JPH09313880A - Flue gas desulfurizing treatment and device therefor - Google Patents

Flue gas desulfurizing treatment and device therefor

Info

Publication number
JPH09313880A
JPH09313880A JP8136455A JP13645596A JPH09313880A JP H09313880 A JPH09313880 A JP H09313880A JP 8136455 A JP8136455 A JP 8136455A JP 13645596 A JP13645596 A JP 13645596A JP H09313880 A JPH09313880 A JP H09313880A
Authority
JP
Japan
Prior art keywords
absorption tower
flue gas
gas
liquid
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8136455A
Other languages
Japanese (ja)
Other versions
JP3392635B2 (en
Inventor
Takeo Shinoda
岳男 篠田
Tamotsu Higuchi
保 樋口
Shinichiro Kotake
進一郎 小竹
Kiyoshi Okazoe
清 岡添
Susumu Okino
沖野  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13645596A priority Critical patent/JP3392635B2/en
Priority to US08/848,838 priority patent/US5840263A/en
Priority to CN97111596A priority patent/CN1086306C/en
Priority to PL97320250A priority patent/PL185302B1/en
Priority to TR97/00442A priority patent/TR199700442A2/en
Publication of JPH09313880A publication Critical patent/JPH09313880A/en
Application granted granted Critical
Publication of JP3392635B2 publication Critical patent/JP3392635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flue gas treating method by which flue gas desulfurization and dust removal are realized with a smaller equipment structure, at low cost and more effectively and a device therefor. SOLUTION: This device is constituted of a liquid absorbent feeding tank 1, an introducing side absorber 2 having the fixed sectional shape which is installed extended upward from one side thereof and in which slurry is jetted upward in liquid columns from plural places in the horizontal direction to bring untreated flue gas into gas-liquid contact with liquid absorbent in the tank, and a bring-out side absorber 3 having the fixed sectional shape which is installed extended upward from the other side and in which slurry is jetted upward in liquid columns from plural places in the horizontal direction to bring flue gas brought out from the introducing side absorber 2 into gasliquid contact again with the liquid absorbent in the tank. One of the introducing side and bring-out side absorbers 2, 3 is made a concurrent absorber in which flue gas descends, and the other of the introducing side and bring-out side absorbers 2, 3 is made a countercurrent absorber in which flue gas rises. The flow passage sectional area of the concurrent absorber is made smaller compared with that of the coutercurrent absorber so that high flue gas flow velocity desirable for dust collection and gaseous SO, absorption may be obtained. The flow passage sectional area of the coutercurrent absorber is made larger compared with that of the cocurrent absorber so that flue gas velocity preferable for gaseous SO2 absorption in the gas-liquid contact of countercurrent type may be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排煙の脱硫と除塵
を小型な装置構成かつ低コストで効率良く実現できる排
煙処理方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for flue gas treatment capable of efficiently desulfurizing and removing dust from flue gas at a low cost.

【0002】[0002]

【従来の技術】従来、この種の排煙処理方法または装置
としては、充填式の吸収塔(気液接触塔)や、スプレー
式又は液柱式の吸収塔を使用し、石灰石等の吸収剤が懸
濁した吸収液と排煙とを気液接触させることにより排煙
中の硫黄酸化物(主に亜硫酸ガス)やフライアッシュな
どの粉塵を除去するものが知られている。
2. Description of the Related Art Conventionally, as this type of flue gas treatment method or apparatus, a filling type absorption tower (gas-liquid contact tower) or a spray type or liquid column type absorption tower is used, and an absorbent such as limestone is used. It is known to remove dust such as sulfur oxides (mainly sulfurous acid gas) and fly ash in the flue gas by contacting the absorbing liquid in which the air is suspended with the flue gas.

【0003】このうち、充填式の吸収塔を用いたもの
は、いわゆる濡れ壁方式の気液接触装置であるため、吸
収塔本体自体は除塵性能が低い。また、単なるスプレー
式の吸収塔であっても、高性能の脱硫を実現するととと
もに、後述する衝突除塵を効果的に発生させて高い除塵
性能を得ることは困難であった。このため、このような
充填式あるいは単なるスプレー式の吸収塔では、除塵用
の気液接触部(例えばベチュリースクラバよりなるも
の)を吸収塔の前流側に設置することが通常行われてお
り、近年益々要求される高性能を確保した上での小型化
や低コスト化の要求には応え難かった。
Among them, the one using the filling type absorption tower is a so-called wet wall type gas-liquid contact device, and therefore the absorption tower body itself has a low dust removing performance. Further, even with a simple spray type absorption tower, it has been difficult to achieve high-performance desulfurization and to effectively generate collision dust removal described later to obtain high dust removal performance. For this reason, in such a filling type or mere spray type absorption tower, it is common practice to install a gas-liquid contact part for dust removal (for example, a Veturi scrubber) on the upstream side of the absorption tower. In recent years, it has been difficult to meet the demand for miniaturization and cost reduction while ensuring high performance that has been increasingly demanded in recent years.

【0004】一方、液柱式の吸収塔を用いたものは、吸
収塔自体が充填式等に比較して高い脱硫性能とともに高
い除塵性能を有するため、小型かつ低コストで高性能な
脱硫と除塵を実現するものとして注目されている。
On the other hand, in the case of using a liquid column type absorption tower, the absorption tower itself has high desulfurization performance as well as high dust removal performance as compared with the filling type and the like, so that it is small in size, low in cost and high in performance desulfurization and dust removal. Has been attracting attention as a means to realize.

【0005】従来の液柱式の排煙処理装置としては、例
えば実開昭59−53828号公報に開示されたものが
あり、また従来のスプレー式の排煙処理装置としては、
例えば特公昭59−38010号公報や特開平7−11
6457号又は特開平8−19726号公報に開示され
たものがある。
A conventional liquid column type flue gas treatment apparatus is disclosed in, for example, Japanese Utility Model Laid-Open No. 59-53828, and a conventional spray type flue gas treatment apparatus is as follows.
For example, Japanese Patent Publication No. 59-38010 and Japanese Patent Laid-Open No. 7-11.
6457 or JP-A-8-19726.

【0006】しかし、従来の充填式の排煙処理装置で
も、あるいは上記公報等に示された従来のスプレー式又
は液柱式の排煙処理装置であっても、その基本構成は一
つの吸収液タンクに対して一つの気液接触塔が設置され
るか、あるいは除塵用の気液接触塔が別個に設けられる
にしても、そのために別個の循環液用タンクが設けられ
たものであり、脱硫と除塵の高性能化とともに小型化や
低コスト化、さらにはメンテナンス性向上を図る上で限
界があった。
However, even if the conventional filling type flue gas treatment apparatus or the conventional spray type or liquid column type flue gas treatment apparatus shown in the above-mentioned publication or the like, its basic constitution is one absorbing liquid. Even if one gas-liquid contact tower is installed for the tank or a gas-liquid contact tower for dust removal is provided separately, a separate circulating liquid tank is provided for that purpose, and desulfurization is performed. In addition to the high performance of dust removal, there was a limit to downsizing, cost reduction, and improvement of maintainability.

【0007】即ち、高性能化を図ろうとすると、スプレ
ー式では基本的にスプレイノズルの設置段数を増やすこ
とが必要で、液柱式では液柱高さを高くする必要があ
る。また、充填式では充填部の高さを高くする必要があ
る。さらに、充填式やスプレー式では前述したような除
塵用の気液接触部をそのための循環液用タンクとともに
別個に設ける必要があるため、装置全体の大きさ(特に
吸収塔高さやタンク設置面積)や装置に接続されるダク
トや配管等の数や設置高さが著しく増加し、吸収液を組
み上げるポンプの容量や動力も相当に高くなるからであ
る。
That is, in order to improve the performance, it is basically necessary to increase the number of spray nozzles installed in the spray type, and it is necessary to increase the height of the liquid column in the liquid column type. Further, in the filling type, it is necessary to increase the height of the filling portion. Furthermore, in the case of the filling type and spraying type, it is necessary to separately provide the gas-liquid contacting part for dust removal as described above together with the circulating liquid tank therefor, so the size of the entire device (particularly the absorption tower height and tank installation area) This is because the number and installation height of ducts and pipes connected to the equipment and the equipment are significantly increased, and the capacity and power of the pump for assembling the absorbing liquid are also considerably increased.

【0008】また、吸収塔から排出される処理後排煙中
の同伴ミストには比較的高濃度の亜硫酸塩が含まれるた
め、前記同伴ミストを回収するミストエリミネータが閉
塞し易く、メンテナンス性の面で問題があった。また、
一塔式(除塵用の気液接触塔を設けない方式)の場合に
は、後述する衝突除塵を効率良く引き起こして、一つの
吸収塔で高い脱硫率とともに高い除塵性能を得るために
は、排煙の流速を高速化する必要があり、その場合に
は、前記同伴ミスト(比較的高濃度の亜硫酸塩を含むも
の)の量が極端に増加して、特に大型なミストエリミネ
ータを設ける必要が生じ、またそのメンテナンス(閉塞
を防止するための頻繁な洗浄作業等)も極めてめんどう
なものとなる。
Further, since the entrained mist in the post-treatment flue gas discharged from the absorption tower contains a relatively high concentration of sulfite, the mist eliminator for recovering the entrained mist is apt to be clogged and the maintainability is improved. I had a problem with. Also,
In the case of a single tower type (method without a gas-liquid contact tower for dust removal), in order to efficiently cause the collision dust removal described later and obtain a high desulfurization rate and high dust removal performance in one absorption tower, It is necessary to increase the flow velocity of smoke, and in that case, the amount of the entrained mist (containing a relatively high concentration of sulfite) increases extremely, and it becomes necessary to provide a particularly large mist eliminator. In addition, the maintenance (frequent cleaning work for preventing the blockage) becomes extremely troublesome.

【0009】なお、例えば特公昭59−38010号公
報などに示された装置のように、除塵用の気液接触部と
してベチェリースクラバタイプのものを設けた場合で
も、この除塵用の気液接触部(冷却塔あるいは第1吸収
塔)に供給される循環液のタンクは、吸収塔本体(第2
吸収塔)に供給される吸収液のタンクとは別個に設置さ
れ、前記循環液は吸収塔本体に供給される吸収液よりも
脱硫能の格段に低いもの(未反応石灰石がほとんど含有
されていないもの)となっている。このため、排煙の脱
硫はほとんどが吸収塔本体に負担されており、吸収塔本
体から排出される排煙の同伴ミスト中には比較的高濃度
の亜硫酸塩が含有されるため前述のミストリエリミネー
タの閉塞の問題があるとともに、また、高い脱硫性能を
得るためには、吸収塔本体を大型(特に高さ寸法が大
型)なものにせざるを得ない。
Even if a Bechery scrubber type device is provided as the dust-liquid contact portion for dust removal, such as the device disclosed in Japanese Patent Publication No. 59-38010, the gas-liquid contact portion for dust removal is not provided. The tank of the circulating liquid supplied to the part (cooling tower or first absorption tower) is the absorption tower main body (second
It is installed separately from the tank of the absorption liquid supplied to the absorption tower, and the circulating liquid has a desulfurization capacity that is significantly lower than that of the absorption liquid supplied to the main body of the absorption tower (it contains almost no unreacted limestone). Stuff). For this reason, most of the flue gas desulfurization is borne by the absorption tower body, and since the mist accompanying the flue gas discharged from the absorption tower body contains a relatively high concentration of sulfite salt, In addition to the problem of clogging of the eliminator, in addition, in order to obtain high desulfurization performance, the absorption tower body has to be large-sized (particularly the height is large).

【0010】また、ベチェリースクラバタイプの除塵用
の気液接触部は、スロート部と呼ばれる縮径部において
排煙の流速を著しく高め(約50〜100m/s)、こ
の高い流速を利用して供給した循環液を微滴化して相当
の除塵性能を確保するものであるため、前記公報の図面
からも分かるように、断面形状が一様でない複雑な形状
の塔形状となり、ある程度の高い除塵率が達成できるも
のの、製作コストが格段に高くなる。
In addition, the Bechery scrubber type gas-liquid contact part for dust removal significantly increases the flow rate of smoke (about 50 to 100 m / s) in the reduced diameter part called the throat part, and utilizes this high flow rate. Since the supplied circulating liquid is made into microdroplets to secure a considerable dust removal performance, as can be seen from the drawings of the above publication, the cross-sectional shape becomes a complicated tower shape, and a certain high dust removal rate. Although it can be achieved, the production cost will be much higher.

