JPH0931539A - Production of metallic strip with improved deep drawability - Google Patents

Production of metallic strip with improved deep drawability

Info

Publication number
JPH0931539A
JPH0931539A JP8206564A JP20656496A JPH0931539A JP H0931539 A JPH0931539 A JP H0931539A JP 8206564 A JP8206564 A JP 8206564A JP 20656496 A JP20656496 A JP 20656496A JP H0931539 A JPH0931539 A JP H0931539A
Authority
JP
Japan
Prior art keywords
cold rolling
steel
less
reduction ratio
deep drawing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8206564A
Other languages
Japanese (ja)
Inventor
Jose Manuel Rubianes
マニュエル ルビアンヌ ジョゼ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sollac SA
Original Assignee
Sollac SA
Lorraine de Laminage Continu SA SOLLAC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sollac SA, Lorraine de Laminage Continu SA SOLLAC filed Critical Sollac SA
Publication of JPH0931539A publication Critical patent/JPH0931539A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Continuous Casting (AREA)
  • Coating With Molten Metal (AREA)
  • Laminated Bodies (AREA)
  • Glass Compositions (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A ductile steel band is made from an alloy containing the following proportions of elements indicated in thousandths of percent by weight: 0-20, pref. 2-20 of C, 0-500, pref. 100-500 Si, 0-1000 Mn, 0-100, pref. 50-100 P, 0-50 S, 0-100 Al, 0-10, pref. 2-8 N and one or more of 0-150 Ti, 0-150, pref. 10-50 Nb and 0-5, pref. 0-2 B, the remainder being Fe. The alloy is first hot-rolled, then cold-rolled to reduce its thickness by over 20%, annealed at up to 920 degrees C, cold rolled again, also reducing the thickness by over 20% while impressing a degree of rugosity on the surface, and finally annealed at above recrystallisation temp. A thin steel band made the process is also claimed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は深絞り特性が改良さ
れた薄い金属ストリップ、特に深絞り加工時の膨脹(exp
ansion) 変形性と薄板化(thinning)変形性に優れた金属
薄板ストリップの製造方法と、この方法で得られる薄い
金属ストリップとに関するものである。
FIELD OF THE INVENTION The present invention relates to thin metal strips with improved deep drawing properties, and in particular to expansion during deep drawing.
The present invention relates to a method for producing a metal thin strip excellent in deformability and thinning deformability, and a thin metal strip obtained by this method.

【0002】[0002]

【従来の技術】深絞り用鋼は成形を可能にする多くの特
性を有していなければならない。例えば、容器用鋼板の
場合には薄板化変形性が要求され、自動車産業用等の場
合には膨脹変形性が要求される。変形をし易くするため
には所定引張強度Rm に対する鋼の降伏応力Re をでき
るだけ低くしなければならず、加工硬化係数nはできる
だけ高くしなければならない。すなわち、加工硬化係数
は材料の膨脹変形能を規定し、この係数が高ければ高い
程その材料は良く変形する。冷間加工で圧延中に金属ス
トリップが伸びることによってアニール後に結晶組織が
でき、それによって機械特性に異方性が生じるので、最
も弱い方向の異方性係数〔化1〕:
BACKGROUND OF THE INVENTION Deep drawing steel must have many properties that enable it to be formed. For example, in the case of a steel sheet for containers, thinning deformability is required, and in the case of the automobile industry and the like, expansion deformability is required. To facilitate the deformation must low as possible yield stress R e of the steel for a given tensile strength R m, work hardening coefficient n must be as high as possible. That is, the work hardening coefficient defines the expansive deformability of a material, and the higher this coefficient, the better the material deforms. The elongation of the metal strip during rolling in cold working creates a crystal structure after annealing, which causes anisotropy in mechanical properties. Therefore, the anisotropy coefficient in the weakest direction [Chemical formula 1]:

【0003】[0003]

【化1】 および平均異方性係数〔化2〕:Embedded image And the average anisotropy coefficient [Chemical formula 2]:

【0004】[0004]

【化2】 も高くなければならない。この異方性係数の降伏応力R
e 、引張強度Rm および破断伸び率A%に対する効果は
比較的小さいが、成形時に応力が加わる金属の薄板加工
時の場合にはそうはいえない。
Embedded image Must also be high. Yield stress R of this anisotropy coefficient
The effects on e , tensile strength R m and elongation at break A% are relatively small, but this cannot be said when processing a metal thin plate to which stress is applied during forming.

