does not adversely affect the subsequent line while minimizing the cost of the alloy material even when the amount of the alloy material input is large.

【0037】[0037]

【実施例】次に、実施例を挙げて本発明をより具体的に
説明するが、本発明はもとより下記実施例によって制限
を受けるものではなく、前・後記の趣旨に適合し得る範
囲で適当に変更を加えて実施することも勿論可能であ
り、それらはいずれも本発明の技術的範囲に含まれる。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and is not limited to the following examples. It is, of course, possible to modify and implement the present invention, and all of them are included in the technical scope of the present invention.

【0038】(実験例1)溶製のための精錬炉として溶
鋼量100トン/チャージの炉を使用し、表2に示す銘
柄、組成および単価の合金材を用いて溶鋼の成分調製を
行なった。調整する元素はC,Mn,Si,Crおよび
不純物としてのBとし、表1に示す吹止め溶鋼の分析成
分値を基準とし、同表に示す目標成分値1〜4に合金成
分量を調整する場合について、本発明法を採用し前記式
(1)〜(3)、あるいは更に式(7)や(8a)(8
b)を加味して合金材銘柄の選択とその添加量を算出し
た例と、従来法を採用した例について成分調整実験を行
ない、表3,4に示す結果を得た。尚、吹止め時におけ
る合金材秤量値の上限は、各銘柄の合金材についてそれ
ぞれ500kgとした。また、式(1)(3)における
各元素の歩留りYi は何れも100%、係数Am は0.
01、係数Bi は100として計算した。
(Experimental Example 1) As a refining furnace for smelting, a furnace having a molten steel amount of 100 tons / charge was used, and the components of the molten steel were prepared using the alloy materials of the brand, composition and unit price shown in Table 2. . The elements to be adjusted are C, Mn, Si, Cr and B as impurities, and the alloy component amounts are adjusted to the target component values 1 to 4 shown in the table based on the analytical component values of the blow-stop molten steel shown in Table 1. In this case, the method of the present invention is adopted and the formulas (1) to (3), or further formulas (7) and (8a) (8) are used.
The composition adjustment experiment was conducted for an example in which the selection of alloy material brand and its addition amount were calculated in consideration of b) and an example in which the conventional method was adopted, and the results shown in Tables 3 and 4 were obtained. The upper limit of the alloy material weighing value at the time of blowing was set to 500 kg for each brand of alloy material. Further, the yield Y i of each element in the formulas (1) and (3) is 100%, and the coefficient A m is 0.
01 and coefficient B i were calculated as 100.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】目標成分値1は、不純物要因を加味しない
で成分調整を行なった場合の例であり、操業者が手計算
によって添加合金材銘柄と投入量を算出する従来法で
は、計算が煩雑となるためSiとMnの両方を含む合金
Fの使用を敬遠する傾向にあり、SiとMnを夫々単独
で含有する合金材銘柄を選択するため、合金材コストは
高めになる傾向があった。しかしながら、線形計画法に
よって合金材計算を行なう方法を採用すると、合金材銘
柄の選択とその投入量を含めた合金計算を極く短時間で
行なえるため、より低コストの合金材銘柄の選択と投入
量を瞬時に割り出すことができ、合金材コストを操業者
の手計算による従来法に比べて約93%に低減すること
ができる。
The target component value of 1 is an example of the case where the components are adjusted without taking the factor of impurities into consideration. In the conventional method in which the operator manually calculates the additive alloy material brand and the input amount, the calculation is complicated. Therefore, there is a tendency to refrain from using the alloy F containing both Si and Mn. Since alloy material brands containing Si and Mn alone are selected, the alloy material cost tends to increase. However, if the method of alloy material calculation by linear programming is adopted, the alloy material brand selection and the alloy calculation including the input amount can be performed in an extremely short time. The input amount can be instantly determined, and the alloy material cost can be reduced to about 93% as compared with the conventional method calculated by the operator.

【0044】また、線形計画法を採用した場合でも、従
来法では吹止め時に大量(1426kg)の合金Fを秤
量しなければならず、その秤量と投入にかなりの時間を
要するため、転炉耐火物等への悪影響が懸念されるが、
本発明の方法を採用して合金Fの添加を吹止めの前・後
に分けて実施し、吹止め時に算出して投入する合金材の
量を500kg以下に抑えることによって、調質・出鋼
に要する時間を延ばすことなく、合金材コストの低減を
有効に実施することが可能となる。
Even when the linear programming method is adopted, in the conventional method, a large amount (1426 kg) of alloy F must be weighed at the time of blowing, and it takes a considerable time to weigh and put it in, so that the converter fire There is concern about adverse effects on things,
By adopting the method of the present invention and adding the alloy F separately before and after spraying, and suppressing the amount of alloy material calculated and input at the time of spraying to 500 kg or less The alloy material cost can be effectively reduced without extending the time required.

