JPH0931444A - Gringing grain - Google Patents

Gringing grain

Info

Publication number
JPH0931444A
JPH0931444A JP18897695A JP18897695A JPH0931444A JP H0931444 A JPH0931444 A JP H0931444A JP 18897695 A JP18897695 A JP 18897695A JP 18897695 A JP18897695 A JP 18897695A JP H0931444 A JPH0931444 A JP H0931444A
Authority
JP
Japan
Prior art keywords
grinding
abrasive grains
boron nitride
cubic
cbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18897695A
Other languages
Japanese (ja)
Inventor
Masaharu Suzuki
正治 鈴木
Tetsuya Okamoto
哲也 岡本
Tomoki Nikaido
知己 二階堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP18897695A priority Critical patent/JPH0931444A/en
Publication of JPH0931444A publication Critical patent/JPH0931444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a grinding grain composed of a grinding grain of boron nitride of multicrystal cubic having a specific: silicon content and a grinding grain of boron nitride of monocrystal cubic, having a stable and small grinding resistance, excellent in abrasion resistance and useful for a metal-bond grind stone, an electro plated grind stone, etc. SOLUTION: This grinding grain is composed of (A) a baron nitride grinding grain of multicrystal cubic whose silicon content is <=90ppm and (B) a boron nitride grinding grain of monocrystal cubic. For instance, the component B is contained in an amount of 20-90wt.% based on the total of the grinding grains. The component A is obtained e.g. by treating a thermally decomposed boron nitride having a silicon content of <=1ppm by using a member made of a highly pure semiconductor grade carbon of >=99.9%, combinedly used as a reaction section and a heater, etc., and wrapped with a tantalum foil at high temperature under high pressure in a stable region of the cubic boron nitride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は研削砥石用の砥粒に
関するものである。本発明の砥粒が応用される研削砥石
としては、特に鉄系金属加工用の重研削、高速研削用の
メタルボンド砥石、電着砥石、ビトリファイド砥石等が
あげられる。
TECHNICAL FIELD The present invention relates to abrasive grains for a grinding wheel. Examples of grinding wheels to which the abrasive grains of the present invention are applied include heavy grinding for iron-based metal processing, metal bond grinding wheels for high-speed grinding, electrodeposition grinding wheels, and vitrified grinding wheels.

【0002】[0002]

【従来の技術】窒化ほう素の高圧相である立方晶窒化ほ
う素(cBN)はダイヤモンドに次ぐ硬さと熱伝導率を
有し、鉄系金属と反応しないとうダイヤモンドにはない
特徴を持つことから鉄系金属の研削加工用砥粒としての
利用が進められている。
2. Description of the Prior Art Cubic boron nitride (cBN), which is a high-pressure phase of boron nitride, has hardness and thermal conductivity second only to diamond, and has characteristics that diamond does not have if it does not react with iron-based metals. Utilization of iron-based metals as abrasive grains for grinding is being promoted.

【0003】近年の研削加工は、省力化、無人化の方向
にある。その具体例は、重研削、高速研削であるが、こ
のような過酷な研削条件下では砥石の切れ味が悪いと研
削抵抗が大きくなり、工作機械へ大きな負荷がかかる。
このため、工作機械の高剛性化や高能力化が実施されて
いるが省力化の面から好ましくなく、切れ味が良く研削
抵抗を安定して小さく、しかも耐摩耗性に優れた砥石が
待ち望まれている。
[0003] In recent years, grinding has been directed toward labor saving and unmanned operation. Specific examples thereof are heavy grinding and high speed grinding, but under such severe grinding conditions, if the sharpness of the grindstone is poor, the grinding resistance increases and a heavy load is applied to the machine tool.
For this reason, machine tools have been made to have higher rigidity and higher performance, but this is not preferable from the viewpoint of labor saving, and a grindstone with good sharpness, stable and small grinding resistance, and excellent wear resistance is desired. There is.

【0004】一般にcBN砥石の研削抵抗は、「cBN
ホイール研削加工技術」(1988年 工業調査会発
行)でも紹介されているように砥石の使用初期に著しく
高いことが知られている。
Generally, the grinding resistance of a cBN grindstone is "cBN
It is known that it is extremely high in the early stages of use of the grinding wheel, as also introduced in "Wheel grinding technology" (published by the Industrial Research Board in 1988).