【0005】異方性の測定で用いられる比〔化1〕は引
張試験での試験片の厚さの対数ひずみに対する巾の対数
ひずみの比である (ここで、ψは試験例の引張方向と金
属薄板の圧延方向との間の角度を表す) 。鋼の平均異方
性係数〔化2〕はランクフォード(Lankford)係数ともよ
ばれ下記〔数1〕で求められる:
The ratio [Chemical formula 1] used in the measurement of anisotropy is the ratio of the logarithmic strain of the width to the logarithmic strain of the thickness of the test piece in the tensile test (where ψ is the tensile direction of the test example). Represents the angle between the rolling direction of the sheet metal). The average anisotropy coefficient of steel [Chemical formula 2] is also called the Lankford coefficient and is calculated by the following [Equation 1]:

【0006】[0006]

【数1】 [Equation 1]

【0007】(ここで、r0 、r90、r45は金属ブラン
クの圧延方向に対する縦方向、横方向および45度斜め方
向での異方性係数値rである)。平均異方性係数〔化
2〕は金属板が薄くされる能力を表す。最適深絞り条件
すなわち全方向での十分な金属の流れを保証するために
はランクフォード係数〔化2〕をできるだけ大きくする
必要がある。
(Here, r 0 , r 90 , and r 45 are anisotropy coefficient values r in the longitudinal direction, the lateral direction, and the 45 ° oblique direction with respect to the rolling direction of the metal blank). The average anisotropy coefficient [Chemical formula 2] represents the ability of the metal plate to be thinned. In order to ensure optimum deep drawing conditions, that is, sufficient metal flow in all directions, it is necessary to make the Rankford coefficient [Formula 2] as large as possible.

【0008】また、異方性係数〔化1〕が最低の方向で
の異方性係数rmin はできるだけ高くすることが重要で
ある。それによって応力の加わる全方向で金属が薄くな
りすぎないことが保証される。これら2つの係数rmin
および〔化2〕が高いということは薄板化で金属が十分
変形できるということを意味している。
It is important that the anisotropy coefficient r min in the direction of the lowest anisotropy coefficient [Chemical formula 1] is as high as possible. This ensures that the metal does not become too thin in all stressed directions. These two coefficients r min
The fact that [Chemical formula 2] is high means that the metal can be sufficiently deformed by thinning.

【0009】また、破断伸び率A%も高くすることが重
要である。これは材料が高い延性を持つことを意味す
る。最後に、ヤング率もできるだけ高くしなければなら
ない。この特性が高いほど鋼の深絞り性も高くなる。
It is also important to increase the elongation at break A%. This means that the material has a high ductility. Finally, Young's modulus should be as high as possible. The higher this characteristic, the higher the deep drawability of the steel.

【0010】この種の用途に標準的な鋼、例えば下記化
学組成(重量%の1000倍)を有する鋼を用いることは知
られている: 炭素<5 例えば=3 珪素<200 例えば=9 マンガン<500 例えば=140 リン<30 例えば=8 硫黄<50 例えば=5 アルミニウム<100 例えば=35 窒素<10 例えば=3 チタニウム<150 例えば=56 残部は鉄と製造に起因する不純物 この鋼を熱間圧延し、次いで75〜85%、例えば80%の縮
減率で冷間圧延し、その後 800℃で連続アニールし、減
少率1%の軽い調質(skin-pass) 操作を行う。この種の
鋼は優れた深絞り特性を有する。
It is known to use standard steels for this type of application, for example steels with the following chemical composition (1000% by weight): carbon <5 eg = 3 silicon <200 eg = 9 manganese <. 500 eg = 140 phosphorus <30 eg = 8 sulfur <50 eg = 5 aluminum <100 eg = 35 nitrogen <10 eg = 3 titanium <150 eg = 56 balance iron and impurities due to manufacturing hot rolled this steel Then, cold rolling is performed at a reduction rate of 75 to 85%, for example 80%, followed by continuous annealing at 800 ° C., and a light skin-pass operation at a reduction rate of 1% is performed. This type of steel has excellent deep drawing properties.

【0011】また、深絞り特性、特にランクフォード係
数〔化2〕をさらに大きくするための特殊な鋼、例え
ば、下記化学組成(重量%の1000倍)を有する鋼の製錬
で得られるランクフォード係数〔化2〕が3の鋼も公知
である: 炭素<2 珪素<41 マンガン<120 リン<11 硫黄<11 アルミニウム<45 窒素<2 残部は鉄と製造に起因する不純物
Further, a special steel for further increasing the deep drawing characteristics, in particular, the Rankford coefficient [Chemical formula 2], for example, Rankford obtained by smelting steel having the following chemical composition (1000 times the weight%) Steels with a coefficient of 3 are also known: carbon <2 silicon <41 manganese <120 phosphorus <11 sulfur <11 aluminum <45 nitrogen <2 balance iron and manufacturing impurities.

