JPH0931606A - Corrosion resistant magnetic alloy - Google Patents

Corrosion resistant magnetic alloy

Info

Publication number
JPH0931606A
JPH0931606A JP7201311A JP20131195A JPH0931606A JP H0931606 A JPH0931606 A JP H0931606A JP 7201311 A JP7201311 A JP 7201311A JP 20131195 A JP20131195 A JP 20131195A JP H0931606 A JPH0931606 A JP H0931606A
Authority
JP
Japan
Prior art keywords
magnetic alloy
plating
corrosion
plating layer
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7201311A
Other languages
Japanese (ja)
Inventor
Atsushi Tagaya
敦 多賀谷
Makoto Ushijima
誠 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7201311A priority Critical patent/JPH0931606A/en
Publication of JPH0931606A publication Critical patent/JPH0931606A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Abstract

PROBLEM TO BE SOLVED: To improve the corrosion resistance of a magnetic R-TM-B alloy by softening a coating film by the formation of an acicular structure and forming a microporous surface. SOLUTION: This corrosion resistant magnetic alloy has an Ni plating layer having an acicular structure of >=2μm length on the surface of a magnetic R-TM-B alloy consisting of 5-40wt.% R (R is one or more kinds of rare earth elements including Y), 50-90wt.% TM (TM is one or more kinds of transition metals selected from among Fe, Co, Ni, Ga, Al, Ti, V, Cr, Mn, Zr, Hf, Nb, Ta, Mo, Ge, Sn, Sb and Bi) and 0.2-8wt.% B (boron). The adhesion of the magnetic body to the Ni plating layer is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐食性磁性合金であり、
磁石体表面に長さ2μm以上の針状組織から構成される
Niめっき層を被覆することにより、著しく耐食性を改
善したものに関する。
The present invention relates to a corrosion resistant magnetic alloy,
The present invention relates to a magnet body having a significantly improved corrosion resistance by coating the surface of the magnet body with a Ni plating layer having a needle-like structure having a length of 2 μm or more.

【0002】[0002]