【0005】cBN砥石に用いられるcBN砥粒を大別
すると、多結晶型と単結晶型の2種類のものがある。多
結晶型cBN砥粒は、微細なcBN結晶粒子が互いに強
固に結合した多結晶体構造を有するため、粒子一つが単
結晶により構成される単結晶型cBN砥粒のようにへき
開などの大破壊を起こさず高い強度を示す。そのため、
砥石として使用した場合に優れた耐摩耗性を示す。多結
晶型cBN砥粒は、特公昭63-44417号公報及び特願平6-
82983 号明細書にも述べられているように、触媒を用い
ない無触媒直接転換法によって合成されたcBN焼結体
を所望の粒度に粉砕することによって製造される。しか
し、このような多結晶型cBN砥粒であっても実際に重
研削、高速研削などの過酷な条件下で砥石として用いる
と、耐摩耗性には優れるがドレッシング後の初期の研削
抵抗が著しく高くなってしまうという問題があった。
The cBN abrasive grains used for the cBN grindstone are roughly classified into two types, a polycrystalline type and a single crystal type. Since the polycrystalline cBN abrasive grains have a polycrystalline structure in which fine cBN crystal grains are firmly bonded to each other, a large breakage such as cleavage occurs like single crystal type cBN abrasive grains in which one particle is composed of a single crystal. It shows high strength without causing for that reason,
Shows excellent wear resistance when used as a grindstone. Polycrystalline cBN abrasive grains are disclosed in Japanese Examined Patent Publication No. 63-44417 and Japanese Patent Application No. 6-
As described in the specification of 82983, it is produced by crushing a cBN sintered body synthesized by a non-catalytic direct conversion method without using a catalyst into a desired particle size. However, even if such a polycrystalline cBN abrasive grain is actually used as a grindstone under severe conditions such as heavy grinding and high speed grinding, the abrasion resistance is excellent, but the initial grinding resistance after dressing is remarkable. There was the problem of becoming expensive.

【0006】一方、単結晶型cBN砥粒は、基本的に粒
子一つが単結晶により構成されているので、耐摩耗性に
は劣るが、へき開などの大破壊を起こすので鋭利なへき
開面が刃先にでやすく切れ味に優れるという特徴があ
る。単結晶型cBN砥粒は、特公昭38-14 号公報にも述
べられているように触媒を用いて合成されたcBN焼結
体から製造される。しかし、このような単結晶型cBN
砥粒であっても実際に重研削、高速研削などの過酷な条
件下で砥石として用いると、ドレッシング後の初期の研
削抵抗はかなり高く、また砥粒強度が小さく目こぼれが
起こるためか研削の進行にともない一旦低下した研削抵
抗が再度上昇し、頻繁に再ドレッシングを行なわなけれ
ばならないという問題があった。
On the other hand, the single crystal type cBN abrasive grain is basically inferior in wear resistance because one particle is composed of a single crystal, but it causes a large breakage such as cleavage, so that a sharp cleavage surface has a cutting edge. It is characterized by being easy to dry and excellent in sharpness. The single crystal cBN abrasive grains are produced from a cBN sintered body synthesized by using a catalyst as described in Japanese Patent Publication No. 38-14. However, such single-crystal cBN
Even if the abrasive grains are actually used as a grindstone under severe conditions such as heavy grinding and high-speed grinding, the initial grinding resistance after dressing is considerably high, and the abrasive grain strength is small and spills may occur, which may cause grinding. Along with the progress, the grinding resistance, which had once decreased, rises again, and there has been a problem that frequent redressing has to be performed.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、重研
削、高速研削などの過酷な使用条件下で研削抵抗が安定
して小さく、特に初期の研削抵抗を小さくし、しかも耐
摩耗性の大きい研削砥石を製作することのできる砥粒を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a stable and small grinding resistance under heavy use conditions such as heavy grinding and high speed grinding, and particularly to reduce initial grinding resistance and wear resistance. An object is to provide abrasive grains capable of producing a large grinding wheel.

【0008】本発明者らは、研削抵抗が安定して小さ
く、しかも耐摩耗性の大きい砥粒を開発すべく種々検討
した結果、シリコン含有量を制御した多結晶型cBN砥
粒と単結晶型cBN砥粒を含む砥粒を用いた砥石が、研
削抵抗が安定して小さくなり、しかも耐摩耗性に優れる
ことを見いだし、本発明を完成させたものである。
As a result of various investigations by the inventors of the present invention to develop an abrasive grain having a stable grinding resistance and a small abrasion resistance, a polycrystalline cBN abrasive grain having a controlled silicon content and a single crystal type abrasive grain have been obtained. The present invention has been completed by finding that a grindstone using abrasive grains including cBN abrasive grains has a stable grinding resistance and a small abrasion resistance and is excellent in wear resistance.