【0012】この鋼を熱間圧延し、減縮率50%で冷間圧
延し、次いで 750℃で20秒アニールし、77%の減縮率で
再び冷間圧延し、 870℃で20秒間2回目のアニールを行
う。こうして得られる鋼板はランクフォード係数〔化
2〕は高いが、優れた深絞りに必要な他の特性は当然有
しておらず、ランクフォード係数を高くするためには炭
素含有率を低くする必要があり、しかも高温度でのアニ
ーリングが必要なため製造コストが極めて高くなる。
This steel was hot rolled, cold rolled at a reduction rate of 50%, then annealed at 750 ° C. for 20 seconds, cold rolled again at a reduction rate of 77% and then at 870 ° C. for a second time of 20 seconds. Anneal. The steel sheet thus obtained has a high Rank Ford coefficient [Chemical formula 2], but naturally does not have other properties necessary for excellent deep drawing, and it is necessary to lower the carbon content in order to increase the Rank ford coefficient. In addition, since it requires annealing at a high temperature, the manufacturing cost becomes extremely high.

【0013】[0013]

【発明が解決しようとする課題】本発明の目的は、膨脹
変形性および薄板化変形性の面で深絞り特性に優れ、し
かも破断伸び率が改良された薄い金属ストリップの経済
的な製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an economical method for producing a thin metal strip which is excellent in deep drawing property in terms of expansion deformability and thinning deformability and has improved elongation at break. To provide.

【0014】[0014]

【課題を解決するための手段】本発明は下記1)〜6)の工
程を特徴とする深絞り加工時の伸び変形性および薄板化
変形性に優れ且つ破断伸びに優れた深絞り特性が改良さ
れた薄い金属ストリップの製造方法を提供する: 1) 重量%の 1,000倍で表した含有率で 20 以下の炭素
と、500 以下の珪素と、1,000 以下のマンガンと、 100
以下のリンと、50以下の硫黄と、 100以下のアルミニウ
ムと、10以下の窒素とを含み、チタニウム、ニオブおよ
び硼素は含まないか、チタニウムは 150以下、ニオブは
150以下、硼素は5以下の比率で含み、残部は鉄と製造
に起因する不純物である鋼を製錬し、 2) 熱間圧延し、 3) 縮減率20%以上で冷間圧延し、 4) 鋼の回復温度〜920 ℃でアニールし、 5) 2回目の冷間圧延を縮減率20%以上で行い、金属ス
トリップに所定の粗度(rugosite)を与え、 6) 鋼の再結晶温度以上で2回目のアニールを行う。
[Means for Solving the Problems] The present invention is characterized by the following steps 1) to 6), which are excellent in elongation deformability and thinning deformability during deep drawing and have improved deep drawing characteristics with excellent elongation at break. A method for producing thin metal strips: 1) Carbon content of 20 or less, silicon content of 500 or less, manganese content of 1,000 or less, and 100 at a content of 1,000 times wt%.
Contains less than phosphorus, less than 50 sulfur, less than 100 aluminum, less than 10 nitrogen and no titanium, niobium and boron, or less than 150 titanium, less than 150 niobium
The ratio is 150 or less, boron is included in the ratio of 5 or less, and the balance is smelting iron and steel that is an impurity caused by manufacturing, 2) hot rolling, 3) cold rolling with a reduction rate of 20% or more, 4 ) Annealing at steel recovery temperature ~ 920 ℃, 5) Second cold rolling with reduction rate of 20% or more to give metal strip a predetermined roughness (rugosite), 6) Steel recrystallization temperature or more Second annealing is performed.