【従来の技術】電気・電子機器の高性能・小型化に伴っ
て、その一部品たる磁性合金にも同様の要求が強まって
きた。すなわち以前の最強の磁性合金は希土類・コバル
ト(R−Co)系であったが、近年、より強力なR−T
M−B系磁性合金が台頭してきた(特開昭59−460
08号公報)。ここにRはYを含む希土類元素の1種又
は2種以上の組合わせであり、TMはFe,Coを中心
とする遷移金属であり、一部を他の金属元素又は非金属
元素で置換したものも包含する。Bは硼素である。しか
しR−TM−B系磁性合金は極めて錆びやすいという問
題点があった。そのため耐食性を改善するために、永久
磁石体表面に耐酸化性の保護層を設ける手段がとられて
きた。保護層の種類としては、電解Niめっき、耐酸化
性樹脂、Alイオンプレーティング等が提案されてお
り、とりわけ電解Niめっきは簡易な処理でR−TM−
B系磁性合金の耐食性を向上するものとして注目されて
いる(特開昭60−54406号公報)。電解Niめっ
きは、耐酸化性樹脂と比較して表面保護層の機械的強度
に優れており、また保護層自体の吸湿性がほとんどない
という長所を有している。更にNiめっきの種類として
は一般的に、図2に示した様な微細層状組織から構成さ
れるNiめっき層が推奨されてきた。
2. Description of the Related Art With the high performance and miniaturization of electric and electronic devices, the same demands have been placed on the magnetic alloy, which is one of the components. That is, the strongest magnetic alloy before was the rare earth / cobalt (R-Co) system, but in recent years, the more powerful RT
The emergence of MB magnetic alloys (JP-A-59-460)
08 publication). Here, R is one kind or a combination of two or more kinds of rare earth elements including Y, TM is a transition metal centered on Fe and Co, and a part thereof is replaced with another metal element or non-metal element. Also includes things. B is boron. However, the R-TM-B type magnetic alloy has a problem that it is extremely rusty. Therefore, in order to improve the corrosion resistance, a measure has been taken to provide an oxidation resistant protective layer on the surface of the permanent magnet body. As the type of protective layer, electrolytic Ni plating, oxidation resistant resin, Al ion plating, etc. have been proposed. In particular, electrolytic Ni plating is a simple treatment for R-TM-
Attention has been paid to improve the corrosion resistance of B-based magnetic alloys (Japanese Patent Laid-Open No. 60-54406). Electrolytic Ni plating has the advantage that the surface protection layer has better mechanical strength than the oxidation resistant resin, and that the protection layer itself has almost no hygroscopicity. Furthermore, as the type of Ni plating, a Ni plating layer having a fine layered structure as shown in FIG. 2 has been generally recommended.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、微細層
状組織から構成されるNiめっき層は、残留内部応力が
大きいという欠点がある。そのため物理的強度の高い鉄
鋼材料や銅合金等の被めっき媒体では問題とならなかっ
たNiめっき層と被めっき媒体との密着性は、焼結金属
である為に物理的強度の低いR−TM−B系磁性合金に
対しては低いという問題が生じている。また、残留内部
応力が大きいことから、被膜中においても2重めっきが
生じやすい。更に、微細層状組織から構成されるNiめ
っき層は表面が平滑なため局部的にピンホールが発生す
ると、その部分に腐食電流が集中的に流れるため局部的
な腐食を進行させ腐食劣化を引き起こすという欠点を有
する。本発明はかかる従来の問題を大巾に改善した信頼
性の高い耐食性被膜を有する磁性合金を提供することに
ある。
However, the Ni plating layer having a fine layered structure has a drawback that the residual internal stress is large. Therefore, the adhesion between the Ni plating layer and the medium to be plated, which was not a problem in the medium to be plated such as a steel material having high physical strength or a copper alloy, has a low physical strength of R-TM because of the sintered metal. There is a problem that it is low with respect to the -B type magnetic alloy. Also, since the residual internal stress is large, double plating is likely to occur even in the coating. Furthermore, since the Ni plating layer composed of a fine layered structure has a smooth surface, if a pinhole is locally generated, a corrosion current concentrates on that part, and local corrosion proceeds to cause corrosion deterioration. It has drawbacks. SUMMARY OF THE INVENTION The present invention provides a magnetic alloy having a highly reliable corrosion resistant coating, which greatly improves the conventional problems.

【0004】[0004]

【課題を解決するための手段】本発明は、重量比でR
(ここでRは、Yを含む希土類元素の1種又は2種以上
の組合せ)5〜40%、TM(ここでTMは、Fe、C
o、Ni、Ga、Al、Ti、V、Cr、Mn、Zr、
Hf、Nb、Ta、Mo、Ge、Sn、Sb、Biから
選ばれた1種又は2種以上の組み合せの遷移金属)50
〜90%、B(硼素)0.2〜8%からなるR−TM−
B系磁性合金の表面に、長さ2μm以上の針状組織から
構成されるNiめっき層を有することを特徴とする耐食
性磁性合金である。
The present invention is based on the weight ratio of R
(Where R is a combination of one or more rare earth elements including Y) 5 to 40%, TM (where TM is Fe, C
o, Ni, Ga, Al, Ti, V, Cr, Mn, Zr,
Transition metal of one kind or a combination of two or more kinds selected from Hf, Nb, Ta, Mo, Ge, Sn, Sb and Bi) 50
~ 90%, B (boron) 0.2 ~ 8% R-TM-
A corrosion-resistant magnetic alloy having a Ni-plated layer having a needle-like structure having a length of 2 μm or more on the surface of a B-based magnetic alloy.

【0005】本発明は、Niめっき層を従来の微細層状
組織から針状組織に変えることにより被膜を柔軟化さ
せ、残留応力を低減し且つ微小多孔性表面の形成によ
り、R−TM−B系磁性合金の耐食性を向上するもので
ある。
The present invention softens the coating by changing the Ni plating layer from a conventional fine layered structure to a needle-shaped structure to reduce residual stress and to form a microporous surface to form an R-TM-B system. It improves the corrosion resistance of the magnetic alloy.