【0009】すなわち、シリコン含有量の異なるさまざ
まな多結晶型cBN砥粒と単結晶型cBN砥粒を種々の
比率で含有させた砥石で実際に重研削を行い研削の前後
で砥石表面に突き出している砥粒一つ一つの状態を観察
した結果、(1)シリコン含有量90PPM以下の多結
晶型cBN砥粒は摩滅や大破壊が起きていないこと、
(2)シリコン含有量90PPM以下の多結晶型cBN
砥粒で囲まれている単結晶型cBN砥粒はそれを単独で
用いた場合に比べて摩滅や大破壊が起きておらず鋭利な
刃先が保たれていること、を見いだした。また、実施例
で詳述するように、シリコン含有量90PPM以下の多
結晶型cBN砥粒又は単結晶型cBN砥粒を単独で用い
た砥石に比べて初期の研削抵抗が著しく小さくかつ安定
し、しかも耐摩耗性もシリコン含有量90PPM以下の
多結晶型cBN砥粒を単独で用いた場合に比べて遜色の
ないことを見いだしたものである。
That is, with a grindstone containing various polycrystalline type cBN abrasive grains having different silicon contents and single crystal type cBN abrasive grains at various ratios, heavy grinding was actually carried out and the surface of the grindstone was projected before and after grinding. As a result of observing the state of each of the abrasive grains present, (1) that the polycrystalline cBN abrasive grains having a silicon content of 90 PPM or less have not been worn or destroyed.
(2) Polycrystalline cBN having a silicon content of 90 PPM or less
It has been found that the single crystal type cBN abrasive grains surrounded by the abrasive grains do not suffer abrasion or major destruction as compared with the case where they are used alone, and a sharp cutting edge is maintained. Further, as will be described in detail in Examples, the initial grinding resistance is extremely small and stable as compared with a grindstone using a polycrystalline cBN abrasive grain having a silicon content of 90 PPM or less or a single crystal type cBN abrasive grain alone. Moreover, it has been found that the abrasion resistance is comparable to the case where the polycrystalline cBN abrasive grains having a silicon content of 90 PPM or less are used alone.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明は、シ
リコン含有量90PPM以下の多結晶型立方晶窒化ほう
素砥粒と単結晶型立方晶窒化ほう素砥粒とを含むことを
特徴とする砥粒である。
That is, the present invention is characterized in that it contains polycrystalline cubic boron nitride abrasive grains having a silicon content of 90 PPM or less and single crystal cubic boron nitride abrasive grains. It is an abrasive grain.

【0011】[0011]

【発明の実施の形態】以下、本発明についてさらに詳し
く説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0012】本発明において、多結晶型cBN砥粒中の
シリコン分は、たとえば多結晶型cBN砥粒表面に付着
する不純物を酸処理、純水処理などで除いた後、炭酸ソ
ーダで溶融分解処理し、微量金属不純物の定量分析法と
して広く一般に行なわれているプラズマ発光分光法など
で定量することができる。また、多結晶型cBN砥粒の
シリコンの存在形態は、たとえば微小部分析装置付き透
過電子顕微鏡による成分分析と構造解析を併用すること
によって行なうことができる。
In the present invention, the silicon content in the polycrystalline cBN abrasive grains is melted and decomposed with sodium carbonate after removing impurities adhering to the surface of the polycrystalline cBN abrasive grains by acid treatment or pure water treatment. However, it can be quantified by plasma emission spectroscopy, which is widely used as a quantitative analysis method for trace metal impurities. The presence of silicon in the polycrystalline cBN abrasive grains can be determined by, for example, using component analysis and structural analysis in combination with a transmission electron microscope equipped with a micropart analysis device.

【0013】本発明において、多結晶型cBN砥粒のシ
リコン含有量を90PPM以下と限定したのは、90P
PMを越えるシリコン含有量の多結晶型cBN砥粒では
靭性が低いためか、単結晶型cBN砥粒と混合して砥石
とした場合に耐摩耗性が著しく低下するからである。
In the present invention, the silicon content of the polycrystalline cBN abrasive grain is limited to 90 PPM or less by 90P.
This is because the polycrystalline cBN abrasive grains having a silicon content exceeding PM have a low toughness, and the abrasion resistance is significantly reduced when the abrasive grains are mixed with the single crystal type cBN abrasive grains.