【0015】本発明の他の特徴は下記の点にある: 1) 第1段階で製錬される鋼が重量%の1000倍で表した
含有率で2〜20の炭素、100〜500 の珪素、 0〜1000の
マンガン、50〜100 のリン、 0〜50の硫黄、9〜100 の
アルミニウム、 2〜8 の窒素、0 〜150 のチタニウム、
10〜50のニオブ、 0〜2 のボロンの中から選択される1
種または複数の元素を含み、残部は鉄および製造に起因
する不純物である。 2) 第1回目のアニールを鋼の回復温度〜鋼の再結晶温
度で行う。 3) 第1回目の冷間圧延での縮減率を高くし、2回目の
冷間圧延での縮減率を低くする。 4) 第1回目の冷間圧延での縮減率を低くし、2回目の
冷間圧延での縮減率を高くする。 5) 第1回目の冷間圧延での縮減率を35〜50%にし、2
回目の冷間圧延での縮減率を65〜75%にする。 6) 第1回目の冷間圧延での縮減率を65〜75%にし、2
回目の冷間圧延での縮減率を35〜50%にする。 7) 2回目の冷間圧延での金属薄板ストリップに 0.9〜
1.7 ミクロンの平均粗度Ra を与える。 本発明の他の対象は上記方法で得られる深絞り特性に優
れた薄い金属ストリップにある。
Other characteristics of the present invention are as follows: 1) The steel to be smelted in the first stage has a carbon content of 2 to 20 and a silicon content of 100 to 500 at a content of 1000 times by weight. , 0-1000 Manganese, 50-100 Phosphorus, 0-50 Sulfur, 9-100 Aluminum, 2-8 Nitrogen, 0-150 Titanium,
1 selected from 10 to 50 niobium and 0 to 2 boron
It contains one or more elements, the balance being iron and manufacturing-related impurities. 2) The first annealing is performed at the steel recovery temperature to the steel recrystallization temperature. 3) Increase the reduction ratio in the first cold rolling and decrease the reduction ratio in the second cold rolling. 4) Lower the reduction ratio in the first cold rolling and increase the reduction ratio in the second cold rolling. 5) Reduce the reduction ratio in the first cold rolling to 35-50%, and
Reduce the reduction rate in the cold rolling for the sixth time to 65-75%. 6) Reduce the reduction ratio in the first cold rolling to 65-75%, and
Reduce the reduction ratio in the cold rolling for the third time to 35 to 50%. 7) 0.9 ~ for thin metal strip in the second cold rolling
It gives the average roughness R a of 1.7 microns. Another subject of the invention is the thin metal strip obtained by the above method, which has excellent deep drawing properties.

【0016】[0016]

【発明の実施の形態】本発明の対象は深絞り特性が改良
された薄い金属ストリップすなわち降伏応力が低く、ラ
ンクフォード係数が2以上、好ましくは金属薄板の全方
向で2.4 以上で、ひずみ硬化度(strain hardening)が高
く、延性が高く、ヤング率が23.000kg/mm2以上のストリ
ップにある。
The subject of the invention is a thin metal strip with improved deep drawing properties, i.e. a low yield stress, a Rankford coefficient of 2 or more, preferably 2.4 or more in all directions of the sheet metal, and a strain hardening degree. (Strain hardening), high ductility, Young's modulus is above 23.000kg / mm 2 .

【0017】このような薄い金属ストリップを得るに
は、先ず最初に下記化学組成(重量%の1000倍)を有す
る鋼を転炉等で公知の方法で製錬する: 炭素<20 珪素<500 マンガン<1000 リン<100 硫黄<50 アルミニウム<100 窒素<10 下記元素はゼロか、下記化学組成以下: チタニウム<150 ニオブ<150 ボロン<5 残部は鉄と製造に起因する不純物
In order to obtain such thin metal strips, first a steel having the following chemical composition (1000% by weight) is smelted in a converter or the like in a known manner: carbon <20 silicon <500 manganese. <1000 Phosphorus <100 Sulfur <50 Aluminum <100 Nitrogen <10 The following elements are zero or less than the following chemical composition: Titanium <150 Niobium <150 Boron <5 The balance is iron and impurities due to manufacturing

【0018】鋼は下記化学組成(重量%の1000倍)を有
するのが好ましい: 2<炭素<20 100<珪素<500 0<マンガン<1000 50<リン<100 0<硫黄<50 0<アルミニウム<100 2<窒素<8 下記元素はゼロか、下記範囲内: 0<チタニウム<150 10<ニオブ<50 0<ボロン<2 残部は鉄と製造に起因する不純物
The steel preferably has the following chemical composition (1000% by weight): 2 <carbon <20 100 <silicon <500 0 <manganese <1000 50 <phosphorus <1000 <sulfur <500 <aluminum < 100 2 <Nitrogen <8 The following elements are zero or within the following range: 0 <Titanium <150 10 <Niobium <500 0 <Boron <2 The balance is iron and impurities due to manufacturing