【0045】また目標成分値2も、不純物要因を加味し
ないで成分調整を行なった場合の例であり、従来の線形
計画法を採用した合金計算法では、元素Cについて前記
(1’)式の右辺がマイナスとなるため実行解が得られ
ず、合金計算ができない。ところが本発明の方法によれ
ば、前記(1)式における(Ti E−Ti S)の値がマイナ
スとなってもΔDi に吸収されるので実行解を求めるこ
とができ、また前記(3)式が最小となる様な合金材銘
柄の選択と投入量を決定することによって、目標成分値
と合金材添加後の溶鋼成分のズレが極力少なくなる様な
合金計算が可能となる。しかも、合金材の一部を吹止め
前に予め添加しておく方法を採用することによって、吹
止時に添加する合金材の添加量を秤量限界の500kg
以下に抑えることができ、転炉耐火物への悪影響も回避
できる。
The target component value 2 is also an example of the case where the component adjustment is performed without adding the impurity factor. In the alloy calculation method adopting the conventional linear programming method, the element C of the above equation (1 ') is used. Since the right side is negative, a practical solution cannot be obtained and alloy calculation cannot be performed. However, according to the method of the present invention, even if the value of (T i E −T i S ) in the equation (1) becomes negative, it is absorbed by ΔD i , so that an execution solution can be obtained, and the above ( By selecting the alloy material brand that minimizes the formula 3) and determining the input amount, it becomes possible to perform alloy calculation such that the deviation between the target component value and the molten steel component after addition of the alloy material is minimized. Moreover, by adopting a method in which a part of the alloy material is added before the blowing is stopped, the addition amount of the alloy material added at the time of the blowing is 500 kg, which is the weighing limit.
It can be suppressed to the following and adverse effects on the converter refractory can be avoided.

【0046】即ち従来法の線形計画法では、目標成分値
と分析成分値によっては解が求まらず、コストを最小と
するための合金銘柄の選択およびその投入量を算出し得
なくなることがあるが、本発明の方法によれば、どの様
な場合でも、最適合金銘柄の選択とその投入量を確実に
求めることができ、常に合金材コストを最小に抑えるこ
とが可能となる。
That is, in the conventional linear programming method, the solution cannot be obtained depending on the target component value and the analysis component value, and it becomes impossible to select the alloy brand for minimizing the cost and calculate the input amount. However, according to the method of the present invention, in any case, the selection of the optimum alloy brand and the input amount thereof can be reliably obtained, and the alloy material cost can always be minimized.

【0047】次に目標成分値3の場合の本発明法では、
Bを不純物元素として不純物要因を示す前記式(7)式
を加味して線形計画法による合金計算を行なっているの
に対し、従来法では、該不純物要因は全く考慮されてい
ない。そのためこの従来法では、目標成分値1の場合と
同様に合金Fを主体とした安価な合金計算してしまい、
合金材コストは低くなっているが、B含有量が目標値の
上限を超える4.29ppmとなっており、製品溶鋼と
しては規格外品となっている。これに対し本発明法で
は、合金材銘柄の選択基準が変わり合金材コストは若干
高くなっているが、B含有量は目標値の上限値に納まっ
ており、溶鋼品質上の問題も全く生じない合金計算が実
行されていることが分かる。
Next, in the method of the present invention when the target component value is 3,
The alloy calculation by the linear programming method is performed by adding the above equation (7) showing the impurity factor with B as an impurity element, whereas the conventional factor does not consider the impurity factor at all. Therefore, in this conventional method, as in the case of the target component value 1, an inexpensive alloy mainly composed of alloy F is calculated,
Although the alloy material cost is low, the B content is 4.29 ppm, which exceeds the upper limit of the target value, and it is a nonstandard product molten steel. On the other hand, in the method of the present invention, the selection criteria of the alloy material brand are changed and the alloy material cost is slightly higher, but the B content is within the upper limit of the target value, and there is no problem with molten steel quality. It can be seen that the alloy calculation is being performed.

【0048】また、目標成分値4の場合、従来法で合金
Aを選択したときの投入量は559kgと計算される
が、該銘柄の合金材が1000kg袋詰めの場合は、計
算通りに投入することができない。ところが本発明の方
法によれば、前記分枝限定法を組合せることによって、
袋詰め合金については袋詰め単位ごとに吹止め前に計算
することができるため計算通りの操業が可能となる。
Further, when the target component value is 4, the charging amount when the alloy A is selected by the conventional method is calculated to be 559 kg, but when the alloy material of the brand is 1000 kg in a bag, the charging amount is calculated. I can't. However, according to the method of the present invention, by combining the branch and bound methods,
For bagged alloys, it is possible to perform the operation as calculated because it can be calculated before blowing off for each bagged unit.