【0014】本発明で使用されるリコン含有量90PP
M以下の多結晶型cBN砥粒は、たとえば以下のように
して入手することができる。すなわち、多結晶型cBN
焼結体は上記したように、触媒を用いない無触媒直接転
換法によって合成されたcBN焼結体を所望の粒度に粉
砕することによって製造することができる。その直接転
換cBN焼結体の合成法は、広く一般に知られており、
例えば特公昭63-394号公報に述べられているように、熱
分解窒化ほう素をcBNの安定領域である高温/高圧下
で処理することである。ただし、本発明においては、原
料、高温/高圧下を発生する反応室を以下に述べるよう
に精密に制御して純度を制御したcBN焼結体を合成す
る必要がある。
Recon content 90PP used in the present invention
The polycrystalline cBN abrasive grains of M or less can be obtained, for example, as follows. That is, polycrystalline cBN
As described above, the sintered body can be produced by crushing the cBN sintered body synthesized by the catalyst-free direct conversion method without using a catalyst into a desired particle size. The synthesis method of the direct conversion cBN sintered body is widely known,
For example, as described in Japanese Examined Patent Publication No. 63-394, the pyrolytic boron nitride is treated at a high temperature / high pressure which is a stable region of cBN. However, in the present invention, it is necessary to synthesize the cBN sintered body whose purity is controlled by precisely controlling the raw material and the reaction chamber for generating high temperature / high pressure as described below.

【0015】まず、原料や反応室にシリコンを含まない
高純度のものを用いる。原料や反応室及びその周辺部に
シリコンが含まれると合成中に生成するcBN焼結体内
部にそれが拡散し不純物として取り込まれる。そのた
め、原料としては熱分解窒化ほう素などの高純度の低圧
相窒化ほう素を用いる。低圧相窒化ほう素のシリコン含
有量は1PPM以下であることが好ましい。また、高温
/高圧処理過程で汚染がおきないように反応室内に原料
を充填する際にはBNと反応せず不純物のゲッターとな
る高純度のタンタル等の金属箔で包んでおくことが好ま
しい。
First, a high-purity raw material or reaction chamber containing no silicon is used. When silicon is contained in the raw material, the reaction chamber and its peripheral portion, it is diffused into the cBN sintered body produced during the synthesis and taken in as an impurity. Therefore, high-purity low-pressure phase boron nitride such as pyrolytic boron nitride is used as a raw material. The silicon content of the low-pressure phase boron nitride is preferably 1 PPM or less. Further, when the raw material is filled in the reaction chamber so as not to cause contamination during the high temperature / high pressure treatment process, it is preferable to wrap the raw material with a metal foil such as high-purity tantalum that does not react with BN and becomes a getter of impurities.

【0016】反応室の材質についてもシリコンを含まな
い純度の高いものを用いる。すなわち、原料を充填する
反応室兼加熱用ヒーターとしては半導体グレード99.
9%以上の高純度カーボンを用いることが好ましい。一
方、カーボンヒーターの外側とガスケットの間に位置す
るスリーブについてもシリコンを含まないものを用い
る。もし、スリーブにシリコンが多く含まれているとこ
のシリコンが高温下で反応室材質であるカーボン中を容
易に拡散透過して内部の原料及び生成したcBNを汚染
する。通常、スリーブとしては天然鉱物であるパイロフ
ィライト、タルクもしくはそれらの焼成物、更にはNa
Cl粉末の成形体などが使用されている。しかしなが
ら、天然鉱物であるパイロフィライト、タルク及びNa
Clには100PPM以上のシリコンが含まれているの
で本発明には不適当な材質である。本発明においては、
シリコン含有量1PPM以下の材質たとえば高純度の熱
分解窒化ほう素の粉末成形体をスリーブとして用いる。
As the material of the reaction chamber, a material of high purity containing no silicon is used. That is, a semiconductor grade 99.
It is preferable to use high purity carbon of 9% or more. On the other hand, for the sleeve located between the outside of the carbon heater and the gasket, one that does not contain silicon is used. If the sleeve contains a large amount of silicon, the silicon easily diffuses and permeates through carbon, which is the material of the reaction chamber, at high temperature and contaminates the raw material inside and the generated cBN. Usually, as a sleeve, pyrophyllite which is a natural mineral, talc or a fired product thereof, and further Na
A Cl powder compact is used. However, the natural minerals pyrophyllite, talc and Na
Since Cl contains silicon of 100 PPM or more, it is an unsuitable material for the present invention. In the present invention,
A material having a silicon content of 1 PPM or less, for example, a powder compact of high-purity pyrolytic boron nitride is used as the sleeve.