【0011】そこで、出願人は、このような従来の装置
の限界を越えて高性能化と小型化等を実現した装置を特
願平5−118171号(特開平6−327927号)
等により提案している。
Therefore, the Applicant has proposed a device which realizes high performance and miniaturization over the limit of the conventional device as described in Japanese Patent Application No. 5-118171 (Japanese Patent Application Laid-Open No. 6-327927).
And so on.

【0012】これは、吸収液を貯留する一つのタンクの
上部に、二つの液柱式吸収塔(並流式と向流式)を並べ
て設置し、排煙が順次各吸収塔に導かれて夫々の吸収塔
で排煙と前記同一のタンク内の吸収液との気液接触が行
われる構成としたもので、これにより全体的な小型化
(主に吸収搭高さの低減)や低コスト化(設備コストと
運転コストの両者の低減化)とともに、高い脱硫性能及
び除塵性能を実現し、さらに、同伴ミスト中の亜硫酸塩
濃度を低減してミストエリミネータのメンテナンス性向
上を実現したものである。
In this system, two liquid column type absorption towers (parallel flow type and countercurrent type) are installed side by side on the upper part of one tank for storing the absorbing liquid, and the flue gas is sequentially guided to each absorption tower. Each absorption tower has a structure in which exhaust gas and gas-liquid contact with the absorbing liquid in the same tank are performed, which results in overall downsizing (mainly reduction of absorption tower height) and low cost. Achievement of high desulfurization performance and dust removal performance as well as reduction of both equipment cost and operating cost, and further reduction of sulfite concentration in the entrained mist to improve maintainability of the mist eliminator. .

【0013】[0013]

【発明が解決しようとする課題】しかしながら、特開平
6−327927号等により出願人が開示した上記装置
によっても、脱硫と除塵を小型な装置構成かつ低コスト
でさらに効率良く実現する上で、以下のような改善すべ
き問題点があった。
However, in order to realize desulfurization and dust removal more efficiently with a small apparatus configuration and low cost, the following apparatus is disclosed by the applicant in Japanese Patent Laid-Open No. 6-327927. There was a problem to be improved.

【0014】(1) 上記特開平6−327927号に開示
された装置では、いずれも一つの吸収塔において脱硫と
除塵の両者を所定の目標性能で達成する構成になってい
る。即ち、略同寸法とされた二つの吸収塔それぞれで脱
硫と除塵の負担を、単に2分割しているだけであり、各
吸収塔においてはそれぞれ分担する分の脱硫率と除塵率
の両者を達成する必要がある。
(1) In the apparatus disclosed in Japanese Patent Laid-Open No. 6-327927, both have a structure in which both desulfurization and dust removal are achieved with a predetermined target performance in one absorption tower. That is, the burdens of desulfurization and dust removal are simply divided into two in each of the two absorption towers of approximately the same size, and each of the absorption towers achieves both the desulfurization rate and the dust removal rate that are shared. There is a need to.

【0015】ところが、本来除塵にとって好ましい気液
接触条件と、脱硫にとって好ましい気液接触条件は必ず
しも同一ではない。即ち、まず必要最小限の吸収液の供
給流量(または液柱高さ)は、通常除塵と脱硫とで等し
くなく、この供給流量等を多い方に対応させて設定せざ
るを得ない。また、吸収液の供給流量等を低く抑えつつ
小型なスペースで効率良く除塵を行うには、いわゆる衝
突除塵と呼ばれる粉塵粒子と吸収液の液滴との衝突によ
る粉塵の捕集現象が重要であり、この衝突除塵を効果的
に引き起こすためには、排煙の流速を高めて衝突エネル
ギーを増加させることが必要である。
However, the gas-liquid contact condition which is originally preferable for dust removal and the gas-liquid contact condition which is preferable for desulfurization are not necessarily the same. That is, first, the minimum required supply flow rate (or liquid column height) of the absorbing solution is not equal between dust removal and desulfurization, and it is unavoidable to set the supply flow rate and the like corresponding to the larger one. Further, in order to efficiently remove dust in a small space while suppressing the supply flow rate of the absorbing liquid and the like, it is important to collect dust by collision between dust particles and droplets of absorbing liquid, which is so-called collision dust removal. In order to effectively cause the collision dust removal, it is necessary to increase the flow velocity of smoke exhaust to increase the collision energy.

【0016】一方、より塔長の低い小型な吸収塔で効率
良く脱硫を行うには、気液接触面積を増やすべく排煙の
流路断面積を増やして排煙の流速を比較的低く設定する
ことが必要となる。特に、重力落下する吸収液に対して
排煙が上昇する向流式の吸収塔では、排煙により持ち去
られる同伴ミストの増加が問題となり、この同伴ミスト
の増加を抑制して効率良く高い脱硫率を達成しようとす
ると、除塵性能が期待できない低い流速に設定する必要
がある。
On the other hand, in order to perform desulfurization efficiently in a small absorption tower having a shorter tower length, the flow rate of flue gas is set relatively low by increasing the cross-sectional area of the flue gas in order to increase the gas-liquid contact area. Will be required. In particular, in a countercurrent absorption tower in which flue gas rises with respect to the absorbing liquid that falls due to gravity, an increase in entrained mist that is carried away by flue gas becomes a problem. In order to achieve the above, it is necessary to set a low flow velocity at which dust removal performance cannot be expected.

【0017】このため、所望の性能の脱硫と除塵を単に
分割された複数箇所の気液接触塔で達成しようとする上
記装置では、排煙の流速や、気液接触部の寸法、あるい
は吸収液の供給流量(循環流量)等の諸条件の設定や制
御を最適化することができなかった。つまり、効率の良
い除塵を優先させれば、脱硫にとっては無駄の多い条件
となり、効率の良い脱硫を優先させれば、除塵にとって
は効率の悪い条件となっていた。また、向流式の吸収塔
において除塵効率を考慮した高い流速により除塵や脱硫
を行う構成では、排煙により持ち去られる同伴ミストが
著しく増加し、これら同伴ミストを回収して所定の脱硫
率や除塵率を達成しようとすると、特に大型なミストエ
リミネータを設けなければならない問題もあった。
For this reason, in the above-mentioned device, which is intended to achieve desulfurization and dust removal with desired performance simply at a plurality of divided gas-liquid contact towers, the flow rate of flue gas, the size of the gas-liquid contact portion, or the absorption liquid It was not possible to optimize the setting and control of various conditions such as the supply flow rate (circulation flow rate). In other words, if priority is given to efficient dust removal, it will be a wasteful condition for desulfurization, and if priority is given to efficient desulfurization, it will be an inefficient condition for dust removal. Also, in a counter-current absorption tower, in a configuration where dust removal and desulfurization are performed at a high flow rate that takes dust removal efficiency into consideration, entrained mist carried away by smoke emissions significantly increases, and these entrained mists are collected to obtain a desired desulfurization rate and dust removal. There was also a problem that a large mist eliminator had to be provided in order to achieve the rate.

【0018】(2) また、同様な理由から、排煙中の粉塵
量や硫黄酸化物の濃度が変動した場合に、この変動に応
じて脱硫と除塵の両者をいずれも効率良く実現すること
は、不可能であった。例えば、石炭焚きボイラの排煙
は、通常排煙中の亜硫酸ガス濃度が200ppm〜10
00ppm程度の範囲で変動するため、脱硫の効率のみ
を考慮すれば、このような亜硫酸ガス濃度の変動に比例
させて吸収液の供給液の供給流量を変化させる操作を行
うことが好ましいが、所望の除塵率を達成するためには
このような操作は必ずしもできず、結果的に過剰な流量
の吸収液を噴射して余分なポンプ動力を消費することが
あった。
(2) Further, for the same reason, when the amount of dust in the flue gas or the concentration of sulfur oxides fluctuates, both desulfurization and dust removal can be efficiently realized in accordance with these fluctuations. It was impossible. For example, the flue gas of a coal-fired boiler usually has a sulfur dioxide gas concentration of 200 ppm to 10 ppm.
Since it fluctuates in the range of about 00 ppm, if only the efficiency of desulfurization is taken into consideration, it is preferable to carry out an operation of changing the supply flow rate of the supply liquid of the absorption liquid in proportion to the fluctuation of the sulfurous acid gas concentration. Such an operation is not always possible to achieve the above dust removal rate, and as a result, excessive pump power may be consumed by injecting an excessive amount of absorbing liquid.

【0019】本発明はこうした事情を考慮してなされた
もので、排煙の脱硫と除塵をより小型な装置構成かつ低
コストで更に効率良く実現できる排煙処理方法及び装置
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a flue gas treatment method and a flue gas treatment apparatus capable of more efficiently realizing desulfurization and dust removal of flue gas at a smaller device configuration and at low cost. And

【0020】[0020]

【課題を解決するための手段】本願第1の発明は、排煙
中の少なくとも亜硫酸ガスと粉塵とを吸収液に気液接触
させて除去する排煙処理方法において、前記吸収液が供
給される一つのタンクと、このタンクの一側部から上方
に延設され、スラリを水平方向複数箇所から液柱状で上
向きに噴射して、未処理排煙と前記タンク内の吸収液と
を気液接触させる一定断面形状の導入側吸収搭と、前記
タンクの他側部からら上方に延設され、スラリを水平方
向複数箇所から液柱状で上向きに噴射して、前記導入側
吸収塔から導出された排煙を前記タンク内の吸収液と再
度気液接触させる一定断面形状の導出側吸収塔を備えた
気液接触装置を使用し、前記導入側吸収塔と導出側吸収
塔のうちの一方を、排煙が下降する並流式の吸収塔とす
るとともに、この並流式の吸収塔における排煙の流速
を、粉塵の捕集と亜硫酸ガスの吸収に好ましい高流速に
設定し、前記導入側吸収塔と導出側吸収塔のうちの他方
を、排煙が上昇する向流式の吸収塔とするとともに、こ
の向流式の吸収塔における排煙の流速を、向流式の気液
接触における亜硫酸ガスの吸収に好ましい低流速に設定
し、前記一方の並流式の吸収塔に対する前記吸収液の供
給流量を、処理後排煙中の粉塵が所望値になるように操
作し、前記他方の向流式の吸収塔に対する前記吸収液の
供給流量を、処理後排煙中の少なくとも亜硫酸ガス濃度
が所望値になるように操作することを特徴とする排煙処
理方法。
According to a first aspect of the present invention, in a flue gas treatment method for removing at least sulfurous acid gas and dust in flue gas by contacting the absorbent with gas-liquid, the absorbent is supplied. One tank and one tank is extended upward from one side, and the slurry is jetted upward in a liquid column from multiple horizontal positions, and the untreated smoke is brought into gas-liquid contact with the absorbing liquid in the tank. The inlet side absorption tower having a constant cross-sectional shape and extending upward from the other side portion of the tank, the slurry is jetted upward from a plurality of horizontal positions in a liquid column shape, and is led out from the inlet side absorption tower. Using a gas-liquid contactor having a derivation-side absorption tower having a constant cross-sectional shape for causing exhaust gas to come into gas-liquid contact with the absorption liquid in the tank again, one of the introduction-side absorption tower and the derivation-side absorption tower, Along with the parallel flow type absorption tower where smoke emission descends, The flow rate of flue gas in a flow-type absorption tower is set to a high flow rate that is preferable for collecting dust and absorbing sulfurous acid gas, and flue gas rises in the other of the introduction-side absorption tower and the derivation-side absorption tower. With a countercurrent type absorption tower, the flow rate of the flue gas in this countercurrent type absorption tower is set to a low flow rate that is preferable for the absorption of sulfurous acid gas in the countercurrent gas-liquid contact, and the one side cocurrent type The supply flow rate of the absorption liquid to the absorption tower is controlled so that the dust in the post-treatment smoke becomes a desired value, and the supply flow rate of the absorption liquid to the other countercurrent type absorption tower is changed to the post-treatment exhaust gas. A method for treating flue gas, which comprises operating so that at least the concentration of sulfurous acid gas in smoke reaches a desired value.