【0049】なお図7、図8は、精錬炉実機を用いた実
用レベルでの成分調整を実施した多数の実操業例から、
創業者が手計算で合金計算を行なった場合と、従来の線
形計画法および本発明法を採用して合金計算を行なった
場合のデータを集計して合金コスト指数、および最小コ
スト計算が行なわれた遂行率(実行解が求められた率)
を調べ、夫々の平均値として整理したグラフである。図
7からも明らかである様に、合金コスト指数について
は、手計算した場合を100として、従来の線形計画法
では4%であったものが、本発明ではその倍の8%にま
でコスト低減を図れることが分かる。また図8からは、
本発明による遂行率100に対し、従来の線形計画法で
は実行解が求められないことがしばしば発生し、遂行率
は80%で1/4の比率で遂行不能が生じ、また手計算
による方法の場合の遂行率は60%に過ぎない。
7 and 8 show a large number of actual operation examples in which the components were adjusted at a practical level using an actual refining furnace.
The alloy cost index and the minimum cost calculation are performed by collecting the data when the founder manually calculates the alloy and when the conventional linear programming method and the method of the present invention are used to calculate the alloy. Execution rate (rate at which a solution was obtained)
Is a graph in which the values are examined and arranged as average values. As is clear from FIG. 7, the alloy cost index is 4% in the conventional linear programming method when the manually calculated value is 100, but is doubled in the present invention to 8%. You can see that Also, from FIG.
In contrast to the performance rate of 100 according to the present invention, it is often the case that the conventional linear programming method cannot find an execution solution, the performance rate is 80%, and the performance cannot be achieved at a rate of 1/4. In that case, the execution rate is only 60%.

【0050】この様に本発明によれば、成分調整式
(1)、合金投入量の非負の式(2)、合金材コストと
合金材投入後の目標成分からのずれの和を示す目標関数
式(3)を使用し、線形計画法で合金計算することによ
り、従来の線形計画法を利用した合金計算法よりも一層
合金材コストの低減を図ることができ、また、不純物元
素アップ防止の式(7)を組み込むことにより、不純物
要因の溶鋼品質不良も回避できる。また、前記(9)、
(10)式を組合せて実施すれば、吹止め時の限られた
時間内に秤量可能な合金材量から吹止め前に予め秤量す
る合金銘柄mの投入量と吹止時に投入する合金銘柄mの
投入量を計算する方法を組合せて実施すれば、より実操
業に適合したコスト低減を実施することが可能となる。
As described above, according to the present invention, the component adjustment formula (1), the non-negative formula (2) of the amount of alloy input, the target function indicating the sum of the cost of the alloy material and the deviation from the target component after the alloy material is supplied. By using the formula (3) and performing the alloy calculation by the linear programming method, the alloy material cost can be further reduced as compared with the conventional alloy programming method using the linear programming method. By incorporating the equation (7), it is possible to avoid defective molten steel quality due to impurity factors. In addition, (9),
If the formula (10) is combined and carried out, the amount of alloy brand m to be weighed in advance before blowing is determined from the amount of alloy material that can be weighed within the limited time at the time of blowing and the alloy brand m to be thrown in at the time of blowing If the method for calculating the input amount of is combined and executed, it is possible to further reduce the cost suitable for the actual operation.

【0051】(実験例2)実験例1と同様、溶製のため
の精錬炉として溶鋼量100トン/チャージの炉を使用
し、表2に示す銘柄、組成および単価の合金材を用いて
溶鋼の成分調製を行なった。調整する元素はC,Mn,
Si,Cr,P,Bおよび下記(11)、(12)式で
表される強度係数CEと溶接性係数CEQとし、表5に
示す吹止め溶鋼の現状成分値を基準とし、同表に示す目
標成分値に調整する場合について、本発明法を採用し、
前記式(1)〜(3)、或いは前記式(1)、(2)、
(4)〜(6)を用いて合金材銘柄の選択とその添加量
を算出した成分調整実験を行ない、図9、10に示す結
果を得た。尚、上限制約値、下限制約値は表5中に、ま
た上限許容値および下限許容値は下記(13)(14)
式に示す。式中における各元素の歩留りYi は何れも1
00%とし、係数Am については、成分調整する元素が
C,Mn,Si,Cr,P,Bの場合は10.0とし、
CEおよびCEQについては5.0とした。また(3)
式中のBi は0.01、(6)式中のB i は0.002
とし、αi はどの元素についても1000.0とした。 CE =C+Si/5+Mn/6+P+1.2V+Nb ・・・(11) CEQ=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(12) Uki=0.8(Ui −Ti E)+Ti E ・・・(13) Lki=Ti E−0.8(Ti E−Li ) ・・・(14)
(Experimental Example 2) As in Experimental Example 1, because of melting
Uses a molten steel amount of 100 tons / charge as a refining furnace
However, using the alloy material of the brand, composition and unit price shown in Table 2,
The composition of molten steel was adjusted. The elements to be adjusted are C, Mn,
Si, Cr, P, B and the following equations (11) and (12)
The strength coefficient CE and the weldability coefficient CEQ shown in Table 5 are shown in Table 5.
Based on the current composition values of the blown molten steel shown in the table,
When adjusting to the standard component value, the method of the present invention is adopted,
Formulas (1) to (3), or Formulas (1) and (2),
Selection of alloy material brand and addition amount using (4) to (6)
The component adjustment experiment for calculating
I got a fruit. The upper limit constraint value and the lower limit constraint value are shown in Table 5.
The upper limit and lower limit are given in (13) (14) below.
Shown in the formula. Yield Y of each element in the formulai Is 1
00%, coefficient Am As for the
In the case of C, Mn, Si, Cr, P, B, set to 10.0,
CE and CEQ were set to 5.0. Also (3)
B in the formulai Is 0.01, B in equation (6) i Is 0.002
And αi Was set to 1000.0 for all elements. CE = C + Si / 5 + Mn / 6 + P + 1.2V + Nb (11) CEQ = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (12) Uki= 0.8 (Ui -Ti E) + Ti E ... (13) Lki= Ti E-0.8 (Ti E-Li ) ・ ・ ・ (14)