【0017】合成された多結晶型cBN焼結体から多結
晶型cBN砥粒を製造するには、多結晶型cBN焼結体
を粉砕・分級し、所望の粒度のものを選別する。粉砕に
はロールクラッシャーなどの一般の粉砕機を用いれば良
く、また分級には篩を用いれば良い。
In order to produce polycrystalline cBN abrasive grains from the synthesized polycrystalline cBN sintered body, the polycrystalline cBN sintered body is crushed and classified to select one having a desired grain size. A general crusher such as a roll crusher may be used for crushing, and a sieve may be used for classification.

【0018】本発明で使用される単結晶型cBN砥粒と
は、基本的に粒子一つが一つの単結晶により構成される
ものであるが、完全な単結晶ばかりを指すものではな
く、双晶や数十μm単位の大きな一次結晶粒子が結合し
たものも含まれる。
The single crystal type cBN abrasive grain used in the present invention is basically composed of one single crystal, but it does not mean only a complete single crystal but a twin crystal. It also includes particles in which large primary crystal particles of several tens of μm unit are combined.

【0019】本発明で使用される単結晶型cBN砥粒
は、広く一般に市販されているので、市場で入手するこ
ともできるし、また、特公昭38-14 号公報にも述べられ
ているように、六方晶系の窒化ほう素に触媒を加えcB
Nの安定領域である高温/高圧下で処理することによっ
ても得ることができる。
Since the single crystal type cBN abrasive grains used in the present invention are widely and generally commercially available, they can be obtained on the market or as described in JP-B-38-14. In addition, a catalyst was added to hexagonal boron nitride to produce cB.
It can also be obtained by treating under a high temperature / high pressure which is a stable region of N 2.

【0020】本発明の砥粒は、上記したシリコン含有量
90PPM以下の多結晶型cBN砥粒と単結晶型cBN
砥粒とを一般的な方法で混合することによって製造する
ことができる。混合に際しては、ミキサーやホモジナイ
ザーを用いると均一な混合物が得られるので好適であ
る。また、ダイヤモンド、アルミナ、シリコンカーバイ
ド等の第三成分を加えることもできる。
The abrasive grains of the present invention are polycrystalline cBN abrasive grains having a silicon content of 90 PPM or less and single crystal type cBN abrasive grains.
It can be produced by mixing with abrasive grains in a conventional manner. Upon mixing, it is preferable to use a mixer or a homogenizer because a uniform mixture can be obtained. Also, a third component such as diamond, alumina, or silicon carbide can be added.

【0021】多結晶型cBN砥粒と単結晶型cBN砥粒
の混合比としては、砥粒全体に占める単結晶型cBN砥
粒の比率が20〜90重量%であることが好ましい。単
結晶型cBN砥粒の比率が20重量%未満では研削抵抗
の改善効果が小さくなり、また90重量%を越えると耐
摩耗性の改善効果が小さくなる。
As a mixing ratio of the polycrystalline cBN abrasive grains and the single crystal type cBN abrasive grains, the ratio of the single crystal type cBN abrasive grains to the whole abrasive grains is preferably 20 to 90% by weight. If the ratio of the single crystal type cBN abrasive grains is less than 20% by weight, the effect of improving the grinding resistance becomes small, and if it exceeds 90% by weight, the effect of improving the wear resistance becomes small.

【0022】[0022]

【作用】本発明の砥粒を用いた砥石が、研削抵抗が安定
して小さくかつ耐摩耗性に優れる理由としては以下のこ
とが考えられる。
The reason why the grindstone using the abrasive grains of the present invention has a stable and small grinding resistance and is excellent in wear resistance is considered as follows.