【0019】鋼の炭素含有率を最高の20にした場合に
は、アルゴンブラスティングで製錬でき、真空精錬より
もコストがかからないということは理解できよう。次い
で、製錬した鋼を鋳造してスラブにし、熱間圧延する。
その後、熱間圧延ストリップを縮減率20%以上で冷間圧
延し、次いで、冷間圧延ストリップを鋼の回復温度〜92
0 ℃、好ましくは鋼の回復温度〜鋼の再結晶温度でアニ
ールする。アニールは基礎的アニールまたは連続アニー
ルのどちらでもよい。さらに、縮減率20%以上で2回目
の冷間圧延を行い、金属ストリップに所定の粗度を与え
た。最後に、鋼の再結晶温度以上で2回目のアニールを
行う。
It will be understood that if the steel has a maximum carbon content of 20, it can be smelted by argon blasting and is less expensive than vacuum refining. The smelted steel is then cast into a slab and hot rolled.
After that, the hot-rolled strip is cold-rolled at a reduction rate of 20% or more, and then the cold-rolled strip is subjected to a steel recovery temperature of ~ 92.
Anneal at 0 ° C., preferably between the recovery temperature of the steel and the recrystallization temperature of the steel. The anneal may be either a basic anneal or a continuous anneal. Further, a second cold rolling was performed at a reduction rate of 20% or more to give the metal strip a predetermined roughness. Finally, a second annealing is performed above the recrystallization temperature of the steel.

【0020】本出願人は、鋼の回復温度〜鋼の再結晶温
度、好ましくは鋼の回復温度以上の40〜60℃で第1回目
のアニールを行った場合に金属薄板のランクフォード係
数値〔化2〕を2以上、好ましくは 2.4以上に高くする
ことができるということを見出した。ヤング率を23.000
kg/mm2以上にし、ランクフォード係数を2以上、好まし
くは2.4 以上にするためには2回目の冷間圧延での縮減
率を大きくし、第1回目の冷間圧延での縮減率を低くす
るか、逆に、第1回目の冷間圧延での縮減率を小さく
し、2回目の冷間圧延での縮減率を大きくする必要があ
る。
The Applicant has found that when the first annealing is performed at 40 to 60 ° C. which is higher than the recovery temperature of steel to the recrystallization temperature of steel, preferably the recovery temperature of steel, the Rankford coefficient value of the metal sheet [ It has been found that Chemical formula 2] can be increased to 2 or more, preferably 2.4 or more. Young's modulus 23.000
In order to achieve kg / mm 2 or higher and Rankford coefficient of 2 or higher, preferably 2.4 or higher, the reduction ratio in the second cold rolling is increased and the reduction ratio in the first cold rolling is lowered. Or conversely, it is necessary to reduce the reduction ratio in the first cold rolling and increase the reduction ratio in the second cold rolling.

【0021】2つの特殊な例で試験した。第1の試験で
は、第1回目の冷間圧延での縮減率を小さくし (ただし
20%以上) 、好ましくは約35〜50%にし、2回目の冷間
圧延での縮減率を大きく、好ましくは約65〜75%にし
た。第2の試験では、第1回目の冷間圧延での縮減率を
大きくし、好ましくは約65〜75%にし、2回目の冷間圧
延での減少率を20%以上、好ましくは約35〜50%に低く
した。所望の深絞り特性を得るためには、2回目の冷間
圧延で圧延ロールによって金属薄板に所望の粗度を与え
るのも好ましい。例として 0.9〜1.7 ミクロンの平均粗
度Ra を与えた。優れた深絞りを得るためには、平均粗
度Ra は1.2 〜1.7 ミクロンにするのが好ましい。しか
し、優れた深絞り特性を維持しながら金属薄板の光輝を
良くしたい場合には、平均粗度Ra を0.9 〜1.4 ミクロ
ンにするのが望ましい。
Two special examples were tested. In the first test, the reduction ratio in the first cold rolling was reduced (however,
20% or more), preferably about 35 to 50%, and a large reduction ratio in the second cold rolling, preferably about 65 to 75%. In the second test, the reduction ratio in the first cold rolling was increased, preferably about 65 to 75%, and the reduction ratio in the second cold rolling was 20% or more, preferably about 35 to Lowered to 50%. In order to obtain a desired deep-drawing property, it is also preferable to impart a desired roughness to the thin metal sheet with a rolling roll in the second cold rolling. It gave average roughness R a of 0.9 to 1.7 microns as an example. For good deep drawing, the average roughness R a is preferably set to 1.2 to 1.7 microns. However, in order to improve the brilliance of the thin metal plate while maintaining excellent deep drawing characteristics, it is desirable to set the average roughness Ra to 0.9 to 1.4 microns.