【0006】図1に示した様な針状組織でNiめっき層
を構成すると、その膜硬度が微細層状組織のものと比較
して柔軟化した被膜として形成される。針状組織サイズ
が大きいほどこの傾向は顕著であり、この被膜の柔軟化
により残留内部応力が低減され密着性が改善される。ま
た、微細層状組織から構成されるNiめっき層での平滑
性の表面と異なり、針状組織から構成されるNiめっき
層の表面は微小多孔性の表面として形成される。そのた
め表面に無数に存在する微小で細かな孔により腐食電流
が全面に均一に分散されることから、ピンホールでの局
部的な腐食の進行が防止されると共に、Niめっき層か
ら素地への腐食速度が非常に緩やかになり、耐湿性が改
善される。本発明において、被膜の柔軟化並びに微小多
孔性表面の形成を実現するためには、構成される針状組
織の長さは2μm以上と設定することが望ましい。前記
したNiめっき層を構成するための手段としては、めっ
き前の磁性体の表面粗度、Niめっき液組成、濃度、添
加物の種類、量等の要因があるがこれ等要因の特定の範
囲内において針状組織を得ることが可能である。概念的
にはめっき前の磁石体表面粗度を大きくすることがよ
い。特に5μm以上の凹凸をつけることが望ましい。方
法としては、めっき前エッチング工程の処理時間を長め
に調整することにより凹凸を設定することが可能であ
る。また、めっき液中の成分を低濃度化することが望ま
しい。これらの手段を組み合わせることで磁石体表面に
Ni針状組織を設置することが可能となる。更に、耐食
性を向上させることを目的として、前記したNiめっき
層の表面に、Cu,Ni,Al,Zn,Sn,Cr,N
i−P等の金属被膜あるいはフラン系樹脂、アクリル系
樹脂、エポキシ系樹脂、メラニン系樹脂、パリレン系樹
脂等の有機被膜の中から1種あるいは2種以上の被膜を
順次積層被覆しても良い。
When the Ni plating layer is constituted by the needle-like structure as shown in FIG. 1, the film hardness is formed as a softened film as compared with that of the fine layered structure. This tendency becomes more remarkable as the size of the needle-like structure increases, and the softening of the coating reduces the residual internal stress and improves the adhesion. Further, unlike the smooth surface of the Ni-plated layer having a fine layered structure, the surface of the Ni-plated layer having a needle-shaped structure is formed as a microporous surface. Therefore, since the corrosion current is evenly distributed over the entire surface due to the innumerable minute holes on the surface, the local corrosion is prevented from progressing in the pinhole and the corrosion from the Ni plating layer to the substrate is prevented. Very slow speed and improved moisture resistance. In the present invention, in order to realize the softening of the coating and the formation of the microporous surface, it is desirable to set the length of the needle-shaped structure to be 2 μm or more. As the means for forming the above-mentioned Ni plating layer, there are factors such as the surface roughness of the magnetic body before plating, the Ni plating solution composition, the concentration, the type and the amount of the additive, and the specific range of these factors. It is possible to obtain needle-like tissue within. Conceptually, it is preferable to increase the surface roughness of the magnet body before plating. In particular, it is desirable to make unevenness of 5 μm or more. As a method, it is possible to set irregularities by adjusting the treatment time of the pre-plating etching step to be longer. Further, it is desirable to reduce the concentration of the components in the plating solution. By combining these means, it becomes possible to set the Ni needle-like structure on the surface of the magnet body. Furthermore, for the purpose of improving the corrosion resistance, Cu, Ni, Al, Zn, Sn, Cr, N is formed on the surface of the Ni plating layer.
A metal coating such as i-P or an organic coating such as a furan-based resin, an acrylic-based resin, an epoxy-based resin, a melanin-based resin, and a parylene-based resin may be sequentially laminated and coated with one or more coatings. .