【0023】まず、研削抵抗が安定して小さい理由は次
のように考えられる。研削抵抗は、たとえば「研削加工
と砥粒加工」(1984年 共立出版発行)でも述べら
れているように、研削に作用する砥石表面上の砥粒先端
の鋭さが大きく影響することが知られている。すなわ
ち、砥石表面に存在する砥粒の先端が鋭利なほど研削抵
抗が小さくなる傾向がある。単結晶型cBN砥粒は、へ
き開破壊により砥粒先端が鋭利になりやすいが、強度が
劣るため研削中に大破壊を起こし研削に作用する砥粒数
が減少してしまう。一方、多結晶型cBN砥粒は、強度
が大きいため作用砥粒数の減少は小さいが、大きな破壊
が起きにくく摩滅的に摩耗するため形状が鋭利にならな
い。砥石表面に両砥粒が共存すると、強度の大きい多結
晶型cBN砥粒によって単結晶型cBN砥粒が保護され
るような状態となるため、鋭利な刃先を有する単結晶型
cBN砥粒の切れ刃数の減少が小さくなる。また、同時
に、多結晶型cBN砥粒の先端には、多結晶型cBN砥
粒のみを用いた場合よりも大きな負荷がかかるため適度
な破壊が起こり、通常の多結晶型cBN砥粒では起こり
にくい鋭利な切れ刃の生成が起こるものと思われる。こ
のように、両砥粒が砥石表面に共存すると両砥粒の相乗
効果によって切れ味に優れる鋭利な砥粒刃先が多く発生
し研削抵抗が安定して小さくなるものと考えられる。
First, the reason why the grinding resistance is stable and small is considered as follows. It is known that the grinding resistance is greatly affected by the sharpness of the tip of the abrasive grain on the surface of the grindstone that acts on the grinding, as described in, for example, "Grinding and Abrasive Machining" (published by Kyoritsu Shuppan, 1984). There is. That is, the sharper the tips of the abrasive grains present on the surface of the grindstone, the smaller the grinding resistance tends to be. The single crystal cBN abrasive grains tend to be sharp at the tip of the abrasive grains due to cleavage breakage, but since the strength is poor, large breakage occurs during grinding and the number of abrasive grains acting on grinding decreases. On the other hand, since the polycrystalline cBN abrasive grains have a large strength, the decrease in the number of working abrasive grains is small, but a large breakage is less likely to occur, and the abrasive grains are abraded, so that the shape is not sharp. When both abrasive grains coexist on the surface of the grindstone, the polycrystalline cBN abrasive grains with high strength protect the single crystal type cBN abrasive grains. Therefore, the cutting of the single crystal type cBN abrasive grains having a sharp cutting edge is performed. The decrease in the number of blades becomes smaller. At the same time, a larger load is applied to the tips of the polycrystalline cBN abrasive grains than in the case where only the polycrystalline cBN abrasive grains are used, so that moderate fracture occurs, which is unlikely to occur with ordinary polycrystalline cBN abrasive grains. It seems that the formation of sharp cutting edges occurs. As described above, when both abrasive grains coexist on the surface of the grindstone, it is considered that due to the synergistic effect of both abrasive grains, a large number of sharp abrasive grain cutting edges having excellent sharpness are generated and the grinding resistance is stably reduced.

【0024】次に、多結晶型cBN砥粒を単独に用いた
場合と遜色のない優れた耐摩耗性を示す理由としては以
下のことが考えられる。本発明の砥粒を用いた砥石の表
面には強度が大きく耐摩耗性の大きい多結晶型cBN砥
粒と、強度の小さい単結晶型cBN砥粒が混ざり合った
状態で、多数、砥粒の一部を突き出した状態で存在して
いる。研削前には、両者の突き出し高さはほぼ同一であ
るが、研削中にはこれらの砥粒の先端部には被削材との
衝突で衝撃的な力が作用する。研削を開始するとその初
期には両者に同等の衝撃力が作用する。しかしながら、
単結晶型cBN砥粒はへき開破壊を起こしやすいために
先端部が破壊し突き出し高さが低くなるのに対し、多結
晶型cBN砥粒は強度が大きいためにその突き出し高さ
をある程度保持している。単結晶型cBN砥粒の周りに
それよりも突き出した多結晶型cBN砥粒が存在するた
めに、単結晶型cBN砥粒に作用する衝撃力は小さくな
り、単結晶型cBN砥粒の先端部の破壊はそれ以上進ま
なくなる。また、多結晶型cBN砥粒にとっても、周囲
に切れ味に優れた単結晶型cBN砥粒がある程度の突き
出し高さを維持した状態で存在しているので負荷が低減
され、両砥粒の相乗効果によって砥石の耐摩耗性が向上
するものと思われる。
Next, the following is considered as a reason for exhibiting excellent wear resistance comparable to the case where the polycrystalline cBN abrasive grains are used alone. On the surface of a grindstone using the abrasive grains of the present invention, polycrystalline cBN abrasive grains having high strength and high wear resistance and single crystal type cBN abrasive grains having low strength are mixed, and a large number of abrasive grains It exists with a part protruding. Before the grinding, the protrusion heights of the both are almost the same, but during grinding, a shocking force acts on the tips of these abrasive grains due to the collision with the work material. When grinding is started, the same impact force acts on both at the initial stage. However,
The single crystal type cBN abrasive grains are prone to cleavage fracture and the tip portion is broken to lower the protrusion height, whereas the polycrystalline cBN abrasive grains have high strength and therefore the protrusion height is maintained to some extent. There is. Since the polycrystalline cBN abrasive grains protruding from the single crystal type cBN abrasive grains are present around the single crystal type cBN abrasive grains, the impact force acting on the single crystal type cBN abrasive grains becomes small, and the tip portion of the single crystal type cBN abrasive grains is reduced. The destruction of will not proceed any further. Further, for the polycrystalline cBN abrasive grains, the load is reduced because the single crystal type cBN abrasive grains with excellent sharpness are present around the periphery while maintaining a certain protrusion height, and the synergistic effect of both abrasive grains is achieved. It is believed that this improves the wear resistance of the grindstone.