【0021】本願第2の発明は、排煙中の少なくとも亜
硫酸ガスと粉塵とを吸収液に気液接触させて除去する排
煙処理装置において、前記吸収液が供給されるタンク
と、このタンクの一側部から上方に延設され、スラリを
水平方向複数箇所から液柱状で上向きに噴射して、未処
理排煙と前記タンク内の吸収液とを気液接触させる一定
断面形状の導入側吸収塔と、前記タンクの他側部から上
方に延設され、スラリを水平方向複数箇所から液柱状で
上向きに噴射して、前記導入側吸収塔から導出された排
煙を前記タンク内の吸収液と再度気液接触させる一定断
面形状の導出側吸収塔とを備え、前記導入側吸収塔と導
出側吸収塔の内の一方を、排煙が下降する並流式の吸収
塔とし、前記導入側吸収塔と導出側吸収塔の他方を、排
煙が上昇する向流式の吸収塔とするとともに、前記一方
の並流式の吸収塔の流路断面積を、粉塵の捕集と亜硫酸
ガスの吸収に好ましい高い排煙の流速が得られるように
前記他方の向流式の吸収塔に比して小さく設定し、前記
他方の向流式の吸収塔の流路断面積を、向流式の気液接
触における亜硫酸ガスの吸収に好ましい排煙の流速が得
られるように前記一方の並流式の吸収塔に比し大きく設
定したことを特徴とする排煙処理装置である。
A second aspect of the present invention is a flue gas treatment apparatus for removing at least sulfurous acid gas and dust in flue gas by contacting the absorbing liquid with gas and liquid, and a tank to which the absorbing liquid is supplied, and a tank of this tank. An inlet side absorption that extends upward from one side and sprays the slurry upward from a plurality of horizontal positions in a liquid column shape to bring the untreated smoke and the absorbing liquid in the tank into gas-liquid contact The tower and the other side of the tank are extended upward, and the slurry is sprayed upward from a plurality of horizontal positions in a liquid column shape, and the flue gas derived from the introduction side absorption tower is absorbed by the absorption liquid in the tank. And a discharge side absorption tower having a constant cross-sectional shape for making gas-liquid contact again, and one of the introduction side absorption tower and the discharge side absorption tower is a co-current absorption tower in which flue gas descends, and the introduction side The other side of the absorption tower and the extraction side absorption tower is a countercurrent type in which smoke emission rises. With the absorption tower, the flow path cross-sectional area of the one co-current absorption tower, the countercurrent of the other so that a high flue gas flow rate preferable for dust collection and sulfur dioxide absorption can be obtained. It is set smaller than that of the absorption tower, and the flow passage cross-sectional area of the other countercurrent absorption tower is set so as to obtain a preferable flue gas flow rate for absorption of sulfurous acid gas in countercurrent gas-liquid contact. The flue gas treatment device is characterized in that it is set larger than one of the parallel flow type absorption towers.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施例を図面を参
照して説明する。 (実施例1)まず、本発明を適用した排煙処理装置の第
1例について図1を参照して説明する。図1は、同装置
の要部構成を示す。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) First, a first example of a smoke treatment apparatus to which the present invention is applied will be described with reference to FIG. FIG. 1 shows a main configuration of the device.

【0023】この排煙処理装置は、例えば石灰石よりな
る吸収剤が懸濁した吸収液(以下、吸収剤スラリとい
う)が供給されるタンク1と、このタンク1の一側部か
ら上方に延設され、未処理排煙Aとタンク1内の吸収剤
スラリとを気液接触させる液柱式の導入側吸収塔2(一
方の吸収塔)と、前記タンク1の他側部から上方に延設
され、前記導入側吸収塔2から導出された排煙をタンク
1内の吸収剤スラリと再度気液接触させる液柱式の導出
側吸収塔3(他方の吸収塔)とよりなる気液接触装置4
とを備えている。
This flue gas treatment apparatus is provided with a tank 1 to which an absorbing liquid (hereinafter referred to as an absorbent slurry) in which an absorbent made of, for example, limestone is suspended is supplied, and is installed upward from one side of the tank 1. And a liquid column type introduction side absorption tower 2 (one absorption tower) for bringing the untreated flue gas A and the absorbent slurry in the tank 1 into gas-liquid contact, and extending upward from the other side part of the tank 1. And a gas-liquid contactor comprising a liquid column type outlet side absorption tower 3 (the other absorption tower) for bringing the exhaust gas discharged from the introduction side absorption tower 2 into gas-liquid contact with the absorbent slurry in the tank 1 again. Four
And

【0024】ここで、前記導入側吸収塔2は、少なくと
も気液接触部における流路断面形状が一定断面形状のも
ので、未処理排煙Aを導入するための排煙導入部(図示
略)がその上端部に形成されて排煙が下方に向って流れ
るいわゆる並流式の吸収塔である。また、導出側吸収塔
3は、少なくとも気液接触部における流路断面形状が一
定断面形状のもので、処理済排煙Bを導出するための排
煙出導部5がその上端部に形成されて、導入側吸収塔2
を通過しタンク1内上部を経由した排煙が上方に向って
流れる向流式の吸収塔である。
Here, the introduction-side absorption tower 2 has a constant flow passage cross-sectional shape at least in the gas-liquid contact portion, and a flue gas introduction portion (not shown) for introducing untreated flue gas A Is a so-called parallel flow type absorption tower which is formed at the upper end thereof and in which the flue gas flows downward. Further, in the outlet side absorption tower 3, at least the gas-liquid contact portion has a constant flow passage cross-sectional shape, and a smoke exhaust guide portion 5 for discharging the treated smoke exhaust B is formed at the upper end portion thereof. The introduction side absorption tower 2
It is a countercurrent type absorption tower in which the smoke exhausted through the upper part of the tank 1 flows upward.

【0025】また、導入側吸収塔2の流路断面積が、粉
塵の捕集と亜硫酸ガスの吸収に好ましい高い排煙の流速
(8m/s〜12m/s)が得られるように他方の吸収
塔3に比して小さく設定され、導出側吸収塔3の流路断
面積が、向流式の気液接触における亜硫酸ガスの吸収に
好ましい低い排煙の流速(4m/s〜6m/s)が得ら
れるように導入側吸収塔2に比して大きく設定されてい
る。例えば、1000MW石炭焚ボイラの排煙(流量3
000000m3 /h)を処理する場合には、奥行寸法
が導入側出導側ともに21.4mで、横幅寸法が図1に
示すように、導入側ではL1 =4.9m、出導側ではL
2 =10.4mとされている。なお、この場合、導入側
吸収塔2における排煙の平均流速は、10m/sとな
り、導出側吸収塔3における排煙の平均流速は、4.5
m/sとなる。
In addition, the flow path cross-sectional area of the introduction side absorption tower 2 is such that the other side is absorbed so as to obtain a high flue gas flow rate (8 m / s to 12 m / s) which is preferable for collecting dust and absorbing sulfur dioxide gas. The flow rate of the flue gas (4 m / s to 6 m / s) is set to be smaller than that of the tower 3, and the flow passage cross-sectional area of the outlet side absorption tower 3 is low for absorption of sulfur dioxide in countercurrent gas-liquid contact. Is set to be larger than that of the introduction-side absorption tower 2. For example, flue gas from a 1000 MW coal-fired boiler (flow rate 3
000000 m 3 / h), the depth dimension is 21.4 m for both the introducing side and the conducting side, and the width dimension is L 1 = 4.9 m for the introducing side and the conducting side for the introducing side as shown in FIG. 1. L
2 = 10.4 m. In this case, the average flow rate of smoke exhaust in the introduction side absorption tower 2 is 10 m / s, and the average flow rate of smoke exhaust in the discharge side absorption tower 3 is 4.5 m / s.
m / s.

【0026】また、各吸収塔2,3には、スプレーパイ
プ6,7がそれぞれ複数平行に設けられ、これらスプレ
ーパイプ6,7には、吸収剤スラリを上方に向って液柱
式に噴射するノズル(図示せず)が長手方向(図1では
横方向)に複数形成されている。なお、各スプレーパイ
プ6,7や各ノズルは、例えば500mm程度の配置間
隔で多数設けられている。
Further, a plurality of spray pipes 6 and 7 are provided in parallel in each of the absorption towers 2 and 3, and the absorbent slurry is sprayed upward to these spray pipes 6 and 7 in a liquid column type. A plurality of nozzles (not shown) are formed in the longitudinal direction (horizontal direction in FIG. 1). A large number of spray pipes 6, 7 and nozzles are provided at an arrangement interval of, for example, about 500 mm.

【0027】更に、前記タンク1の両側には、タンク1
内の吸収剤スラリを吸上げる循環ポンプ8,9が設けら
れ、循環ライン10,11を介して吸収剤スラリが各スプレ
ーパイプ6,7に送り込まれ、各ノズルから上向きに噴
射されるように構成されている。
Further, on both sides of the tank 1, the tank 1
Circulation pumps 8 and 9 for sucking up the absorbent slurry inside are provided, and the absorbent slurry is sent to each spray pipe 6 and 7 through the circulation lines 10 and 11 and is jetted upward from each nozzle. Has been done.

【0028】更にこの場合、導出側吸収塔3の排煙導出
部5には、同伴ミストを捕集除去するためのミストエリ
ミネータ5aが設けられている。なお、このミストエリ
ミネータ5aで捕集されたミストは、下部ホッパー5b
へ集められホッパ底部のドレン抜き配管を介してタンク
1内に戻る構成となっている。
Further, in this case, the flue gas discharge section 5 of the discharge side absorption tower 3 is provided with a mist eliminator 5a for collecting and removing entrained mist. In addition, the mist collected by the mist eliminator 5a is the lower hopper 5b.
Are collected into the tank 1 and returned to the inside of the tank 1 through a drainage pipe at the bottom of the hopper.

【0029】そして、この装置は、タンク1内のスラリ
を攪拌しつつ酸化用の空気を微細な気泡として吹込むい
わゆるアーム回転式のエアスパージャ12を備え、タンク
1内で亜硫酸ガスを吸収した吸収剤スラリと空気とを効
率良く接触させて全量酸化し石膏を得る構成となってい
る。
This apparatus is provided with a so-called arm rotating type air sparger 12 which blows the oxidizing air as fine bubbles while stirring the slurry in the tank 1, and absorbs sulfur dioxide gas in the tank 1. The agent slurry and air are efficiently contacted to oxidize the whole amount to obtain gypsum.

【0030】即ち、この装置では、吸収塔2(又は3)
でスプレーパイプ6(又は7)から噴射され排煙と気液
接触して亜硫酸ガス及び粉塵を吸収しつつ硫化する吸収
剤スラリは、いずれもタンク1内においてエアスパージ
ャ12により攪拌されるる吹込まれた多数の気泡と接触し
て酸化され、さらに中和反応を起こして石膏となる。な
お、これらの処理中に起きる主な反応は下記反応式(1)
乃至(3) となる。
That is, in this device, the absorption tower 2 (or 3)
The absorbent slurry, which is sprayed from the spray pipe 6 (or 7) and contacts with the flue gas in gas-liquid contact and absorbs sulfur dioxide and dust while sulfiding, is agitated by the air sparger 12 in the tank 1 and is blown. It is oxidized by contact with many bubbles and undergoes a neutralization reaction to form gypsum. The main reaction that occurs during these treatments is the following reaction formula (1)
Through (3).

【0031】(吸収塔排煙導入部) SO3 +H2 O→H+ +HSO3 - …(1) (タンク) H+ +HSO3 - +(1/2) O2 →2H+ +SO4 2- …(2) 2H+ +SO4 2-+CaCO3 +H2 O →CaSO4 ・2H2 O+CO2 …(3) こうして、タンク1内には、定常的には石膏と吸収剤で
ある少量の石灰石と粉塵が懸濁するようになっており、
このタンク1内のスラリがこの場合スラリポンプ13によ
り固液分離機14に供給され、ろ過されて水分の少ない石
膏C(通常、水分含有率10%程度)として採り出され
る。一方、固液分離機14からのろ液は、吸収剤スラリを
構成する水分としてスラリ調整槽15に供給される。
[0031] (absorption tower flue gas inlet section) SO 3 + H 2 O → H + + HSO 3 - ... (1) ( Tank) H + + HSO 3 - + (1/2) O 2 → 2H + + SO 4 2- ... (2) 2H + + SO 4 2- + CaCO 3 + H 2 O → CaSO 4 · 2H 2 O + CO 2 (3) Thus, in the tank 1, a small amount of limestone and dust, which are the gypsum and the absorbent, are constantly added. It is supposed to be suspended,
In this case, the slurry in the tank 1 is supplied to the solid-liquid separator 14 by the slurry pump 13, filtered, and taken out as gypsum C having a low water content (usually, the water content is about 10%). On the other hand, the filtrate from the solid-liquid separator 14 is supplied to the slurry adjusting tank 15 as water constituting the absorbent slurry.