【0022】この操作は、調質操作を無くすことで2以
上、好ましくは2.4 以上の高いランクフォード係数と低
い降伏応力とを保証することができる。すなわち、調質
操作は金属の降伏応力を上げ、加工硬化係数〔化3〕を
下げる効果がある。さらに、この調質操作を行わないこ
とで金属ストリップの製造行程を1段階減らすことがで
き、従って、コストを下げることができる。
This operation can ensure a high Rankford coefficient of 2 or more, preferably 2.4 or more, and a low yield stress by eliminating the tempering operation. That is, the refining operation has the effect of increasing the yield stress of the metal and lowering the work hardening coefficient [Chemical formula 3]. Furthermore, by not performing this tempering operation, the manufacturing process of the metal strip can be reduced by one step, and thus the cost can be reduced.

【0023】[0023]

【化3】 Embedded image

【0024】[0024]

【実施例】数種類の鋼を用いていくつかの試験を行っ
た。下記化学組成(重量%の1000倍)の鋼を用いた(残
部は鉄):
EXAMPLES Several tests were carried out with several types of steel. Steel with the following chemical composition (1000 times weight%) was used (the balance is iron):

【0025】鋼Aと鋼Bは本発明の鋼であり、鋼Cは公
知組成の鋼である。鋼Aは第1回目のアニールを基礎ア
ニールで行った時の回復温度は450 ℃で、再結晶温度は
680℃であった。鋼Bは第1回目のアニールを連続アニ
ールで行った時の回復温度は450 ℃で、再結晶温度は 6
30℃であった。上記3種の鋼に互いに異なる圧延処理お
よびアニーリング処理して厚さ1mm以下の薄い金属スト
リップにした。各金属薄板から一連の試験片を取り種々
の試験を行って各鋼の特徴的パラメータを求めた。各種
の処理と特徴は〔表1〕にまとめてある。
Steels A and B are the steels of the present invention, and steel C is a steel of known composition. Steel A had a recovery temperature of 450 ° C and a recrystallization temperature of 1st annealing as basic annealing.
It was 680 ° C. Steel B has a recovery temperature of 450 ° C and a recrystallization temperature of 6 when the first annealing is performed by continuous annealing.
It was 30 ° C. The above three kinds of steels were subjected to different rolling treatments and annealing treatments to obtain thin metal strips having a thickness of 1 mm or less. A series of test pieces were taken from each thin metal plate and various tests were performed to determine the characteristic parameters of each steel. The various processes and characteristics are summarized in [Table 1].

【0026】[0026]

【表1】 [Table 1]