【0007】本発明において、Fe,Co,Ni等のT
Mの一部を置換する元素は、その添加目的に応じて、G
a,Al,Ti,V,Cr,Mn,Zr,Hf,Nb,
Ta,Mo,Ge,Sb,Sn,Bi,を添加でき、本
発明はいかなるR−TM−B系磁石にも適用できる。ま
た、その製造方法は焼結法、溶湯急冷法、あるいはそれ
らの変形法のいずれかの方法でもよい。製造方法として
は、有機溶剤による脱脂の後にめっきを施す。めっき層
の厚さは2〜40μmが好ましい。めっき前処理は、磁
石表面の加工変質層の除去およびめっき前活性化が目的
で、酸性溶液を用いエッチングするのが良い。Niめっ
きの種類としては、ワット浴、スルファミン酸浴、アン
モン浴のいずれでもよい。有機添加剤の種類としては、
サッカリン、1−4ブチンジオール、クマリン等が良
い。
In the present invention, T of Fe, Co, Ni or the like is used.
The element substituting a part of M is G depending on the purpose of addition.
a, Al, Ti, V, Cr, Mn, Zr, Hf, Nb,
Ta, Mo, Ge, Sb, Sn, Bi can be added, and the present invention can be applied to any R-TM-B type magnet. Further, the manufacturing method thereof may be either a sintering method, a molten metal quenching method, or a modification thereof. As a manufacturing method, plating is performed after degreasing with an organic solvent. The thickness of the plating layer is preferably 2 to 40 μm. The pre-plating treatment is intended to remove the work-affected layer on the surface of the magnet and to activate the pre-plating, and etching using an acidic solution is preferable. The type of Ni plating may be a Watt bath, a sulfamic acid bath, or an ammonium bath. The types of organic additives are:
Saccharin, 1-4 butynediol and coumarin are preferable.

【0008】[0008]

【実施例】実施例を以下に示す。なお、本発明は、以下
の実施例に限定されるものではない。30wt%Nd、2w
t%Dy、3wt%Co、1wt%B、balFeなる組成の合金
をアーク溶解して作製し、得られたインゴットをスタン
プミルおよびディスクミルで粗粉砕した。その後、N2
ガスを粉砕媒体としてジェットミルで微粉砕を行い、粉
砕粒度4.0μmの微粉砕粉を得た。得られた原料粉を
15kOeの磁場中、成形圧力2ton/cm2で成形
した。得られた成形体を真空中で1100℃で2時間焼
結した後に18×10×6mmの寸法に切り出し、次い
でアルゴンの雰囲気中で550℃で1時間保持した。こ
うして得られたR−TM−B系磁性合金について、酢酸
25vol%の酸によるエッチングを行った。この際、
磁石体表面粗度が表1に示した数値になる様にエッチン
グ処理時間の調整を行った。その後、表1に示した条件
にて10μmのNiめっき層を被覆し、これを試験片と
した。なお、Niめっき処理の共通条件は表2に示し
た。これらの各試験片について、走査型電子顕微鏡によ
る被膜断面の針状結晶サイズの観察、80℃、90%R
Hでの1000時間の耐湿試験、120℃、100%R
H、2atmsでの100時間の蒸気加圧試験、2重め
っき発生有無を調べるためのテーピングによるハガレテ
ストを行った。結果を表1に示す。
EXAMPLES Examples are shown below. Note that the present invention is not limited to the following embodiments. 30wt% Nd, 2w
An alloy having a composition of t% Dy, 3wt% Co, 1wt% B, and balFe was prepared by arc melting, and the obtained ingot was roughly crushed by a stamp mill and a disc mill. Then N 2
Fine pulverization was performed with a jet mill using gas as a pulverizing medium to obtain fine pulverized powder having a pulverized particle size of 4.0 μm. The obtained raw material powder was molded in a magnetic field of 15 kOe at a molding pressure of 2 ton / cm 2 . The obtained molded body was sintered in vacuum at 1100 ° C. for 2 hours, cut into a size of 18 × 10 × 6 mm, and then held in an atmosphere of argon at 550 ° C. for 1 hour. The R-TM-B based magnetic alloy thus obtained was etched with an acid of 25 vol% acetic acid. On this occasion,
The etching time was adjusted so that the surface roughness of the magnet had the values shown in Table 1. Then, a 10 μm Ni plating layer was coated under the conditions shown in Table 1, and this was used as a test piece. Table 2 shows common conditions for the Ni plating treatment. For each of these test pieces, observation of the needle crystal size of the coating cross section by a scanning electron microscope, 80 ° C., 90% R
Moisture resistance test for 1000 hours at H, 120 ° C, 100% R
A 100-hour steam pressurization test at 2 atms for H was performed, and a peeling test was performed by taping to check whether double plating occurred. The results are shown in Table 1.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】表1において、耐湿試験結果及び蒸気加圧
試験結果は、試料の外観変化を示したものである。針状
組織を有するNiめっき層の方が微細層状組織を有する
Niめっき層よりも著しい改善が認められることがわか
る。すなわち本発明による耐食性磁性合金は、従来の磁
性合金と比較して耐食性が著しく向上したことがわか
る。なお、図1に本発明に係る実施例1の針状組織から
構成されるNiめっき層断面の走査型電子顕微鏡写真を
示す。倍率3000にて針状組織の模様が明確に現われ
ているのがわかる。また図2には、比較例2の倍率50
00での微細層状組織から構成されるNiめっき層断面
の走査型電子顕微鏡写真を示す。倍率5000でも針状
組織は認められない。
In Table 1, the humidity resistance test result and the vapor pressure test result show changes in the appearance of the sample. It can be seen that the Ni-plated layer having the acicular structure shows a marked improvement over the Ni-plated layer having the fine layered structure. That is, it can be seen that the corrosion-resistant magnetic alloy according to the present invention has remarkably improved corrosion resistance as compared with the conventional magnetic alloy. In addition, FIG. 1 shows a scanning electron micrograph of a cross section of the Ni plating layer composed of the needle-shaped structure of Example 1 according to the present invention. It can be seen that the pattern of the needle-like structure clearly appears at a magnification of 3000. In addition, FIG. 2 shows a magnification of 50 of Comparative Example 2.
2 shows a scanning electron micrograph of a cross section of a Ni plating layer composed of a fine layered structure of No. 00. No needle-like structure is observed even at a magnification of 5000.