【0032】スラリ調整槽15は、攪拌機16を有し、図示
しない石灰石サイロから投入される石灰石(吸収剤)
と、固液分離機14より送られる水とを攪拌混合して吸収
剤スラリを生成するのもので、内部の吸収剤スラリがス
ラリポンプ17によりタンク1に適宜供給されるようにな
っている。
The slurry adjusting tank 15 has a stirrer 16 and is charged with limestone (absorbent) from a limestone silo (not shown).
And the water sent from the solid-liquid separator 14 are stirred and mixed to generate an absorbent slurry, and the slurry slurry inside is appropriately supplied to the tank 1 by the slurry pump 17.

【0033】なお、運転中、このスラリ調整槽15では、
例えば図示しないコントローラ及び流量制御弁により、
投入される推量が調整され、また、石灰石サイロ例えば
ロータリーバルブ(図示せず)の作動が制御されること
により、投入される水量に応じた石灰石が適宜供給さ
れ、所定濃度(例えば20重量%程度)の吸収剤スラリ
を常に一定範囲のレベル内に蓄えた状態に維持される。
During operation, in the slurry adjusting tank 15,
For example, by a controller and a flow control valve not shown,
By adjusting the input amount and controlling the operation of a limestone silo, such as a rotary valve (not shown), limestone is appropriately supplied according to the amount of water to be input, and a predetermined concentration (for example, about 20% by weight) is supplied. ) Absorbent slurry is always kept within a certain range of levels.

【0034】また、例えばスラリ調整槽15には、適宜補
給水(工業用水等)が供給され、気液接触装置4におけ
る蒸発等により漸次減少する水分が補われる。また、運
転中には、脱硫率と石膏純度とを高く維持すべく、未処
理排煙A中の亜硫酸ガス濃度やタンク内のpHや石灰石
濃度等がセンサにより検出され、図示しない制御装置に
よりスラリ調整槽15への石灰石の供給量やタンク1への
吸収剤スラリの供給量等が適宜調節される構成となって
いる。
Further, for example, make-up water (industrial water or the like) is appropriately supplied to the slurry adjusting tank 15 to compensate for water which is gradually reduced due to evaporation or the like in the gas-liquid contact device 4. Further, during operation, in order to maintain the desulfurization rate and the gypsum purity at a high level, the sulfurous acid gas concentration in the untreated flue gas A, the pH in the tank, the limestone concentration, etc. are detected by the sensor, and the slurry is controlled by a controller (not shown). The amount of limestone supplied to the adjusting tank 15 and the amount of absorbent slurry supplied to the tank 1 are appropriately adjusted.

【0035】更に、液柱式の気液接触装置4の前流側に
は、通常乾式の電気集塵機が設けられ、排煙中の粉塵が
ある程度事前に除去される構成となっている。上記排煙
処理装置の気液接触装置4では、液柱式の吸収塔を導入
側と導出側に二つ設けているため、一塔式よりも小型な
装置構成でかつ少ない消費動力で効率の良い脱硫及び除
塵が可能となり、しかも、流路断面積が特に除塵用に最
適化された導入側吸収塔2では、亜硫酸ガスの吸収とと
もに粉塵の吸収が効率よく行われ、また流路断面積が向
流式気液接触での脱硫用に最適化された導出側吸収塔3
では、同伴ミストを増加させることなく特に亜硫酸ガス
の吸収が効率よく行われて、前述の特開平6−3279
27号等により出願人が開示した装置(単なる2塔式)
よりも、更に小型な装置構成で、またさらに低い運転コ
ストで高性能な脱硫及び除塵が実現できる。
Further, on the upstream side of the liquid column type gas-liquid contactor 4, a dry type electrostatic precipitator is usually provided to remove dust in the flue gas to some extent in advance. In the gas-liquid contactor 4 of the flue gas treatment device, since two liquid column type absorption towers are provided on the introduction side and the discharge side, the device configuration is smaller than the one-column type and the consumption power is low and the efficiency is high. In the introduction side absorption tower 2 in which good desulfurization and dust removal are possible, and the flow passage cross-sectional area is optimized especially for dust removal, dust absorption is efficiently performed along with the absorption of sulfurous acid gas, and the flow passage cross-sectional area is Outflow side absorption tower 3 optimized for desulfurization in countercurrent gas-liquid contact
In particular, the sulfurous acid gas is efficiently absorbed without increasing the entrained mist, and the above-mentioned JP-A-6-3279 is used.
The device disclosed by the applicant by No. 27, etc. (simple two-tower type)
In comparison, it is possible to achieve high-performance desulfurization and dust removal with a smaller device configuration and at a lower operating cost.

【0036】即ち、タンク1内の吸収剤スラリは、循環
ポンプ8,9によりそれぞれ循環パイプ10,11を通って
スプレーパイプ6,7に供給される。一方、排煙はまず
導入吸収塔2内に導入され下降する。
That is, the absorbent slurry in the tank 1 is supplied to the spray pipes 6 and 7 through the circulation pipes 10 and 11 by the circulation pumps 8 and 9, respectively. On the other hand, the flue gas is first introduced into the introduction absorption tower 2 and descends.

【0037】スプレーパイプ6に供給された吸収剤スラ
リは、スプレーパイプ6の各ノズルから上方へ噴射さ
れ、下方に噴き上げられた吸収剤スラリは、頂部で分散
し次いで下降し、下降するスラリと噴き上げたスラリと
が相互に衝突し微細な粒子状になる。また、多数箇所に
おいて噴き上げられた吸収剤スラリの噴流は、隣り合う
頂部の流線形外延部の間の各隙間に排煙流路の縮径部を
多数形成し、全体的には複数の小型なベンチェリースク
ラバーが吸収塔内水平方向に多数並列に形成されたよう
な状態となって、この多数のベンチェリー効果によって
もスラリの微滴化が促進される。
The absorbent slurry supplied to the spray pipe 6 is sprayed upward from each nozzle of the spray pipe 6, and the absorbent slurry sprayed downward is dispersed at the top and then descends, and the slurry that descends and sprays up. Slurry collides with each other and becomes fine particles. Further, the jet flow of the absorbent slurry blown up at a large number of locations forms a large number of reduced-diameter portions of the smoke exhaust flow passage in each gap between the streamlined outer extending portions of the adjacent tops, and overall a plurality of small-sized A large number of Bencherry scrubbers are formed in parallel in the absorption tower in the horizontal direction, and the large number of Bencherry effects also promotes atomization of the slurry.

【0038】こうして、微細な粒子状になったスラリが
次々に生じるようになり、亜硫酸ガスを含む排煙が粒子
状のスラリが分散して存在する塔内を流下するため、体
積当たりの気液接触面積が大きくなる。また、ノズル近
傍では排煙がスラリの噴き上げ流れに効果的に巻き込ま
れるので、スラリと排煙とは効果的に混合し、まずこの
並流式の導入側吸収塔2においてかなりの量の亜硫酸ガ
スが除去される。例えば、この導入側吸収塔2における
吸収塔スラリの循環流量や液柱高さを従来の一塔式のも
のよりも低く設定したとしても、60〜80%程度の脱
硫率で亜硫酸ガスを吸収除去することが可能である(従
来の一塔式は、一つの塔で90〜95%の脱硫率を達成
している)。
In this way, fine particle-like slurries are generated one after another, and the flue gas containing sulfurous acid gas flows down in the tower in which the particulate slurries are dispersed, so that the gas-liquid volume per volume is increased. The contact area becomes large. In addition, since the flue gas is effectively entrained in the jet flow of the slurry in the vicinity of the nozzle, the slurry and the flue gas are effectively mixed, and a considerable amount of sulfurous acid gas is first mixed in the co-current type introduction side absorption tower 2. Are removed. For example, even if the circulation flow rate of the absorption tower slurry and the liquid column height in the introduction side absorption tower 2 are set lower than those of the conventional one-column type, the sulfur dioxide gas is absorbed and removed at a desulfurization rate of about 60 to 80%. It is possible (the conventional single column type achieves a desulfurization rate of 90 to 95% in one column).

【0039】しかも、導入側吸収塔2では、流路断面積
が特に除塵用に最適化され、除塵にとって好ましい排煙
の流速となっているため、いわゆる拡散除塵とともに前
述の衝突除塵が有効に実現され、この導入側吸収塔2だ
けで所望の除塵率が略達成できる。
Moreover, in the introduction side absorption tower 2, since the flow passage cross-sectional area is optimized especially for dust removal and the flow velocity of the exhaust gas is favorable for dust removal, so-called diffuse dust removal and the above-mentioned collision dust removal are effectively realized. Thus, the desired dust removal rate can be substantially achieved only by the introduction side absorption tower 2.

【0040】次に、導入側吸収塔2を流下した排煙は、
タンク1の上部を横方向に流れた後、この場合下部から
導出側吸収塔3に入り、この導出側吸収塔3を上昇す
る。この導出側吸収塔3でも、吸収剤スラリが、スプレ
ーパイプ7の各ノズルから上方へ噴射され、導入側波吸
収塔2と同様に、微細な粒子状となって落下して、向い
合って流れる排煙と接触する。また、ノズル近傍では排
煙がスラリの噴き上げ流れに効果的に巻き込まれるの
で、スラリと排煙とは効果的に混合し、さらにこの向流
式の導出側吸収塔3において残りのほとんどの亜硫酸ガ
スが除去される。
Next, the flue gas flowing down the introduction side absorption tower 2 is
After flowing laterally in the upper part of the tank 1, in this case, the derivation side absorption tower 3 enters from the lower part, and the derivation side absorption tower 3 rises. Also in the discharge side absorption tower 3, the absorbent slurry is jetted upward from each nozzle of the spray pipe 7 and, like the introduction side wave absorption tower 2, drops into fine particles and flows face to face. Contact with smoke emissions. Further, since the flue gas is effectively entrained in the jet flow of the slurry in the vicinity of the nozzle, the slurry and the flue gas are effectively mixed, and most of the remaining sulfurous acid gas in the countercurrent type outlet side absorption tower 3 is mixed. Are removed.

【0041】この場合、相当量の亜硫酸ガスが導入側吸
収塔2で除去されているとともに、導出側吸収塔3の流
路断面積が前述のように設定されて排煙の流速が向流式
気液接触での脱硫にとって最適なものとされているの
で、例えば、後述するデータに示すように、2〜3m程
度の液柱高さで、29400m3 /h程度の吸収剤スラ
リの循環流量で最終的に95%以上の脱硫率で亜硫酸ガ
スが吸収除去される。
In this case, a considerable amount of sulfurous acid gas is removed by the introduction side absorption tower 2, and the flow passage cross-sectional area of the discharge side absorption tower 3 is set as described above, so that the flow rate of flue gas is countercurrent type. Since it is optimal for desulfurization in gas-liquid contact, for example, as shown in the data described below, at a liquid column height of about 2 to 3 m and at a circulating flow rate of the absorbent slurry of about 29400 m 3 / h. Finally, sulfur dioxide is absorbed and removed at a desulfurization rate of 95% or more.