【0052】図9、10は両図ともに各調整成分を上下
限制約値、目標値、上下限許容値で正規化したものであ
り、各調整成分の計算結果をプロットしている。図9は
表5における現状成分の内V=0として計算したもの
で、目標値に調整可能な場合であり、(3)式或いは
(6)式のいずれを用いた場合でも同様の結果が得られ
る。図10は上下限制約内に調整可能であるが、全てを
目標値に調整できない場合であり、(3)式を用いた場
合にはCE、CEQが下限制約値、上限制約値近傍に調
整されているが、(6)式を用いた場合にはCE、CE
Qとも上限制約値、下限制約値の内側に調整されてい
る。成分の調整精度やコストを多少犠牲にしても調整成
分値の上下限制約値近傍への調整を防ぎたい場合には
(6)式を用いた方が有効であることが分かる。
9 and 10 are obtained by normalizing each adjustment component by the upper and lower limit constraint values, the target values, and the upper and lower limit allowable values, and plot the calculation results of each adjustment component. FIG. 9 shows a case where V = 0 of the current components in Table 5 is calculated, and it is a case where the target value can be adjusted, and the same result is obtained regardless of whether the formula (3) or the formula (6) is used. To be FIG. 10 shows a case where the upper and lower limit constraints can be adjusted, but not all of them can be adjusted to the target values, and when Equation (3) is used, CE and CEQ are adjusted to be near the lower limit constraint value and the upper limit constraint value. However, when equation (6) is used, CE, CE
Both Q are adjusted inside the upper limit constraint value and the lower limit constraint value. It can be seen that it is more effective to use the equation (6) when it is desired to prevent the adjustment component values from being adjusted to the vicinity of the upper and lower limit constraint values, even if the adjustment accuracy and cost of the components are sacrificed to some extent.

【0053】[0053]

【表5】 [Table 5]

【0054】[0054]

【発明の効果】本発明は以上の様に構成されており、精
錬炉での溶製終了段階で溶鋼中のある成分含有量が目標
値を越えてしまった様な場合でも、最適の合金材銘柄の
選択とその投入量を正確に割り出すことができ、合金計
算の完全な自動化と合金材コストの低減を確実に達成し
得ることになった。
The present invention is configured as described above, and even when the content of a certain component in the molten steel exceeds the target value at the end of melting in the refining furnace, the optimum alloy material is obtained. It is possible to accurately determine the brand selection and the input amount, and it is possible to achieve complete automation of alloy calculation and reduction of alloy material cost with certainty.

【0055】また上記の効果に加えて、成分調整に用い
られる合金材中に含まれる不純物に由来する欠陥溶鋼の
発生も生じることなく、適正な合金材銘柄の選択と投入
量割り出しが可能となる。
In addition to the above-mentioned effects, it is possible to properly select the alloy material brand and to determine the amount to be charged, without generating defective molten steel due to impurities contained in the alloy material used for component adjustment. .

【0056】更に、現場の状況等によって合金材投入量
の上限および下限が存在する様な場合、あるいは成分調
整のための合金材投入量が多くなって出鋼前の短時間内
に当該合金材の秤量が間に合わなくなる様な事態が想定
される場合でも、出鋼作業の遅延やその後の操業ライン
の乱れ等を含めて何らの問題も生じることなく、確実な
成分調整が可能となる。
Further, when there is an upper limit and a lower limit of the amount of the alloy material input depending on the situation at the site, or the amount of the alloy material input for adjusting the components is large, the alloy material is added within a short time before tapping. Even if it is assumed that the weighing will not be in time, there will be no problems including delay of tapping work and disturbance of the operating line after that, and reliable composition adjustment is possible.

【0057】また更に、精錬設備に常備されているホッ
パー数が限られていて合金材を予め決められた重量単位
で投入しなければならない様な場合であっても、該投入
量も加味して最も適切な合金材銘柄の選択と投入量を決
定することができる。
Further, even in the case where the number of hoppers that are constantly provided in the refining equipment is limited and the alloy material must be charged in a predetermined weight unit, the charging amount is also taken into consideration. The most suitable alloy material brand can be selected and the input amount can be determined.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項3に記載の溶鋼の成分調整法の計算過程
を示すフロー図である。
FIG. 1 is a flowchart showing a calculation process of a component adjusting method for molten steel according to claim 3.

【図2】請求項4に記載の溶鋼の成分調整法の計算過程
を示すフロー図である。
FIG. 2 is a flowchart showing a calculation process of a component adjusting method for molten steel according to claim 4;

【図3】本発明に従って線形計画法を実施する際の、合
金材銘柄の選択とその投入量の算出経緯の例を示す図で
ある。
FIG. 3 is a diagram showing an example of the selection process of an alloy material brand and the calculation process of the input amount when performing the linear programming according to the present invention.

【図4】分岐限定法を実施する際の説明図である。FIG. 4 is an explanatory diagram for performing a branch and bound method.

【図5】メンバシップ関数を説明するグラフである。FIG. 5 is a graph illustrating a membership function.