【0012】[0012]

【発明の効果】本発明の効果はR−TM−B系磁性合金
のNiめっき膜において従来の概念とは異なるNiめっ
きの結晶組織を針状化することで、従来の問題点であっ
たNi膜の残留内部応力に起因するめっき膜のハガレ発
生を皆無とし、磁性体とNiめっき膜間の密着性を大巾
に改善し、更に著しい耐食性を有するNiめっき膜を得
ることが可能となり、その効果は工業的利用価値の非常
に大きいものである。
The effect of the present invention is that the Ni plating film of the R-TM-B type magnetic alloy has a needle-like crystal structure of the Ni plating, which is different from the conventional concept. It is possible to eliminate the occurrence of peeling of the plating film due to the residual internal stress of the film, to greatly improve the adhesion between the magnetic body and the Ni plating film, and to obtain a Ni plating film having remarkable corrosion resistance. The effect is of great industrial utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例1の針状組織から構成され
るNiめっき層断面の走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph of a cross section of a Ni plating layer composed of a needle-shaped structure of Example 1 according to the present invention.

【図2】比較例2の微細層状組織から構成されるNiめ
っき層断面の走査型電子顕微鏡写真である。
FIG. 2 is a scanning electron micrograph of a cross section of a Ni plating layer composed of a fine layered structure of Comparative Example 2.

【符号の説明】[Explanation of symbols]