【0027】この表から分かるように、本発明の鋼は公
知の鋼Cに比較して延性および深絞り特性が大幅に改良
され、また、2回目の冷間圧延での粗度を制御できると
いう利点によって降伏応力Re は粗度を制御しない場合
よりもかなり低くなる。
As can be seen from this table, the steel of the present invention has significantly improved ductility and deep drawing characteristics as compared with the known steel C, and can control the roughness in the second cold rolling. The advantage is that the yield stress R e is considerably lower than if the roughness is not controlled.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】1) 重量%の 1,000倍で表した含有率で 2
0 以下の炭素と、500 以下の珪素と、1,000 以下のマン
ガンと、 100以下のリンと、50以下の硫黄と、 100以下
のアルミニウムと、10以下の窒素とを含み、チタニウ
ム、ニオブおよび硼素は含まないか、チタニウムは 150
以下、ニオブは 150以下、硼素は5以下の比率で含み、
残部は鉄と製造に起因する不純物である鋼を製錬し、 2) 熱間圧延し、 3) 縮減率20%以上で冷間圧延し、 4) 鋼の回復温度〜920 ℃でアニールし、 5) 縮減率20%以上で2回目の冷間圧延して金属ストリ
ップに所定粗度を与え、 6) 鋼の再結晶温度以上で2回目のアニールを行うこと
を特徴とする深絞り加工時の伸び変形性および薄板化変
形性に優れ且つ破断伸びに優れた深絞り特性が改良され
た薄い金属ストリップの製造方法。
1. A content rate expressed as 1,000 times the weight% 2
Contains 0 or less carbon, 500 or less silicon, 1,000 or less manganese, 100 or less phosphorus, 50 or less sulfur, 100 or less aluminum, and 10 or less nitrogen, and titanium, niobium and boron are Not included or 150 for titanium
In the following, niobium is included in a ratio of 150 or less and boron is included in a ratio of 5 or less,
The balance is smelting iron and steel that is an impurity caused by manufacturing, 2) hot rolling, 3) cold rolling at a reduction rate of 20% or more, and 4) annealing at a steel recovery temperature of ~ 920 ° C. 5) The second cold rolling at a reduction rate of 20% or more to give a certain roughness to the metal strip, and 6) the second annealing, which is performed at the second reannealing temperature of steel or more, during deep drawing. A method for producing a thin metal strip, which is excellent in elongation deformability and thinning deformability and has an improved deep drawing property that is excellent in elongation at break.
【請求項2】 第1段階で製錬される鋼が、重量%の10
00倍で表した含有率で2〜20の炭素、 100〜500 の珪
素、 0〜1000のマンガン、50〜100 のリン、 0〜50の硫
黄、 9〜100 のアルミニウム、 2〜8 の窒素、0 〜150
のチタニウム、10〜50のニオブ、 0〜2 のボロンの中か
ら選択される1種または複数の元素を含み、残部は鉄お
よび製造に起因する不純物である請求項1に記載の方
法。
2. The steel smelted in the first stage contains 10% by weight.
2 to 20 carbon, 100 to 500 silicon, 0 to 1000 manganese, 50 to 100 phosphorus, 0 to 50 sulfur, 9 to 100 aluminum, 2 to 8 nitrogen, in a content of 00 times. 0 to 150
2. The method according to claim 1, comprising one or more elements selected from among titanium, 10 to 50 niobium, and 0 to 2 boron, with the balance being iron and manufacturing-related impurities.
【請求項3】 第1回目のアニールを鋼の回復温度〜鋼
の再結晶温度で行う請求項1または2に記載の方法。
3. The method according to claim 1, wherein the first annealing is performed at a steel recovery temperature to a steel recrystallization temperature.
【請求項4】 第1回目の冷間圧延の縮減率を高くし、
2回目の冷間圧延での縮減率を低くする請求項1または
2に記載の方法。
4. The reduction ratio of the first cold rolling is increased,
The method according to claim 1 or 2, wherein the reduction ratio in the second cold rolling is lowered.
【請求項5】 第1回目の冷間圧延での縮減率を低く
し、2回目の冷間圧延での減少率を高くする請求項1ま
たは2に記載の方法。
5. The method according to claim 1, wherein the reduction ratio in the first cold rolling is lowered and the reduction ratio in the second cold rolling is increased.
【請求項6】 第1回目の冷間圧延での縮減率を35〜50
%にし、2回目の冷間圧延での縮減率を65〜75%にする
請求項4に記載の方法。
6. The reduction ratio in the first cold rolling is 35 to 50.
%, And the reduction rate in the second cold rolling is set to 65 to 75%.
【請求項7】 第1回目の冷間圧延での縮減率を65〜75
%にし、2回目の冷間圧延での縮減率を35〜50%にする
請求項5に記載の方法。
7. The reduction ratio in the first cold rolling is 65 to 75.
%, And the reduction rate in the second cold rolling is set to 35 to 50%.
【請求項8】 2回目の冷間圧延での金属薄板ストリッ
プに 0.9〜1.7 ミクロンの平均粗度Ra を与える請求項
1に記載の方法。
The method of claim 1, 8. The sheet metal strips in the second cold rolling provides a mean roughness R a of 0.9 to 1.7 microns.
【請求項9】 請求項1〜8に記載の方法で得られる深
絞り加工での膨脹変形性および薄板化変形性に優れた深
絞り特性が改良された薄い金属ストリップ。
9. A thin metal strip obtained by the method according to any one of claims 1 to 8, which is excellent in expansion deformability and thinning deformability in deep drawing and has improved deep drawing characteristics.
JP8206564A 1995-07-18 1996-07-17 Production of metallic strip with improved deep drawability Withdrawn JPH0931539A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9508643 1995-07-18
FR9508643A FR2736933B1 (en) 1995-07-18 1995-07-18 METHOD FOR MANUFACTURING A THIN SHEET STRIP WITH IMPROVED DRAWING

Publications (1)

Publication Number Publication Date
JPH0931539A true JPH0931539A (en) 1997-02-04

Family

ID=9481066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8206564A Withdrawn JPH0931539A (en) 1995-07-18 1996-07-17 Production of metallic strip with improved deep drawability