【0042】つまり、上記排煙処理装置の気液接触装置
4では、導入側吸収塔2における排煙の流速が除塵及び
脱硫(特に除塵)に好ましい比較的高速に設定され、ま
た導出側吸収塔3における排煙の流速が向流式気液接触
での脱硫に好ましい比較的低速に設定されているため、
除塵は、主に導入側吸収塔2においてより少ない吸収剤
スラリの供給流量(循環ポンプ8による循環流量)でか
つ小型なスペースで効率良く行われる。一方脱硫は、主
に導出側吸収塔3において、やはりより少ない吸収剤ス
ラリの供給流量(循環ポンプ9による循環流量)でかつ
小型なスペース(特に低い塔長)で、また同伴ミストを
増加させることなく効率良く行われる。しかも、前流側
である導入側吸収塔2においては、結果的に除塵ととも
に相当量の脱硫が実現され、導出側吸収塔3における脱
硫の負担は著しく低減され、また逆に、後流側である導
出側吸収塔3においては、結果的に脱硫とともに若干の
除塵が実現され、導入側吸収塔2における除塵の負担は
低減されているので、この点からも、各吸収塔2,3に
おける吸収剤スラリの循環流量や液柱高さが低減でき
る。
That is, in the gas-liquid contactor 4 of the smoke treatment apparatus, the flow rate of the smoke in the introduction-side absorption tower 2 is set to a relatively high speed that is suitable for dust removal and desulfurization (particularly dust removal), and the discharge-side absorption tower 2 Since the flow rate of the flue gas in 3 is set to a relatively low speed that is preferable for desulfurization in countercurrent gas-liquid contact,
The dust removal is efficiently performed mainly in the introduction side absorption tower 2 with a smaller supply flow rate of the absorbent slurry (circulation flow rate by the circulation pump 8) and in a small space. On the other hand, the desulfurization is to increase the entrained mist mainly in the discharge side absorption tower 3 with a smaller supply flow rate of the absorbent slurry (circulation flow rate by the circulation pump 9) and a small space (especially low tower length). Done efficiently without. Moreover, in the introduction side absorption tower 2 which is the upstream side, as a result, a considerable amount of desulfurization is realized together with the dust removal, and the desulfurization burden in the extraction side absorption tower 3 is significantly reduced, and conversely, in the downstream side. In some discharge side absorption tower 3, as a result, some dust removal is realized together with desulfurization, and the load of dust removal in the introduction side absorption tower 2 is reduced. From this point as well, the absorption in each absorption tower 2, 3 is reduced. The circulation flow rate of the agent slurry and the height of the liquid column can be reduced.

【0043】また、導入側吸収塔2における排煙の流速
が特に除塵に好ましい比較的高速に設定され、また導出
側吸収塔3に排煙の流速が向流式気液接触での脱硫に好
ましい比較的低速に設定されているため、全体の除塵性
能を左右する操作量としては導入側吸収塔2における吸
収剤スラリの循環流量が支配的となり、全体の脱硫性能
を左右する操作量としては導出側吸収塔3における吸収
剤スラリの循環流量が支配的となる。このため、運転中
において未処理排煙中の亜硫酸ガス濃度や粉塵濃度の変
動があっても、後述する本発明の排煙処理方法のように
各吸収塔の循環流量が別個に操作することで、全体とし
て必要最小限のポンプ動力で所望の除塵と脱硫が可能と
なる。
Further, the flow rate of the exhaust gas in the introduction side absorption tower 2 is set to a relatively high speed which is particularly suitable for dust removal, and the flow rate of the exhaust gas in the discharge side absorption tower 3 is preferable for the desulfurization in the countercurrent gas-liquid contact. Since it is set to a relatively low speed, the circulating flow rate of the absorbent slurry in the introduction side absorption tower 2 is dominant as the operation amount that affects the overall dust removal performance, and is derived as the operation amount that affects the overall desulfurization performance. The circulation flow rate of the absorbent slurry in the side absorption tower 3 becomes dominant. Therefore, even if the sulfurous acid gas concentration and the dust concentration in the untreated flue gas fluctuate during operation, the circulation flow rate of each absorption tower can be operated separately as in the flue gas treatment method of the present invention described later. As a whole, desired dust removal and desulfurization can be performed with the minimum required pump power.

【0044】即ち、例えば未処理排煙中の亜硫酸ガス濃
度のみが低下した場合には、導出側吸収塔3における吸
収剤スラリの循環流量を減らすことで、処理後排煙中の
亜硫酸ガス濃度を所望値に維持しつつこの亜硫酸ガス濃
度の変動に対応してポンプ動力を必要最少限に節約し、
一方では導入側吸収塔2の循環流量を必要量確保するこ
とで処理後排煙中の粉塵濃度も所望の値に維持すること
が容易にできる。このため、排煙中の亜硫酸ガス濃度又
は粉塵濃度のそれぞれの変動に対してもきめ細かく対応
して、必要最低限の脱硫及び除塵性能を維持しつつポン
プ動力を必要最少限に適正化できる。
That is, for example, when only the sulfur dioxide gas concentration in the untreated flue gas decreases, the circulating flow rate of the absorbent slurry in the outlet side absorption tower 3 is reduced to reduce the sulfur dioxide gas concentration in the treated flue gas. While maintaining the desired value, the pump power is saved to the minimum necessary in response to the fluctuation of the sulfurous acid gas concentration,
On the other hand, by securing the necessary circulation flow rate in the introduction side absorption tower 2, it is possible to easily maintain the dust concentration in the flue gas after treatment at a desired value. Therefore, the pump power can be optimized to the required minimum while maintaining the minimum required desulfurization and dust removal performance by finely responding to each change in the sulfur dioxide gas concentration or the dust concentration in the flue gas.

【0045】このため、特開平6−327927号によ
り出願人が開示した装置(単なる2塔式)と比較して
も、全体として装置4の小型化(特に塔高さ低減)や設
備コストの低減が実現でき、またポンプ動力の適正化に
よる運転コストの低減が実現できる。
Therefore, as compared with the device (simple two-column type) disclosed by the applicant in Japanese Patent Laid-Open No. 6-327927, the size of the device 4 is reduced as a whole (especially, the height of the column is reduced) and the equipment cost is reduced. Can be realized, and the operating cost can be reduced by optimizing the pump power.

【0046】また、上記排煙処理装置の気液接触装置4
では、並流式の導入側吸収塔2を特に高い除塵と脱硫を
目的として本発明の一方側の吸収塔とし、この導入側吸
収塔2の流路断面積を小さくして排煙の流速を高速とし
ているため、排煙に同伴されて流出するミストを格段に
少なくすることができ、前述したミストエリミネータの
容量増加を回避できる。
Further, the gas-liquid contact device 4 of the above-mentioned flue gas treatment device
Then, the parallel flow type introduction side absorption tower 2 is used as the one side absorption tower of the present invention for the purpose of particularly high dust removal and desulfurization, and the flow passage cross-sectional area of the introduction side absorption tower 2 is reduced to reduce the flow rate of smoke. Since the speed is high, it is possible to significantly reduce the amount of mist that accompanies the exhaust gas and flows out, and it is possible to avoid the increase in the capacity of the mist eliminator described above.

【0047】即ち、仮に導出側吸収塔(向流式吸収塔)
の流路断面積を小さくして、その流速を除塵にも好まし
い高速とした場合には、排煙に同伴されて流出するミス
トが著しく増大し、これを放置すれば除塵及び脱硫性能
の低下等の不具合が発生するので、前述したミストエリ
ミネータ5aの容量を大型化してこれらミストをタンク
に戻す必要がある。しかし、上記気液接触装置4では導
入側吸収塔2(並流式吸収塔)の排煙の流速を高速とす
る一方、導出側吸収塔3(向流式吸収塔)の排煙の流速
を低速としており、また導入側吸収塔2では排煙が下向
きに流れる構成としているため、導入側吸収塔2で生じ
たミストのほとんどは導出側吸収塔3に入る前にタンク
1内に落下し、また導出側吸収塔3では排煙の流速が低
減された分だけ排煙に同伴されるミストの量が低下し、
結果として流出する同伴ミストの増加が回避される。こ
のため、前記ミストエリミネータ5aの容量増加を防止
し、この点からも装置の小型化及び設備コストの低減化
が実現できる。
That is, tentatively, the outlet side absorption tower (countercurrent absorption tower)
If the flow path cross-sectional area is reduced and the flow velocity is set to a high speed that is also preferable for dust removal, the mist that is entrained in the flue gas and flows out significantly increases, and if left unattended, the dust removal and desulfurization performance will decrease. Therefore, it is necessary to return the mist to the tank by increasing the capacity of the mist eliminator 5a described above. However, in the gas-liquid contactor 4, the flow speed of the exhaust gas of the introduction side absorption tower 2 (parallel flow type absorption tower) is made high while the flow speed of the exhaust gas of the discharge side absorption tower 3 (countercurrent type absorption tower) is made high. Since the smoke is flowing downward in the introduction side absorption tower 2, most of the mist generated in the introduction side absorption tower 2 falls into the tank 1 before entering the discharge side absorption tower 3, Further, in the discharge side absorption tower 3, the amount of mist entrained in the flue gas decreases as much as the flow rate of the flue gas decreases.
As a result, the increase of spilled mist is avoided. Therefore, it is possible to prevent an increase in the capacity of the mist eliminator 5a, and also from this point, downsizing of the device and reduction of equipment cost can be realized.

【0048】また、導出側吸収塔3に導入される排煙は
既に相当量の亜硫酸ガスが導入側吸収塔2において吸収
除去されたものであるため、導出側吸収搭3から最終的
に排出される処理後排煙B中の同伴ミストは亜硫酸塩濃
度が極端に低いものとなり、ミストエリミネータの閉塞
が起こり難くなってそのメンテナンス作業が格段に容易
となる。
Further, since the flue gas introduced into the discharge side absorption tower 3 has already absorbed and removed a considerable amount of sulfurous acid gas in the discharge side absorption tower 2, it is finally discharged from the discharge side absorption tower 3. The entrained mist in the post-treatment flue gas B has an extremely low sulfite concentration, and the clogging of the mist eliminator is less likely to occur, and maintenance work thereof is significantly facilitated.

【0049】次に、上述した排煙処理装置において実施
される本発明の排煙処理方法について説明する。本方法
では、上述したような装置構成において、前述したよう
に導入側吸収塔2における排煙の流速を除塵及び脱硫に
好ましい比較的高速に設定し、また導出側吸収塔3にお
ける排煙の流速を向流式気液接触での脱硫に好ましい比
較的低速に設定した上で、運転中において適宜又は連続
的に処理後排煙B中の亜硫酸ガス濃度や粉塵濃度を検出
し、導入側吸収塔2の吸収液の循環流量を、処理後排煙
B中の粉塵濃度が所望値になるように操作するととも
に、導出側吸収塔3の吸収剤スラリの循環流量を、処理
後排煙B中の亜硫酸ガス濃度が所望値になるように操作
する。
Next, the flue gas treatment method of the present invention carried out in the flue gas treatment apparatus described above will be explained. In the present method, in the apparatus configuration as described above, the flow rate of the exhaust gas in the introduction side absorption tower 2 is set to a relatively high speed that is preferable for dust removal and desulfurization as described above, and the flow rate of the smoke exhaust in the discharge side absorption tower 3 is set. Is set to a relatively low speed suitable for desulfurization in countercurrent gas-liquid contact, and the sulfurous acid gas concentration or dust concentration in the flue gas B after treatment is appropriately or continuously detected during operation to detect the concentration in the introduction side absorption tower. The circulating flow rate of the absorbing liquid of No. 2 is manipulated so that the dust concentration in the post-treatment flue gas B becomes a desired value, and the circulating flow rate of the absorbent slurry in the outlet side absorption tower 3 is set to that of the post-treatment flue gas B. Operate so that the concentration of sulfurous acid gas reaches the desired value.

【0050】即ち、例えば処理後排煙B中の亜硫酸ガス
濃度が所望範囲の上限値(例えば50ppm)よりも増
加した場合には、導出側吸収塔3の循環流量を例えばそ
の増加の程度に比例させて増加させ、導出側吸収塔3に
おけるいわゆるL/G(排煙流量に対する循環流量の割
合)と液柱高さを高めて気液接触面積を増加させ、処理
後排煙B中の亜硫酸ガス濃度の増加を抑制する。また逆
に、処理後排煙B中の亜硫酸ガス濃度が所望範囲の下限
値(例えば40ppm)よりも低下した場合には、導出
側吸収塔3の吸収剤スラリの循環流量を例えばその低下
の程度に比例させて低減し、導出側吸収塔3におけるい
わゆるL/G(排煙流量に対する吸収液流量の割合)と
液柱高さを低下させて気液接触面積を低減し、無用なポ
ンプ動力を節約する。これにより、処理後排煙B中の亜
硫酸ガス濃度を所望値(例えば40〜50ppm)に維
持しつつ、ポンプ動力を亜硫酸ガス濃度の変動に対応さ
せて必要最小限の値に維持できる。
That is, for example, when the sulfurous acid gas concentration in the post-treatment flue gas B increases above the upper limit value (for example, 50 ppm) of the desired range, the circulation flow rate of the outlet side absorption tower 3 is proportional to the degree of increase, for example. By increasing the so-called L / G (ratio of the circulation flow rate to the exhaust gas flow rate) and the liquid column height in the outlet side absorption tower 3 to increase the gas-liquid contact area, and the sulfur dioxide gas in the post-treatment exhaust gas B is increased. Suppress the increase in concentration. On the contrary, when the sulfurous acid gas concentration in the post-treatment flue gas B is lower than the lower limit value (for example, 40 ppm) of the desired range, the circulation flow rate of the absorbent slurry in the outlet side absorption tower 3 is reduced, for example, to the extent of the reduction. To reduce the so-called L / G (ratio of the absorbed liquid flow rate to the flue gas flow rate) and the liquid column height in the outlet side absorption tower 3 to reduce the gas-liquid contact area and to reduce unnecessary pump power. save. This makes it possible to maintain the sulfur dioxide gas concentration in the post-treatment flue gas B at a desired value (for example, 40 to 50 ppm) and maintain the pump power at the minimum required value in response to the variation in the sulfur dioxide gas concentration.