【図6】請求項5に記載の溶鋼の成分調整法の計算過程
を示すフロー図である。
FIG. 6 is a flowchart showing a calculation process of a component adjusting method for molten steel according to claim 5;

【図7】本発明を実施した場合と、従来の手計算法ある
いは従来の線形計画法を採用した場合の合金材コスト指
標を示すグラフである。
FIG. 7 is a graph showing an alloy material cost index when the present invention is implemented and when a conventional manual calculation method or a conventional linear programming method is adopted.

【図8】本発明を実施した場合と、従来の手計算法ある
いは従来の線形計画法を採用した場合の、最小合金材コ
スト算出の遂行率を対比して示すグラフである。
FIG. 8 is a graph showing a comparison of the performance rate of the minimum alloy material cost calculation when the present invention is implemented and when the conventional manual calculation method or the conventional linear programming method is adopted.

【図9】実験例2において、現状成分値の内Vの値を0
とした場合の本発明の計算結果の例を示すグラフであ
る。
FIG. 9 is a graph showing the V value of the current component value is 0 in Experimental Example 2.
6 is a graph showing an example of the calculation result of the present invention in the case of.

【図10】実験例2において、現状成分値をそのまま用
いた場合の本発明の計算結果の例を示すグラフである。
10 is a graph showing an example of the calculation result of the present invention when the current component value is used as it is in Experimental Example 2. FIG.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼に合金材を添加して溶鋼の成分調整
を行うに当たり、溶鋼中の各合金元素の現状値と目標含
有量、前記合金材の各銘柄別の単価と各合金元素の含有
量および溶鋼中への歩留まり、並びに溶鋼量に基づい
て、線形計画法によって合金材の投入量を設定して溶鋼
の成分調整を行う方法において、合金材コストと、合金
材投入後の各合金元素毎の到達見込み量と目標含有量の
ずれとのバランスを考慮して合金材の投入量を決定する
ことを特徴とする溶鋼の成分調整方法。
1. When the alloy material is added to the molten steel to adjust the composition of the molten steel, the current value and target content of each alloying element in the molten steel, the unit price of each brand of the alloying material and the content of each alloying element In the method of adjusting the composition of molten steel by setting the amount of alloy material input by linear programming based on the amount and yield in molten steel, and the amount of molten steel, alloy material cost and each alloy element after the alloy material is supplied A method for adjusting the composition of molten steel, characterized in that the amount of alloy material input is determined in consideration of the balance between the expected arrival amount and the deviation of the target content.
【請求項2】 更に、各合金元素毎に予め規定されてい
る上限制約値および下限制約値の両方またはいずれか一
方を考慮して合金材の投入量を決定する請求項1に記載
の溶鋼の成分調整方法。
2. The molten steel according to claim 1, wherein the amount of alloy material to be charged is determined in consideration of both or one of an upper limit constraint value and a lower limit constraint value defined in advance for each alloy element. Composition adjustment method.
【請求項3】 溶鋼に合金材を添加して溶鋼の成分調整
を行うに当たり、溶鋼中の各合金元素の現状値と目標含
有量、前記合金材の各銘柄別の単価と各合金元素の含有
量および溶鋼中への歩留まり、並びに溶鋼量に基づい
て、線形計画法によって合金材の投入量を設定して溶鋼
の成分調整を行う方法において、下記(1)式で示され
る成分調整式と、下記(2)式で示される合金材投入量
の非負の式を使用し、線形計画法によって、合金材コス
トおよび合金材投入後の各合金元素毎の到達見込み量と
目標含有量のずれの和を示す下記式(3)で示される目
標関数が最小となる様に、合金材の投入量を決定するこ
とを特徴とする溶鋼の成分調整方法。 (Ti E−Ti S)+ΔDi =[Σm=1 (Wm ・Ci m・Yi )/WFe] ・・・(1) Wm ≧0 ・・・(2) Σm=1 (Am ・Wm ・Pm )+Σi=1 (Bi ・|ΔDi |)・・・(3) (式中、Ti Eは溶鋼中の合金元素iの目標含有量 Ti Sは溶鋼中の合金元素iの現状値 Wm は合金材銘柄mの投入量 Ci mは合金材銘柄m中の合金元素iの含有量 Yi は合金元素iの溶鋼中への歩留まり WFeは溶鋼量 ΔDi は合金材の投入量および該投入される合金材中の
合金元素iの含有量と溶鋼中への歩留まりから計算され
る溶鋼中の合金元素iの到達見込み量と合金元素iの目
標含有量との差 Am ,Bi は係数 Pm は合金材銘柄mの単価を表す)
3. When the alloy material is added to the molten steel to adjust the composition of the molten steel, the present value and the target content of each alloy element in the molten steel, the unit price of each brand of the alloy material and the content of each alloy element Based on the amount and yield in molten steel, and the amount of molten steel, in the method of adjusting the amount of alloy material input by linear programming to adjust the composition of molten steel, a component adjustment formula represented by the following formula (1), Using the non-negative formula of the alloy material input amount shown in the following equation (2), the linear programming method is used to calculate the sum of the difference between the alloy material cost and the expected arrival amount of each alloy element after the alloy material input and the target content. The method for adjusting the composition of molten steel is characterized in that the amount of alloy material charged is determined so that the target function represented by the following equation (3) is (T i E −T i S ) + ΔD i = [Σ m = 1 (W m · C i m · Y i ) / W Fe ] (1) W m ≧ 0 (2) Σ m = 1 (A m · W m · P m ) + Σ i = 1 (B i · | ΔD i |) (3) (where