【0025】[0025]

【実施例】次に、実施例を挙げてさらに具体的に本発明
を説明する。
EXAMPLES Next, the present invention will be described more specifically by way of examples.

【0026】実施例1〜8 比較例1〜3 特願平6-82983 号明細書に述べられている方法を用い、
さまざまなシリコン含有量の多結晶型cBN砥粒を以下
に従って製造した。
Examples 1 to 8 Comparative Examples 1 to 3 Using the method described in Japanese Patent Application No. 6-82983,
Polycrystalline cBN abrasive grains of varying silicon content were prepared according to the following.

【0027】すなわち、さまざまなシリコン含有量を持
つ熱分解窒化ほう素板を合成して原料とした。原料の熱
分解窒化ほう素板から外径30mm、厚さ2mmの円板
を20枚切りだして積み重ねた後、タンタルの金属箔で
包んでカーボンチューブ内に充填した。このカーボンチ
ューブは反応室兼加熱用ヒーターとして機能するもので
あり、半導体グレード99.9%以上の高純度カーボン
で製作されているものである。
That is, pyrolytic boron nitride plates having various silicon contents were synthesized and used as raw materials. Twenty discs each having an outer diameter of 30 mm and a thickness of 2 mm were cut out from the pyrolytic boron nitride plate as a raw material and stacked, then wrapped with a metal foil of tantalum and filled in a carbon tube. This carbon tube functions as a heater that also serves as a reaction chamber, and is made of high-purity carbon with a semiconductor grade of 99.9% or more.

【0028】一方、カーボンチューブの外側と固体ガス
ケット間のスリーブとして、シリコン含有量1PPMの
熱分解窒化ほう素粉末の成型体を配置した。スリーブの
内径及び外径はそれぞれ34mm、50mmである。こ
れらを内径60mmのフラットベルト型超高圧高温発生
装置に充填し、温度2080℃、圧力7.7GPa下、
150分間処理して無触媒直接転換法による多結晶型c
BN焼結体を合成した。これをロールクラッシャーで粉
砕した後、分級して100/120メッシュの砥粒を選
別した。
On the other hand, a molded body of pyrolytic boron nitride powder having a silicon content of 1 PPM was arranged as a sleeve between the outer side of the carbon tube and the solid gasket. The inner diameter and the outer diameter of the sleeve are 34 mm and 50 mm, respectively. These were filled in a flat belt type ultra-high pressure / high temperature generator having an inner diameter of 60 mm, and the temperature was 2080 ° C. and the pressure was 7.7 GPa.
Polycrystalline c by a direct conversion method without catalyst after treatment for 150 minutes
A BN sintered body was synthesized. This was crushed by a roll crusher and then classified to select 100/120 mesh abrasive grains.

【0029】この砥粒から、JISR6003の方法で
1.2gをサンプリングし、砥粒表面の不純物を酸処理
と純水洗浄で除去してから炭酸ソーダによるアルカリ溶
融処理してプラズマ発光分光法でシリコンの含有量を測
定した。その結果を表1に示す。
From this abrasive grain, 1.2 g was sampled by the method of JIS R6003, impurities on the surface of the abrasive grain were removed by acid treatment and pure water washing, and then alkali melting treatment with sodium carbonate was performed and silicon was measured by plasma emission spectroscopy. Was measured. Table 1 shows the results.

【0030】次に、単結晶型cBN砥粒として市販品
〔ゼネラルエレクトリック社製「ボラゾンTYPE
I」(粒度100/120メッシュ)〕を入手し、上記
の多結晶型cBN砥粒と所望の混合比(重量比)でロッ
キングミキサー(愛知電機商事社製)を用いて混合し
た。
Next, as a single-crystal type cBN abrasive grain, a commercially available product ["Borazon TYPE manufactured by General Electric Co., Ltd.
I ”(particle size 100/120 mesh)] was obtained and mixed with the above-mentioned polycrystalline cBN abrasive grains at a desired mixing ratio (weight ratio) using a rocking mixer (manufactured by Aichi Denki Shoji Co., Ltd.).