【0051】なお、この際、導出側吸収塔3の除塵性能
の変動に伴って、処理後排煙中の粉塵濃度が若干変動し
た場合には、導入側吸収塔2の循環流量を微調整するこ
とで、処理後排煙中の粉塵濃度を所望値に保持すればよ
いが、前述したように除塵については導入側吸収塔2の
気液接触が支配的であるため、この導入側吸収塔2の循
環流量の調整はほとんど不要であり、必要であってもわ
ずかな操作量ですむ。
At this time, if the dust concentration in the treated flue gas slightly fluctuates due to fluctuations in the dust removal performance of the discharge side absorption tower 3, the circulating flow rate of the introduction side absorption tower 2 is finely adjusted. Therefore, the dust concentration in the post-treatment flue gas may be maintained at a desired value, but since gas-liquid contact of the introduction side absorption tower 2 is dominant for dust removal as described above, this introduction side absorption tower 2 There is almost no need to adjust the circulating flow rate of, and even if it is necessary, a small amount of operation is required.

【0052】また、例えば処理後排煙B中の粉塵濃度が
所望範囲の上限値(例えば5mg/m3 N)よりも増加
した場合には、導入側吸収塔2におけるいわゆるL/G
(排煙流量に対する吸収液流量の割合)と液柱高さを高
めて気液接触面積を増加させて、処理後排煙B中の粉塵
濃度の増加を抑制する。また、逆に、処理後排煙B中の
粉塵濃度が所望範囲の下限値(例えば4mg/m3 N)
よりも低下した場合には、導入側吸収塔2の吸収剤スラ
リの循環流量を例えばその低下の程度に比例させて低減
し、導入側吸収塔2におけるいわゆるL/G(排煙流量
に対する吸収液流量の割合)と液柱高さを低下させて気
液接触面積を低減し、無用なポンプ動力を節約する。こ
れにより、処理後排煙B中の粉塵濃度を所望値(例えば
4〜5mg/m3 N)に維持しつつ、ポンプ動力を未処
理排煙中の粉塵濃度の変動に対応させて必要最小限の値
に維持できる。
If, for example, the dust concentration in the post-treatment flue gas B exceeds the upper limit of the desired range (for example, 5 mg / m 3 N), the so-called L / G in the introduction side absorption tower 2 is used.
(Ratio of absorption liquid flow rate to flue gas flow rate) and liquid column height are increased to increase gas-liquid contact area, and increase in dust concentration in post-treatment flue gas B is suppressed. On the contrary, the dust concentration in the post-treatment flue gas B is the lower limit of the desired range (for example, 4 mg / m 3 N).
If it is lower than the above, the circulation flow rate of the absorbent slurry in the introduction-side absorption tower 2 is reduced, for example, in proportion to the degree of the reduction, and so-called L / G (absorption liquid with respect to flue gas flow rate in the introduction-side absorption tower 2 is reduced. The ratio of the flow rate) and the height of the liquid column are reduced to reduce the gas-liquid contact area and save unnecessary pump power. As a result, while maintaining the dust concentration in the post-treatment flue gas B at a desired value (for example, 4 to 5 mg / m 3 N), the pump power is adjusted to the minimum required amount in response to fluctuations in the dust concentration in the untreated flue gas. Can be maintained at the value of.

【0053】なお、この際、導入側吸収塔2の脱硫性能
の変動に伴って、処理後排煙中の亜硫酸ガス濃度が若干
変動した場合には、導出側吸収塔3の循環流量を微調整
することで、処理後排煙中の亜硫酸ガス濃度を所望値に
保持すればよいが、前述したように脱硫については導出
側吸収塔3の気液接触が支配的であるため、この導出側
吸収塔3の循環流量の調整はほとんど不要であり、必要
であっても僅かな操作量ですむ。
At this time, if the sulfurous acid gas concentration in the treated flue gas slightly fluctuates due to the fluctuation of the desulfurization performance of the introduction side absorption tower 2, the circulation flow rate of the discharge side absorption tower 3 is finely adjusted. By doing so, the concentration of sulfurous acid gas in the flue gas after treatment may be maintained at a desired value. However, as described above, since gas-liquid contact of the outlet side absorption tower 3 is dominant in desulfurization, this outlet side absorption It is almost unnecessary to adjust the circulation flow rate of the tower 3, and even if it is necessary, a small amount of operation is required.

【0054】従って、未処理排煙中の亜硫酸ガス濃度が
低下し、脱硫につては循環流量を減らしてポンプ動力を
相当量節約できるのに、除塵性能を維持するために循環
流量を低減させる操作が十分できないといった不具合
や、また逆に未処理排煙中の粉塵濃度が低下し除塵につ
いては循環流量を減らしてポンプ動力を相当量節約でき
るのに、脱硫性能を維持するために循環流量を低減させ
る操作が十分できないといった不具合は発生せず、常に
全体として必要最小限のポンプ動力で所望の脱硫率と除
塵率を維持しつつ運転を続行することができる。
Therefore, the concentration of sulfurous acid gas in the untreated flue gas is lowered, and the circulation flow rate can be reduced for desulfurization to save a considerable amount of pump power, but an operation for reducing the circulation flow rate in order to maintain the dust removal performance. Not enough, or conversely, the dust concentration in the untreated flue gas decreases and the dust removal reduces the circulation flow rate and saves a considerable amount of pump power, but reduces the circulation flow rate to maintain desulfurization performance. There is no problem that the operation is not sufficient, and the operation can be continued while maintaining the desired desulfurization rate and dust removal rate with the minimum required pump power as a whole.

【0055】また、全体的な除塵性能に関しては導入側
吸収塔2の循環流量のみを操作し、全体的な脱硫性能に
関しては導出側吸収塔3の循環流量のみを操作するとい
う単純な処理であるので、人手による運転操作や自動制
御による運転が極めて容易になる効果もある。
Further, regarding the overall dust removal performance, only the circulation flow rate of the introduction side absorption tower 2 is operated, and regarding the overall desulfurization performance, only the circulation flow rate of the delivery side absorption tower 3 is operated. Therefore, there is also an effect that the driving operation by a human or the driving by the automatic control becomes extremely easy.

【0056】なお、処理後排煙B中の亜硫酸ガス濃度や
粉塵濃度の検出は、例えば排煙導出部5にセンサを設け
て連続的に検出してもよいし、手分析により例えば定期
的に検出するようにしてもよい。また、この検出に基づ
く上記各循環流量の操作は、例えば循環ライン10,11に
設けた流量調節弁とこれを制御するコントローラの機能
により自動的に行っても良いし、あるいは作業者のマニ
ュアル操作により行ってもよい。
The sulfurous acid gas concentration and the dust concentration in the post-treatment flue gas B may be detected continuously by, for example, providing a sensor in the flue gas discharge section 5, or by manual analysis, for example, periodically. You may make it detect. Further, the operation of each circulation flow rate based on this detection may be automatically performed by the functions of the flow rate control valves provided in the circulation lines 10 and 11 and the controller that controls the flow rate control valves, or manually operated by the operator. You may go by.

【0057】(実施例2)次に、本発明を適用した排煙
処理装置の例について説明する。図2は、この例の排煙
処理装置の要部構成を示す図である。なお、図1に示し
た前述の第1例の装置と同様の構成要素には同符号を付
して説明を省略する。
(Embodiment 2) Next, an example of a flue gas treatment apparatus to which the present invention is applied will be described. FIG. 2 is a diagram showing a main part configuration of the smoke exhaust processing apparatus of this example. The same components as those of the device of the first example shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

【0058】この排煙処理装置は、この場合吸収剤スラ
リが供給されるタンク31と、このタンク31の一側部から
上方に延設され、未処理排煙Aとタンク31内の吸収剤ス
ラリとを気液接触させる液柱式の導入側吸収塔32(他方
の吸収塔)と、タンク31の他側部から上方に延設され、
前記導入側吸収塔32から導出された排煙をタンク31内の
吸収剤スラリと再度気液接触させる液柱式の導出側吸収
塔33(一方の吸収塔)とよりなる気液接触装置34を備え
る。
This flue gas treatment device is provided with a tank 31 to which the absorbent slurry is supplied in this case, and is extended upward from one side of this tank 31 to provide untreated flue gas A and the absorbent slurry in the tank 31. And a liquid column type introduction side absorption tower 32 (the other absorption tower) for making gas and liquid contact with each other, and extended upward from the other side part of the tank 31,
A gas-liquid contactor 34 comprising a liquid column type discharge side absorption tower 33 (one absorption tower) for causing the exhaust gas discharged from the introduction side absorption tower 32 to come into gas-liquid contact with the absorbent slurry in the tank 31 again. Prepare

【0059】ここで、導入側吸収塔32及び導出側吸収塔
33は、少なくとも気液接触部における流路断面形状が一
定断面形状のもので、タンク31の上方の空間を仕切るよ
うに直立状態に配設された隔壁35の両側に形成されてい
る。そして、導入側吸収塔32は、未処理排煙Aを導入す
るための排煙導入部36がその下端部に形成されて排煙が
上方に向って流れるいわゆる向流式の吸収塔であり、導
出側吸収塔33は、処理済排煙Bを導出するための排煙導
出部37がその下端部に形成されて、導入側吸収塔32を通
過し隔壁35上部の接続空間を経由した排煙が下方に向っ
て流れるいわゆる並流式の吸収塔である。
Here, the inlet side absorption tower 32 and the outlet side absorption tower
33 has a constant flow passage cross-sectional shape at least in the gas-liquid contact portion, and is formed on both sides of a partition wall 35 arranged upright so as to partition the space above the tank 31. The introduction side absorption tower 32 is a so-called countercurrent absorption tower in which a smoke exhaust introduction portion 36 for introducing the untreated smoke A is formed at the lower end portion thereof and the smoke exhaust flows upward. The discharge side absorption tower 33 has a smoke discharge leading portion 37 for discharging the treated smoke B at its lower end, passes through the introduction side absorption tower 32, and passes through the connection space above the partition wall 35. Is a so-called co-current absorption tower that flows downward.

【0060】なお、導出側吸収塔33の排煙導出部37に
は、実施例1と同様に同伴ミストを捕集除去するための
ミストエリミネータ37aが設けられている。なお、この
ミストエリミネータ37aで捕集されたミストは、下部ホ
ッパ37bへ集められホッパ底部のドレン抜き配管を介し
てタンク31内に戻る構成となっている。
A mist eliminator 37a for collecting and removing the entrained mist is provided in the smoke exhaust leading section 37 of the lead-out side absorption tower 33, as in the first embodiment. The mist collected by the mist eliminator 37a is collected in the lower hopper 37b and returned to the inside of the tank 31 through the drain pipe at the bottom of the hopper.

【0061】また、この場合、導出側吸収塔33の流路断
面積が、粉塵の捕集及び脱硫に好ましい高い排煙の流速
が得られるように他方の吸収塔に比して小さく設定さ
れ、導入側吸収塔32の流路断面積が、向流式気液接触に
おける亜硫酸ガスの吸収に好ましい低い排煙の流速が得
られるように導出側吸収塔33に比し大きく設定されてい
る。
Further, in this case, the flow passage cross-sectional area of the outlet side absorption tower 33 is set smaller than that of the other absorption tower so that a high flue gas flow rate suitable for dust collection and desulfurization can be obtained. The flow passage cross-sectional area of the introduction-side absorption tower 32 is set larger than that of the discharge-side absorption tower 33 so that a low flue gas flow rate that is preferable for absorption of sulfurous acid gas in countercurrent gas-liquid contact can be obtained.