T i E is the target content of the alloy element i in the molten steel T i S is the current value of the alloy element i in the molten steel W m is the input amount of the alloy material brand m C i m is the content of the alloy element i in the alloy material brand m Y i is the yield of the alloy element i in the molten steel W Fe is the amount of molten steel ΔD i is the amount of alloying material, the content of alloying element i in the alloying material and the yield of alloying element i in the molten steel calculated from the yield in the molten steel, and the alloy Differences from the target content of element i A m and B i are coefficients P m is the unit price of alloy material brand m)
【請求項4】 溶鋼に合金材を添加して溶鋼の成分調整
を行うに当たり、溶鋼中の各合金元素の分析値と目標含
有量、前記合金材の各銘柄別の単価と各合金元素の含有
量および溶鋼中への歩留まり、並びに溶鋼量に基づい
て、線形計画法によって合金材の投入量を設定して溶鋼
の成分調整を行う方法において、各合金元素毎に予め決
定されている各調整成分の上限制約値および下限制約値
と、目標値と該上限制約値の間であれば任意に設定でき
る上限許容値、並びに目標値と該下限制約値の間であれ
ば任意に設定できる下限許容値から下記(4)、(5)
式を用いて下記〜の様に定められる各合金元素毎の
メンバシップ関数および前記(1)、(2)式を使用
し、線形計画法によって、合金材コスト、合金材投入後
の各合金元素毎の到達見込み量と目標含有量のずれ、お
よびメンバシップ関数値の和を示す下記式(6)で示さ
れる目標関数が最小となる様に、合金材の投入量を決定
することを特徴とする溶鋼の成分調整方法。 f1= {[Σm=1 (Wm ・Ci m・Yi )/WFe]+Ti s−Uki}/(Ui −Uki) ・・・(4) f2= 1−{[Σm=1 (Wm ・Ci m・Yi )/WFe]+Ti s−Li }/(Lki−Li ) ・・・(5) λ=0 (f1≦0かつf2≦0の場合) λ=f1(f1>0かつf2≦0の場合) λ=f2(f1≦0かつf2>0の場合) Σm=1 (Am ・Wm ・Pm )+Σi=1 (Bi ・|ΔDi |)+Σi=1 αi ・λi ・・・(6) (式中、Ukiは溶鋼中の合金元素iの上限許容値 Ui は溶鋼中の合金元素iの上限制約値 Lkiは溶鋼中の合金元素iの下限許容値 Li は溶鋼中の合金元素iの下限制約値 αi は係数 λi は溶鋼中の合金元素iのメンバシップ関数値を表
す)
4. When the alloy material is added to the molten steel to adjust the composition of the molten steel, the analytical value and the target content of each alloy element in the molten steel, the unit price of each brand of the alloy material and the content of each alloy element Amount and yield in molten steel, and based on the molten steel amount, in the method of adjusting the amount of alloy material input by linear programming to adjust the composition of molten steel, each adjustment component determined in advance for each alloy element Upper limit constraint value and lower limit constraint value, upper limit allowable value that can be arbitrarily set between the target value and the upper limit constraint value, and lower limit allowable value that can be arbitrarily set between the target value and the lower limit constraint value To (4) and (5) below
Using the membership function for each alloying element and the above equations (1) and (2) determined by using the equations, the alloy material cost and each alloying element after the alloying material is introduced by the linear programming method. It is characterized in that the amount of alloy material input is determined so that the target function expressed by the following equation (6) indicating the sum of the expected arrival amount and the target content and the membership function value is minimized. A method for adjusting the composition of molten steel. f1 = {[Σ m = 1 (W m · C i m · Y i ) / W Fe ] + T i s −U ki } / (U i −U ki ) ... (4) f2 = 1-{[ Σ m = 1 (W m · C i m · Y i ) / W Fe ] + T i s −L i } / (L ki −L i ) ... (5) λ = 0 (f1 ≦ 0 and f2 ≦ 0) λ = f1 (when f1> 0 and f2 ≦ 0) λ = f2 (when f1 ≦ 0 and f2> 0) Σ m = 1 (A m · W m · P m ) + Σ i = 1 (B i · | ΔD i |) + Σ i = 1 α i · λ i (6) (wherein U ki is the upper limit allowable value of alloy element i in molten steel U i is the alloy element i in molten steel) Upper limit constraint value L ki is a lower limit allowable value of alloy element i in molten steel L i is a lower limit constraint value of alloy element i in molten steel α i is a coefficient λ i is a membership function value of alloy element i in molten steel )
【請求項5】 溶鋼に合金材を添加して溶鋼の成分調整
を行うに当たり、溶鋼中の各合金元素の分析値と目標含
有量、前記合金材の各銘柄別の単価と各合金元素の含有
量および溶鋼中への歩留まり、並びに溶鋼量に基づい
て、線形計画法によって合金材の投入量を設定して溶鋼
の成分調整を行う方法において、各合金元素毎に予め決
定されている各調整成分の上限制約値および下限制約値
と、目標値と該上限制約値の間であれば任意に設定でき
る上限許容値、並びに目標値と下限制約値の間であれば
任意に設定できる下限許容値から前記(4)、(5)式
を用いて前記〜の様に定められる各合金元素毎のメ
ンバシップ関数に適当な上限値を設け、該メンバシップ
関数値が該上限値を超える場合には、前記(1)式で示
される成分調整式と、前記(2)式で示される合金材投
入量の非負の式を使用し、線形計画法によって、合金材
コストおよび合金材投入後の各合金元素毎の到達見込み
量と目標含有量のずれの和を示す前記式(3)で示され
る目標関数が最小となる様に、合金材の投入量を決定
し、該メンバシップ関数値が該上限値以下である場合に
は、該メンバシップ関数および前記(1)、(2)式を
使用し、線形計画法によって、合金材コスト、合金材投
入後の各合金元素毎の到達見込み量と目標含有量のず
れ、およびメンバシップ関数値の和を示す前記式(6)
で示される目標関数が最小となる様に、合金材の投入量
を決定することを特徴とする溶鋼の成分調整方法。