Country Status (9)

Country Link
EP (1) EP0754770B1 (en)
JP (1) JPH0931539A (en)
KR (1) KR970005422A (en)
AT (1) ATE208831T1 (en)
DE (1) DE69616887T2 (en)
DK (1) DK0754770T3 (en)
ES (1) ES2164222T3 (en)
FR (1) FR2736933B1 (en)
PT (1) PT754770E (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2767078B1 (en) 1997-08-07 1999-10-22 Lorraine Laminage PROCESS FOR THE PREPARATION OF A THIN SHEET IN ULTRA LOW CARBON STEEL FOR THE PRODUCTION OF STAMPED PRODUCTS FOR PACKAGING AND THIN SHEET OBTAINED

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1247251B (en) * 1964-04-25 1967-08-17 Opel Adam Ag Draw sheet for drawn parts
JPS5832218B2 (en) * 1978-08-22 1983-07-12 川崎製鉄株式会社 Method for producing high-strength steel sheets with excellent pressability, especially shape fixability
JPS61291924A (en) * 1985-06-17 1986-12-22 Nippon Steel Corp Manufacture of steel sheet for press forming superior in workability
DE3603691A1 (en) * 1986-02-06 1987-08-20 Hoesch Stahl Ag AGING-FREE STEEL
AU624992B2 (en) * 1989-09-11 1992-06-25 Kawasaki Steel Corporation Cold-rolled steel sheet for deep drawings and method of producing the same
EP0484960B9 (en) * 1990-11-09 2003-10-29 Nippon Steel Corporation Cold-rolled steel strip having excellent combined press formability and method of producing same

Also Published As

Publication number Publication date
FR2736933A1 (en) 1997-01-24
DE69616887D1 (en) 2001-12-20
KR970005422A (en) 1997-02-19
ES2164222T3 (en) 2002-02-16
ATE208831T1 (en) 2001-11-15
EP0754770A1 (en) 1997-01-22
FR2736933B1 (en) 1997-08-22
DK0754770T3 (en) 2002-02-25
PT754770E (en) 2002-05-31
DE69616887T2 (en) 2002-05-29
EP0754770B1 (en) 2001-11-14

Similar Documents

Publication Publication Date Title
EP0608430B1 (en) Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same
EP0672758B1 (en) Method of manufacturing canning steel sheet with non-aging property and superior workability
EP0574814B2 (en) High-strength cold-rolled steel sheet excelling in deep drawability and method of producing the same
EP0164263B1 (en) Production of a base steel sheet to be surface-treated which is to produce no stretcher strain
EP0816524B1 (en) Steel sheet for excellent panel appearance and dent resistance after forming
US4391653A (en) Process for producing cold rolled steel strip having excellent mechanical strength and useful for motor vehicles
EP0024437B2 (en) Process for producing non-aging cold-rolled steel sheets
EP1002884B1 (en) Cold rolled steel plate of excellent moldability, panel shape characteristics and denting resistance, molten zinc plated steel plate, and method of manufacturing these steel plates
CA1332520C (en) Cold-rolled steel sheets and method for producing cold-rolled steel sheets
US4961793A (en) High-strength cold-rolled steel sheet having high r value and process for manufacturing the same
JP3355970B2 (en) Manufacturing method of cold rolled steel sheet with excellent punchability
JPH08253818A (en) Production of ferritic stainless steel strip reduced in inplane anisotropy and excellent in balance between strength and elongation
EP0484960B1 (en) Cold-rolled steel strip having excellent combined press formability and method of producing same
JP3383017B2 (en) Method of manufacturing bake hardenable high strength cold rolled steel sheet with excellent workability
JPH0931539A (en) Production of metallic strip with improved deep drawability
EP0016846B1 (en) Process for producing high-strength cold-rolled steel plate for press working
US3496032A (en) Process for the production of coldrolled steel plate having good shape-fixability
EP2431490B1 (en) Cold-rolled steel sheet with excellent formability, shape retentivity, and surface appearance and process for producing same
KR20030068593A (en) High-strength isotropic steel, method for making steel plates and resulting plates
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
TWI711706B (en) Automobile steel material with high yield strength and method of manufacturing the same
JPS63317629A (en) Manufacture of cold rolled high carbon steel sheet having satisfactory drawability
JP3824161B2 (en) Nitriding steel, nitriding steel, and method for producing the same
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JPH0665647A (en) Effective production of cold rolled steel sheet extremely excellent in deep drawability

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007