なし None

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比でR(ここでは、Yを含む希土類
元素の1種又は2種以上の組合せ)5〜40%、TM
(ここでTMは、Fe、Co、Ni、Ga、Al、T
i、V、Cr、Mn、Zr、Hf、Nb、Ta、Mo、
Ge、Sn、Sb、Biから選ばれた1種又は2種以上
の組み合せの遷移金属)50〜90%、B(硼素)0.
2〜8%からなるR−TM−B系磁性合金の表面に、長
さ2μm以上の針状組織から構成されるNiめっき層を
有することを特徴とする耐食性磁性合金。
1. R by weight (here, one or a combination of two or more rare earth elements including Y) 5 to 40%, TM
(Where TM is Fe, Co, Ni, Ga, Al, T
i, V, Cr, Mn, Zr, Hf, Nb, Ta, Mo,
50 to 90% of one or a combination of transition metals selected from Ge, Sn, Sb and Bi), B (boron) 0.
A corrosion-resistant magnetic alloy having a Ni-plated layer composed of a needle-like structure having a length of 2 μm or more on the surface of an R-TM-B based magnetic alloy composed of 2 to 8%.
【請求項2】 請求項1記載のNiめっき層の表面に、
Cu、Ni、Al、Zn、Sn、Cr、Ni−P等の金
属被膜あるいはフラン系樹脂、アクリル系樹脂、エポキ
シ系樹脂、メラニン系樹脂、パリレン系樹脂等の有機被
覆の中から1種あるいは2種以上の順次積層された被膜
を有することを特徴とする耐食性磁性合金。
2. The surface of the Ni plating layer according to claim 1,
One or two of metal coatings such as Cu, Ni, Al, Zn, Sn, Cr and Ni-P or organic coatings such as furan resin, acrylic resin, epoxy resin, melanin resin and parylene resin. A corrosion-resistant magnetic alloy having at least one kind of coating film sequentially laminated.
JP7201311A 1995-07-14 1995-07-14 Corrosion resistant magnetic alloy Pending JPH0931606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7201311A JPH0931606A (en) 1995-07-14 1995-07-14 Corrosion resistant magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7201311A JPH0931606A (en) 1995-07-14 1995-07-14 Corrosion resistant magnetic alloy

Publications (1)

Publication Number Publication Date
JPH0931606A true JPH0931606A (en) 1997-02-04

Family

ID=16438910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7201311A Pending JPH0931606A (en) 1995-07-14 1995-07-14 Corrosion resistant magnetic alloy

Country Status (1)

Country Link
JP (1) JPH0931606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106442A (en) * 2019-05-28 2019-08-09 南京钢铁股份有限公司 A kind of ultra-fine acicular structure structural steel and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106442A (en) * 2019-05-28 2019-08-09 南京钢铁股份有限公司 A kind of ultra-fine acicular structure structural steel and its production method

Similar Documents

Publication Publication Date Title
US9818515B2 (en) Modified Nd—Fe—B permanent magnet with high corrosion resistance
JP4003067B2 (en) Rare earth sintered magnet
JP4003066B2 (en) Manufacturing method of rare earth sintered magnet
CN1291425C (en) Soft magnetic alloy for clock-making
JPH0931606A (en) Corrosion resistant magnetic alloy
JP3337558B2 (en) Corrosion resistant magnetic alloy
JP3377605B2 (en) Corrosion resistant magnetic alloy
JPH07106109A (en) R-tm-b permanent magnet of improved corrosion resistance, and its manufacture
JP3234448B2 (en) Manufacturing method of high corrosion resistant permanent magnet
JP3135174B2 (en) R-TM-B permanent magnet with improved corrosion resistance and method for producing the same
JPH01268004A (en) R-tm-b permanent magnet with improved corrosion resistance and manufacture thereof
JP2941446B2 (en) R-TM-B permanent magnet with improved corrosion resistance
US5286366A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JPH08325677A (en) Corrosion resistant sintered magnetic alloy
JP3142172B2 (en) R-TM-B permanent magnet with improved adhesion and method for producing the same
JP2894816B2 (en) R-TM-B permanent magnet with improved corrosion resistance and method of manufacturing the same
JP2721187B2 (en) RF lower e-BM sintered magnet and manufacturing method thereof
JPH07331486A (en) Corrosion resistant magnetic alloy
JPH05335124A (en) Corrosion-proof property improved r-tm-b permanent magnet and manufacture thereof
JPH0582321A (en) R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity
JP2883144B2 (en) Method for producing R-TM-B permanent magnet with improved corrosion resistance
JP3779830B2 (en) Copper alloy for semiconductor lead frames
JPH0582320A (en) R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity
JP4600627B2 (en) Rare earth permanent magnet manufacturing method
JPH06231922A (en) R-tm-b permanent magnet with improved corrosion resistance