【0062】なお、この場合には、図示しない空気供給
管等によりタンク31内に酸化用の空気が供給され、攪拌
機38によりタンク31内のスラリが攪拌されるととともに
酸化用の空気が微細な気泡となるよう構成されており、
実施例1と同様に、タンク31内で亜硫酸ガスを吸収した
吸収剤スラリと空気とが効率良く接触して全量酸化し石
膏が生成される構成となっている。
In this case, the oxidizing air is supplied into the tank 31 by an air supply pipe or the like (not shown), the slurry in the tank 31 is stirred by the stirrer 38, and the oxidizing air becomes fine. It is configured to be air bubbles,
Similar to the first embodiment, the absorbent slurry that has absorbed the sulfurous acid gas in the tank 31 and the air efficiently come into contact with each other to oxidize the entire amount to generate gypsum.

【0063】この実施例2の装置においては、主に導入
側吸収塔32において亜硫酸ガスの吸収がなされ、また主
に導出側吸収塔33において粉塵の捕集がなされて、前述
の実施例1と同様に、本発明の排煙処理方法を実施する
ことにより、より小型な構成で、またより少ないポンプ
動力で所定の脱硫及び除塵が可能となり、また排煙性状
の変動に対しても効率良く対応でき、設置スペースの縮
小化や設備コスト及び運転コストの低減が実現できる。
In the apparatus of the second embodiment, the sulfur dioxide gas is mainly absorbed in the introduction side absorption tower 32, and the dust is mainly collected in the discharge side absorption tower 33. Similarly, by implementing the flue gas treatment method of the present invention, it becomes possible to perform predetermined desulfurization and dust removal with a smaller configuration and with less pump power, and efficiently respond to fluctuations in flue gas properties. Therefore, the installation space can be reduced and the equipment cost and the operation cost can be reduced.

【0064】しかも、この実施例2の装置によれば、排
煙導入部36及び排煙導出部37が吸収塔の下端部に配設さ
れているため、これを接続するダクトの設置高さが著し
く低くでき、ダクトの設置コストを著しく低減できると
いう特有の効果がある。
Moreover, according to the apparatus of the second embodiment, since the smoke exhaust introducing section 36 and the smoke exhaust introducing section 37 are arranged at the lower end of the absorption tower, the installation height of the duct connecting them is small. There is a peculiar effect that the cost can be significantly reduced and the installation cost of the duct can be significantly reduced.

【0065】(実証データ)次に、本発明の作用効果を
実証すべく、発明者らが実施した計算結果のデータにつ
いて説明する。
(Demonstration Data) Next, data of calculation results conducted by the inventors in order to demonstrate the action and effect of the present invention will be described.

【0066】まず、従来の並流液柱式吸収塔(例えば前
述の実開昭59−53828号公報に開示された一塔式
のもの)からなる装置(i) と、従来の並流/向流液柱式
の吸収塔(例えば前述の特開平6−327927号公報
に開示された単なる2塔式のもの)からなる装置(ii)
と、本発明を適用した並流/向流液柱式の吸収塔(前記
実施例1の気液接触装置4)からなる装置(iii) の、同
一の条件による仕様及び性能を、以下に示す。
First, an apparatus (i) comprising a conventional co-current liquid column type absorption tower (for example, the one-column type disclosed in the above-mentioned Japanese Utility Model Publication No. 59-53828) and a conventional co-current / direction. Apparatus composed of a liquid-column type absorption tower (for example, a simple two-column type disclosed in the above-mentioned JP-A-6-327927) (ii)
And the specifications and performance of the device (iii) comprising the co-current / counter-current liquid column type absorption tower (the gas-liquid contactor 4 of Example 1) to which the present invention is applied under the same conditions are shown below. .

【0067】(a) 計算条件 入口ガス量 3000000m3 N/h 入口亜硫酸ガス濃度 900ppm 入口粉塵濃度 30mg/m3 N 出口亜硫酸ガス濃度(目標値) 36ppm以下(脱硫
率約95%以上) 出口粉塵濃度(目標値) 5mg/m3 N以下 (b) 装置仕様 吸収塔高さ (i) 24m (ii) 18m(導入側)、17m(導出側) (iii) 18m(導入側)、18m(導出側) 液柱高さ (i) 10.6m (ii) 11.4m(導入側)、1.8m(導出側) (iii) 4.4m(導入側)、2.6m(導出側) 吸収塔横幅寸法 (i) 9.4m (ii) 9.5m(導入側)、10.4m(導出側) (iii) 4.7m(導入側)、10.4m(導出側) 吸収塔奥行寸法 (i) 22.4m (ii) 21.4m(導入側)、21.4m(導出側) (iii) 21.4m(導入側)、21.4m(導出側) タンク寸法 (i) 21m(横幅)×22.4m(奥行) (ii) 23.9m(横幅)×21.4m(奥行) (iii) 19.3m(横幅)×21.4m(奥行) 循環ポンプ仕様 (i) 9300m3 /h×22mH×6台 (ii) 8600m3 /h×15mH×4台(導入側) 8000m3 /h×13mH×3台(導出側) (iii) 9000m3 /h×15mH×2台(導入側) 9800m3 /h×13.6mH×3台(導出側) (c) 装置性能 吸収塔出口亜硫酸ガス濃度 (i) 36ppm (ii) 230ppm(導入側)、36ppm(導出側) (iii) 360ppm(導入側)、36ppm(導出側) 吸収塔出口粉塵濃度 (i) 4.4mg/m3 N (ii) 6.6mg/m3 N(導入側)、3.2mg/m
3 N(導出側) (iii) 4.0mg/m3 N(導入側)、2.4mg/m
3 N(導出側) 塔圧力損失 (i) 93mmH2 O、(ii)106mmH2 O、(iii) 1
43mmH2 O 吸収塔循環流量(定常運転時) (i) 56000m3 /h (ii) 34200m3 /h(導入側)、24300m3
/h(導出側) (iii) 18000m3 /h(導入側)、29400m3
/h(導出側) 消費動力比較(定常運転時) (i) 100%、(ii)85%、(iii) 84% 吸収塔最終出口同伴ミスト濃度(ミストエリミネータ直
前位置) (i) 1〜2g/m3 N (ii)100〜200g/m3 N (iii) 100〜200g/m3 N また、上記装置(i) ,(ii),(iii) の前記条件(a)に
よる運転中において、入口亜硫酸ガス濃度が900pp
mから200ppmに低下した場合に可能な運転条件
と、その場合の装置性能は、以下のようになる。
(A) Calculation conditions Inlet gas amount 3000000m 3 N / h Inlet sulfur dioxide gas concentration 900ppm Inlet dust concentration 30mg / m 3 N Outlet sulfurous acid gas concentration (target value) 36ppm or less (desulfurization rate about 95% or more) Outlet dust concentration (Target value) 5 mg / m 3 N or less (b) Equipment specifications Absorption tower height (i) 24 m (ii) 18 m (introduction side), 17 m (outgoing side) (iii) 18 m (introduction side), 18 m (outgoing side) ) Liquid column height (i) 10.6m (ii) 11.4m (inlet side), 1.8m (outlet side) (iii) 4.4m (inlet side), 2.6m (outlet side) Absorption tower width Dimensions (i) 9.4m (ii) 9.5m (inlet side), 10.4m (outlet side) (iii) 4.7m (inlet side), 10.4m (outlet side) Absorption tower depth dimension (i) 22.4m (ii) 21.4m (introduction side), 21.4m (outgoing side) (iii) 21.4m (introduction side), 21.4m (Left side) Tank size (i) 21m (width) x 22.4m (depth) (ii) 23.9m (width) x 21.4m (depth) (iii) 19.3m (width) x 21.4m ( Depth) Circulation pump specifications (i) 9300m 3 / h × 22mH × 6 units (ii) 8600m 3 / h × 15mH × 4 units (introduction side) 8000m 3 / h × 13mH × 3 units (outgoing side) (iii) 9000m 3 / h × 15 mH × 2 units (introduction side) 9800 m 3 /h×13.6 mH × 3 units (outlet side) (c) Equipment performance Absorption tower outlet sulfur dioxide concentration (i) 36 ppm (ii) 230 ppm (introduction side) , 36 ppm (outgoing side) (iii) 360 ppm (introducing side), 36 ppm (outgoing side) Absorption tower outlet dust concentration (i) 4.4 mg / m 3 N (ii) 6.6 mg / m 3 N (introducing side), 3.2 mg / m
3 N (outgoing side) (iii) 4.0 mg / m 3 N (introducing side) 2.4 mg / m
3 N (outlet side) tower pressure loss (i) 93 mmH 2 O, (ii) 106 mmH 2 O, (iii) 1
43 mmH 2 O absorption tower circulation flow rate (during steady operation) (i) 56000 m 3 / h (ii) 34200 m 3 / h (introduction side), 24300 m 3
/ H (outgoing side) (iii) 18000m 3 / h (introducing side), 29400m 3
/ H (Derived side) Power consumption comparison (during steady operation) (i) 100%, (ii) 85%, (iii) 84% Absorption tower final outlet entrained mist concentration (position immediately before mist eliminator) (i) 1-2 g / M 3 N (ii) 100 to 200 g / m 3 N (iii) 100 to 200 g / m 3 N Further, during the operation of the above devices (i), (ii) and (iii) under the condition (a), Inlet sulfur dioxide gas concentration is 900pp
The possible operating conditions and the device performance in that case are as follows.

【0068】(d) 運転条件(入口亜硫酸ガス濃度200
ppmに変動時) 吸収塔循環流量 (i) 56000m3 /h (ii) 34200m3 /h(導入側)、18000m3
/h(導出側) (iii) 18000m3 /h(導入側)、18000m3
/h(導出側) 吸収塔液柱高さ (i) 4.4m (ii) 4.4m(導入側)、1.0m(導出側) (iii) 4.4m(導入側)、1.0m(導出側) (e)装置性能(入口亜硫酸ガス濃度200ppmに変
動時) 吸収塔出口亜硫酸ガス濃度 (i) 2ppm (ii) 30ppm(導入側)、30ppm(導出側) (iii) 55ppm(導入側)、11ppm(導出側) 吸収塔出口粉塵濃度 (i) 4.4mg/m3 N (ii) 6.6mg/m3 N(導入側)、3.7mg/m
3 N(導出側) (iii) 4.0mg/m3 N(導入側)、2.9mg/m
3 N(導出側) 塔圧力損失 (i) 50mmH2 O、(ii)57mmH2 O、(iii) 10
2mmH2 O 消費動力比較(定常運転時) (i) 100%、(ii)77%、(iii) 69% 吸収塔最終出口同伴ミスト濃度(ミストエリミネータ直
前位置) (i) 1〜2g/m3 N (ii)100〜200g/m3 N (iii) 100〜200g/m3 N 以上の計算結果のデータによれば、従来の並流液柱式吸
収塔(一塔式のもの)からなる装置(i) と、従来の並流
/向流液柱式の吸収塔(単なる2塔式のもの)からなる
装置(ii)と、本発明を適用した並流/向流液柱式の吸収
塔(前記実施例1の気液接触装置4)からなる装置(iii)
のうち、装置(iii) が最も小型ですみ、消費動力もいず
れの場合においても最小であることが分る。なお、同伴
ミストの量は、装置(i) に比べ装置(ii),(iii) のミス
トはミストエリミネータの閉塞原因となる亜硫酸塩の濃
度が極めて低いためメンテナンス性は却って良くなる。
また、同伴ミストの量は主に導出側吸収塔の排煙流速に
依存するので、装置(ii),(iii) で変化がなく、装置(i
ii) では極端な増加が回避されている。
(D) Operating conditions (inlet sulfur dioxide gas concentration 200
Absorption tower circulation flow rate (i) 56000 m 3 / h (ii) 34200 m 3 / h (introduction side), 18000 m 3
/ H (outgoing side) (iii) 18000m 3 / h (introducing side), 18000m 3
/ H (outgoing side) absorption tower liquid column height (i) 4.4m (ii) 4.4m (introducing side), 1.0m (outgoing side) (iii) 4.4m (introducing side), 1.0m (Derivation side) (e) Device performance (when changing to an inlet sulfur dioxide concentration of 200 ppm) Absorption tower outlet sulfur dioxide gas concentration (i) 2 ppm (ii) 30 ppm (introduction side), 30 ppm (outlet side) (iii) 55 ppm (introduction side) ), 11 ppm (outlet side) Absorption tower outlet dust concentration (i) 4.4 mg / m 3 N (ii) 6.6 mg / m 3 N (inlet side) 3.7 mg / m
3 N (outgoing side) (iii) 4.0 mg / m 3 N (introducing side) 2.9 mg / m
3 N (outlet side) tower pressure loss (i) 50 mmH 2 O, (ii) 57 mmH 2 O, (iii) 10
2 mmH 2 O consumption power comparison (during steady operation) (i) 100%, (ii) 77%, (iii) 69% Absorption tower final outlet entrained mist concentration (position immediately before mist eliminator) (i) 1-2 g / m 3 N (ii) 100 to 200 g / m 3 N (iii) 100 to 200 g / m 3 N According to the data of the above calculation results, an apparatus composed of a conventional co-current liquid column type absorption column (one column type) (i), a conventional cocurrent / countercurrent liquid column type absorption tower (simply two tower type) (ii), and a cocurrent / countercurrent liquid column type absorption tower to which the present invention is applied (Device (iii) comprising the gas-liquid contact device 4 of Example 1)
Of these, the device (iii) is the smallest and consumes the least power in any case. The amount of entrained mist in the devices (ii) and (iii) is much lower than that in the device (i) because the concentration of sulfite, which causes clogging of the mist eliminator, is extremely low.
In addition, since the amount of entrained mist mainly depends on the smoke exhaust flow velocity of the outlet side absorption tower, there is no change in the devices (ii) and (iii), and the device (i
In ii) extreme increases are avoided.