5. When the alloy material is added to the molten steel to adjust the composition of the molten steel, the analytical value and the target content of each alloy element in the molten steel, the unit price of each brand of the alloy material and the content of each alloy element Amount and yield in molten steel, and based on the molten steel amount, in the method of adjusting the amount of alloy material input by linear programming to adjust the composition of molten steel, each adjustment component determined in advance for each alloy element From the upper limit constraint value and lower limit constraint value, the upper limit allowable value that can be arbitrarily set between the target value and the upper limit constraint value, and the lower limit allowable value that can be arbitrarily set between the target value and the lower limit constraint value. When an appropriate upper limit is set for the membership function for each alloy element determined as described above using the equations (4) and (5) and the membership function value exceeds the upper limit, The component adjustment formula shown by the formula (1), Using the non-negative expression of the alloy material input amount given by the equation (2), the sum of the difference between the alloy material cost and the expected arrival amount of each alloy element after the alloy material input and the target content is calculated by the linear programming method. The input amount of the alloy material is determined so that the target function represented by the formula (3) shown below becomes the minimum, and when the membership function value is equal to or less than the upper limit value, the membership function and the ( The sum of the alloy material cost, the difference between the expected arrival amount and the target content of each alloy element after the alloy material is charged, and the sum of the membership function values is calculated by linear programming using the equations 1) and 2). Formula (6)
A method for adjusting the composition of molten steel, characterized in that the amount of alloy material input is determined so that the target function shown by is minimized.
【請求項6】 不純物元素要因を示す下記(7)式を加
えて、線形計画法により合金材の投入量を決定する請求
項3〜5のいずれかに記載の溶鋼の成分調整方法。 Tb E−Tb S≧[Σb=1 (Wm ・Cb m・Yb )/WFe]・・・(7) (式中、Tb Eは溶鋼中に含まれる不純物元素bの限界含
有量 Tb Sは溶鋼中の不純物元素bの現状値 Cb mは合金材銘柄m中の不純物元素bの含有量 Yb は不純物元素bの溶鋼中への歩留まりを表す)
6. The method for adjusting the composition of molten steel according to claim 3, wherein the amount of alloy material input is determined by a linear programming method by adding the following equation (7) indicating the factor of impurity element. T b E −T b S ≧ [Σ b = 1 (W m · C b m · Y b ) / W Fe ] ... (7) (In the formula, T b E is an impurity element b contained in molten steel. Content of T b S is the current value of impurity element b in molten steel C b m is the content of impurity element b in alloy material brand m Y b is the yield of impurity element b in molten steel)
【請求項7】 更に、合金材投入量の上限値および下限
値を示す下記(8a),(8b)式を加えて合金材の投
入量を決定する請求項3〜6のいずれかに記載の溶鋼の
成分調整方法。 Wm ≧Lm ・・・(8a),Wm ≦Um ・・・(8b) (式中、Lm は合金材銘柄mの投入量の下限値 Um は合金材銘柄mの投入量の上限値を表す)
7. The method according to any one of claims 3 to 6, further comprising adding the following equations (8a) and (8b) showing the upper limit value and the lower limit value of the alloy material input amount to determine the alloy material input amount. Method for adjusting composition of molten steel. W m ≧ L m (8a), W m ≦ U m (8b) (where L m is the lower limit of the amount of alloy material brand m input, and U m is the amount of alloy material brand m input. Represents the upper limit of
【請求項8】 精錬炉での精錬末期に、吹止め前と吹止
め後の2回に分けて合金材の添加を行う請求項3〜7の
いずれかに記載の溶鋼の成分調整方法。
8. The method for adjusting the composition of molten steel according to claim 3, wherein the alloy material is added in two steps, before and after blowing, at the final stage of refining in the refining furnace.
【請求項9】 合金材銘柄のうち少なくとも1種が、予
め決められた投入単位を有する場合、前記線形計画法に
分岐限定法を組み合わせて合金材投入量を決定する請求
項3〜8のいずれかに記載の溶鋼の成分調整方法。
9. The alloy material input amount is determined by combining the linear programming method with a branching and limiting method when at least one of the alloy material brands has a predetermined input unit. A method for adjusting the composition of molten steel according to Crab.
JP07395797A 1996-03-29 1997-03-26 Component adjustment method for molten steel Expired - Lifetime JP3746585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07395797A JP3746585B2 (en) 1996-03-29 1997-03-26 Component adjustment method for molten steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7757996 1996-03-29
JP8-77579 1996-03-29
JP07395797A JP3746585B2 (en) 1996-03-29 1997-03-26 Component adjustment method for molten steel