【0031】混合された砥粒から100カラットを抜き
出し、直径200mm、厚さ10mm、集中度100の
メタルボンド砥石を製作した。この砥石を用い平面プラ
ンジカット法で研削試験を行い、研削抵抗として各研削
体積における砥石軸電流値及び砥石摩耗量を測定した。
それらの結果を表1に示す。なお、試験に用いた被削材
は高速度工具鋼SKH−51(ロックウェル硬度:55
度)であり、研削条件は砥石周速度1800m/mi
n、被削材送り速度9m/min、砥石切込み量20μ
mである。
100 carats were extracted from the mixed abrasive grains to produce a metal bond grindstone having a diameter of 200 mm, a thickness of 10 mm and a concentration of 100. A grinding test was performed using this grindstone by a plane plunge cut method, and a grindstone axial current value and a grindstone wear amount in each grinding volume were measured as grinding resistance.
Table 1 shows the results. The work material used in the test was a high speed tool steel SKH-51 (Rockwell hardness: 55.
And the grinding condition is a grinding wheel peripheral speed of 1800 m / mi
n, work material feed rate 9 m / min, grindstone cutting amount 20 μ
m.

【0032】[0032]

【表1】 (注)研削抵抗の初期値:10mm3 /mm研削後の値 研削抵抗の中期値:10,000mm3 /mm研削後の値 研削抵抗の後期値:20,000mm3 /mm研削後の値[Table 1] (Note) Initial value of grinding resistance: 10 mm 3 / mm Value after grinding Medium value of grinding resistance: 10,000 mm 3 / mm Value after grinding Late value of grinding resistance: 20,000 mm 3 / mm Value after grinding

【0033】[0033]

【発明の効果】本発明の砥粒によれば、研削抵抗が安定
して小さく、しかも耐摩耗性に優れた高性能な研削砥石
を製作することができる。
According to the abrasive grains of the present invention, it is possible to manufacture a high-performance grinding wheel having a stable grinding resistance and a small wear resistance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリコン含有量90PPM以下の多結晶
型立方晶窒化ほう素砥粒と単結晶型立方晶窒化ほう素砥
粒とを含むことを特徴とする砥粒。
1. An abrasive grain containing a polycrystalline cubic boron nitride abrasive grain having a silicon content of 90 PPM or less and a single crystal cubic boron nitride abrasive grain.
JP18897695A 1995-07-25 1995-07-25 Gringing grain Pending JPH0931444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18897695A JPH0931444A (en) 1995-07-25 1995-07-25 Gringing grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18897695A JPH0931444A (en) 1995-07-25 1995-07-25 Gringing grain

Publications (1)

Publication Number Publication Date
JPH0931444A true JPH0931444A (en) 1997-02-04

Family

ID=16233225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18897695A Pending JPH0931444A (en) 1995-07-25 1995-07-25 Gringing grain

Country Status (1)

Country Link
JP (1) JPH0931444A (en)

Similar Documents

Publication Publication Date Title
JP2672136B2 (en) Diamond compact
US8591613B2 (en) Abrasive grains having unique features
CN1249194C (en) Polycrystalline abrasive grit
JP4684599B2 (en) Method for producing cubic boron nitride
JPH06278031A (en) Production of abrasive material
JP2005514300A (en) Low oxygen cubic boron nitride and its products
CN101341268A (en) Cubic boron nitride compact
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
JP6281955B2 (en) Functionalization of cubic boron nitride and manufacturing method thereof
JP2744732B2 (en) Abrasive
JPH0931447A (en) Grinding grain
JPH0931446A (en) Grinding grain
JPH0931444A (en) Gringing grain
JPH0931442A (en) Grinding grain
JPH0931443A (en) Grinding grain
JPH0931445A (en) Grinding grain
JPH07291732A (en) Polycrystalline cubic boron nitride sintered compact and use thereof
JP2761321B2 (en) Abrasive
JPH07291733A (en) Polycrystalline cubic boron nitride sintered compact and use thereof
JP2761322B2 (en) Abrasive
JPH07291735A (en) Polycrystalline cubic boron nitride sintered compact and use thereof
JP2006291216A (en) Cubic boron nitride abrasive grain and process for producing cubic boron nitride abrasive grain
JPH08301661A (en) Sintered compact of polycyrstalline type cubic boron nitride and its use
JPH09169971A (en) Cubic boron nitride abrasive grain and its production
JPH07291734A (en) Polycrystalline cubic boron nitride sintered compact and use thereof