Publications (2)

Publication Number Publication Date
JPH09316516A true JPH09316516A (en) 1997-12-09
JP3746585B2 JP3746585B2 (en) 2006-02-15

Family

ID=26415099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07395797A Expired - Lifetime JP3746585B2 (en) 1996-03-29 1997-03-26 Component adjustment method for molten steel

Country Status (1)

Country Link
JP (1) JP3746585B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257494A (en) * 2005-03-17 2006-09-28 Kobe Steel Ltd Method, apparatus and program for setting components
JP2011168823A (en) * 2010-02-17 2011-09-01 Jfe Steel Corp Method for producing molten steel
CN110764412A (en) * 2018-07-27 2020-02-07 宝山钢铁股份有限公司 Control method of steelmaking alloy input amount
KR20200021247A (en) 2018-08-20 2020-02-28 주식회사 포스코 Method of operating converter
CN114990281A (en) * 2022-04-30 2022-09-02 日钢营口中板有限公司 Low-cost input control method for steelmaking alloy
CN115404299A (en) * 2022-07-19 2022-11-29 云南昆钢电子信息科技有限公司 System and method for optimizing addition amount of alloy for converter steelmaking
CN114990281B (en) * 2022-04-30 2024-05-14 日钢营口中板有限公司 Steelmaking alloy low-cost input control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257494A (en) * 2005-03-17 2006-09-28 Kobe Steel Ltd Method, apparatus and program for setting components
JP2011168823A (en) * 2010-02-17 2011-09-01 Jfe Steel Corp Method for producing molten steel
CN110764412A (en) * 2018-07-27 2020-02-07 宝山钢铁股份有限公司 Control method of steelmaking alloy input amount
CN110764412B (en) * 2018-07-27 2023-01-20 宝山钢铁股份有限公司 Control method of steelmaking alloy input amount
KR20200021247A (en) 2018-08-20 2020-02-28 주식회사 포스코 Method of operating converter
CN114990281A (en) * 2022-04-30 2022-09-02 日钢营口中板有限公司 Low-cost input control method for steelmaking alloy
CN114990281B (en) * 2022-04-30 2024-05-14 日钢营口中板有限公司 Steelmaking alloy low-cost input control method
CN115404299A (en) * 2022-07-19 2022-11-29 云南昆钢电子信息科技有限公司 System and method for optimizing addition amount of alloy for converter steelmaking

Also Published As

Publication number Publication date
JP3746585B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
JP6786964B2 (en) How to prevent blockage of continuous casting nozzle of sulfur-added steel
JPH09316516A (en) Method of regulating components of molten steel
CN107475481B (en) Control the steel-casting smelting process of Nb content
CN107815525A (en) Microalloy containing Nb builds steel wire rod and its production method
CN102719620A (en) Method for adding nitrogen into steel ladle
CN110766452A (en) Method for measuring and calculating metal yield of scrap steel
CN107955913A (en) Steel wire rod and its LF stove production methods are built containing V, Nb, Cr microalloy
CN107815604A (en) Steel wire rod and its LF stove production methods are built containing V, Nb, Ti microalloy
CN107815526A (en) Microalloy containing Nb builds Steel Bar and its production method
US5820842A (en) Silicon refining process
CN111500930A (en) Component control method of ultrapure stainless steel for nuclear power
KR102092752B1 (en) Method of operating converter
CN107747048A (en) Steel wire rod and its production method are built containing V, Nb, Ti, Cr microalloy
CN109897930A (en) A kind of method of the converter producing containing molybdenum steel
CN107955903A (en) Steel bar and its production method are built containing V, Cr microalloy
CN107747052A (en) Microalloy containing V builds steel wire rod and its production method
WO2019117200A1 (en) Method for refining molten iron
JPS6159386B2 (en)
CN107815606A (en) Steel wire rod and its production method are built containing V, Nb, Cr microalloy
JP2001011521A (en) Method for estimating molten steel temperature and carbon concentration at blowing time in converter, and blowing method in converter
CN107955908A (en) Microalloy containing Nb builds steel wire rod and its LF stove production methods
CN107955916A (en) Microalloy containing Ti builds steel wire rod and its LF stove production methods
CN219490065U (en) Automatic control system of accurate reinforced of converter alloy
CN107974618A (en) Steel wire rod and its production method are built containing V, Ti microalloy
JP3225788B2 (en) Method for producing steel with excellent toughness in weld heat affected zone

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

EXPY Cancellation because of completion of term