【0069】[0069]

【発明の効果】本発明の排煙処理方法または排煙処理装
置によれば、導入側吸収塔と導出側吸収塔のうちの一方
の並流式吸収塔における排煙の流速が除塵及び脱硫に好
ましい比較的高速となっており、また導入側吸収塔と導
出側吸収塔のうちの他方の向流式吸収塔における排煙の
流速が向流式気液接触での脱硫に好ましい比較的低速と
なっている。このため、除塵は、主に前記一方の並流式
吸収塔において、より少ない吸収液の供給流量でかつ小
型なスペースで効率良く行われ、一方脱硫は、主に前記
他方の向流式吸収塔において、やはり少ない吸収液の供
給流量でかつ小型なスペース(特に低い塔長)で効率良
く行われる。
According to the flue gas treatment method or flue gas treatment apparatus of the present invention, the flow rate of flue gas in the parallel flow type absorption tower of one of the introduction side absorption tower and the discharge side absorption tower is used for dust removal and desulfurization. The flow velocity of the flue gas in the other countercurrent type absorption tower of the introduction side absorption tower and the discharge side absorption tower is preferably a relatively low speed which is preferable for desulfurization in the countercurrent gas-liquid contact. Has become. Therefore, the dust removal is mainly performed efficiently in the one parallel-flow absorption tower with a smaller absorption liquid supply flow rate and in a small space, while the desulfurization is mainly performed in the other counter-current absorption tower. In the second aspect, it is also possible to efficiently perform the operation with a small supply flow rate of the absorbing solution and in a small space (especially, a low tower length).

【0070】しかも、前記一方の吸収塔においては、結
果的に除塵とともに相当量の脱硫が実現され、前記他方
の吸収塔における脱硫の負担は著しく低減され、また逆
に、前記他方の吸収塔においては、結果的に脱硫ととも
に若干の除塵が実現され、前記一方の吸収塔における除
塵の負担は低減されるので、この点からも各吸収塔への
吸収液の供給流量や気液接触部の大きさ(特に塔高さ方
向のスペース)が低減できる。
Moreover, in the one absorption tower, as a result, a considerable amount of desulfurization is realized together with the dust removal, and the desulfurization load in the other absorption tower is significantly reduced, and conversely, in the other absorption tower. As a result, some dust removal is achieved together with desulfurization, and the burden of dust removal on the one absorption tower is reduced.From this point as well, the supply flow rate of the absorption liquid to each absorption tower and the size of the gas-liquid contact part are increased. The space (particularly the space in the tower height direction) can be reduced.

【0071】また、全体の除塵性能を左右する操作量と
しては前記一方の並流式吸収塔への吸収液の供給流量が
支配的となり、全体の脱硫性能を左右する操作量として
は前記他方の向流式吸収塔への吸収液の供給流量が支配
的となる。
Further, the operation amount that affects the overall dust removal performance is dominated by the supply flow rate of the absorption liquid to the one parallel flow absorption tower, and the operation amount that affects the overall desulfurization performance is the other operation amount. The flow rate of the absorption liquid supplied to the countercurrent absorption tower becomes dominant.

【0072】このため、前記一方の吸収塔に対する前記
吸収液の供給流量を、処理排煙中の粉塵が所望値になる
ように操作し、前記他方の吸収塔に対する前記吸収液の
供給流量を処理後排煙中の少なくとも亜硫酸ガス濃度が
所望値になるように操作する本発明の排煙処理方法を実
施すれば、運転中において未処理中の亜硫酸ガス濃度や
粉塵濃度の変動があっても、各吸収塔の吸収液供給流量
を別個に操作することにより、全体として必要最小限の
ポンプ動力で所望の除塵と脱硫が可能となる。
Therefore, the supply flow rate of the absorption liquid to the one absorption tower is manipulated so that the dust in the treated flue gas reaches a desired value, and the supply flow rate of the absorption liquid to the other absorption tower is treated. If the flue gas treatment method of the present invention is operated so that at least the sulfur dioxide gas concentration in the post-flue gas becomes a desired value, even if there is a change in the untreated sulfur dioxide gas concentration or dust concentration during operation, By individually operating the absorption liquid supply flow rate of each absorption tower, desired dust removal and desulfurization can be achieved with the minimum required pump power as a whole.

【0073】即ち、例えば未処理排煙中の亜硫酸ガス濃
度のみが低下した場合には、前記他方の吸収塔の吸収液
供給流量を減らすことで、処理後排煙中の亜硫酸ガス濃
度を所望値に維持しつつこの亜硫酸ガス濃度の変動に対
応してポンプ動力を必要最小限に節約し、一方では前記
一方の吸収塔の吸収液供給流量を必要量確保することで
処理後排煙中の粉塵濃度も所望の値に維持することが容
易にできる。
That is, for example, when only the sulfur dioxide gas concentration in the untreated flue gas decreases, the concentration of the sulfur dioxide gas in the treated flue gas is reduced to a desired value by reducing the absorption liquid supply flow rate of the other absorption tower. The pump power is saved to the necessary minimum in response to the change in the sulfurous acid gas concentration while maintaining the above value, and on the other hand, by securing the required amount of the absorption liquid supply flow of the one absorption tower, the dust in the flue gas after treatment is reduced. The concentration can be easily maintained at a desired value.

【0074】このため、未処理排煙中の亜硫酸ガス濃度
が低下し、脱硫については供給流量を減らしてポンプ動
力を相当量節約できるのに、除塵性能を維持するために
吸収液供給流量を低減させる操作が十分できないといっ
た不具合や、また逆に未処理排煙中の粉塵濃度が低下
し、除塵については供給流量を減らしてポンプ動力を相
当量節約できるのに、脱硫性能を維持するために吸収液
供給流量を低減させる操作が十分できないといった不具
合は発生せず、常に全体として必要最小限のポンプ動力
で所望の脱硫率と除塵率を維持しつつ運転を続行するこ
とができる。
Therefore, the concentration of sulfurous acid gas in the untreated flue gas decreases, and the supply flow rate for desulfurization can be reduced to save a considerable amount of pump power, but the absorption liquid supply flow rate can be reduced to maintain the dust removal performance. However, the dust concentration in the untreated flue gas decreases and the dust removal reduces the supply flow rate to save a considerable amount of pump power. The problem that the operation for reducing the liquid supply flow rate cannot be performed sufficiently does not occur, and the operation can be continued while always maintaining the desired desulfurization rate and dust removal rate with the minimum required pump power as a whole.

【0075】このため、特開平6−327927号によ
り出願人が開示した装置(単なる2塔式)と比較して
も、全体として装置の小型化(特に塔高さ低減)や設備
コストの低減が実現でき、またポンプ動力の適正化によ
る運転コストの低減が実現できる。
Therefore, as compared with the device (simple two-column type) disclosed by the applicant in Japanese Patent Application Laid-Open No. 6-327927, the overall size of the device can be reduced (particularly, the height of the column can be reduced) and the equipment cost can be reduced. It can be realized and the operating cost can be reduced by optimizing the pump power.

【0076】また、本発明の排煙処理方法によれば、全
対的な除塵性能に関しては一方の吸収塔の吸収液供給流
量のみを操作し、全体的な脱硫性能に関しては他方の吸
収塔の吸収液供給流量のみを操作するという単純な処理
であるので、人手による運転操作や自動制御による運転
が極めて容易になる効果もある。
Further, according to the flue gas treatment method of the present invention, only the absorption liquid supply flow rate of one of the absorption towers is operated for the overall dust removal performance, and the overall desulfurization performance of the other absorption tower is controlled. Since this is a simple process of operating only the absorption liquid supply flow rate, there is also an effect that the driving operation by hand or the operation by automatic control becomes extremely easy.

【0077】更に、本発明では、特に高い除塵と脱硫を
目的とした吸収塔を並流式の吸収塔とし、この並流式吸
収塔の流路断面積を小さくして排煙の流速を高速として
おり、向流式の吸収塔では排煙の流速を低速としている
ため、排煙に同伴されて流出するミストを格段に少なく
することができ、ミストエリミネータの容量増加を回避
できる。また、導出側吸収塔に導入される排煙は、既に
相当量の亜硫酸ガスが導入側吸収塔において処理後排煙
中の同伴ミストは亜硫酸塩濃度が極端に低いものとな
り、ミストエリミネータの閉塞が起こり難くなってその
メンテナンス作業が格段に容易となる。
Further, in the present invention, the absorption tower for the purpose of particularly high dust removal and desulfurization is a parallel flow type absorption tower, and the flow passage cross section area of this parallel flow type absorption tower is made small so that the flow rate of flue gas is increased. However, in the counter-current absorption tower, the flow velocity of the flue gas is set to a low speed, so that the amount of mist that is accompanied by the flue gas and flows out can be significantly reduced, and an increase in the capacity of the mist eliminator can be avoided. In addition, the flue gas introduced into the discharge side absorption tower has already been treated with a considerable amount of sulfurous acid gas in the flue gas after being processed in the introduction side absorption tower, and the entrained mist in the flue gas has an extremely low sulfite concentration, and the mist eliminator is blocked It will not happen easily and the maintenance work will be much easier.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係る排煙処理装置の要部構
成を示す図。
FIG. 1 is a diagram showing a configuration of a main part of a smoke exhaust processing apparatus according to a first embodiment of the present invention.

【図2】本発明の実施例2に係る排煙処理装置の要部構
成を示す図。
FIG. 2 is a diagram showing a configuration of main parts of a smoke exhaust processing apparatus according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,31…タンク、 2,32…導入側吸収塔、 3,33…導出側吸収塔。 4,34…気液接触装置、 5…排煙導出部、 5a,37a…ミストエリミネータ、 5b,37b…下部ホッパ、 6,7…スプレーパイプ、 8,9…循環ポンプ、 10,11…循環ライン、 14…固液分離器、 15…スラリ調整槽、 16…撹拌機。 1, 31 ... Tank, 2, 32 ... Introduction side absorption tower, 3, 33 ... Derivation side absorption tower. 4, 34 ... Gas-liquid contact device, 5 ... Smoke exhaust lead-out section, 5a, 37a ... Mist eliminator, 5b, 37b ... Lower hopper, 6, 7 ... Spray pipe, 8, 9 ... Circulation pump, 10, 11 ... Circulation line , 14 ... Solid-liquid separator, 15 ... Slurry adjusting tank, 16 ... Stirrer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡添 清 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 沖野 進 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyoshi Okazoe 5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. No. Mitsubishi Heavy Industries, Ltd. Hiroshima Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 排煙中の少なくとも亜硫酸ガスと粉塵と
を吸収液に気液接触させて除去する排煙処理方法におい
て、 前記吸収液が供給される一つのタンクと、このタンクの
一側部から上方に延設され、スラリを水平方向複数箇所
から液柱状で上向きに噴射して、未処理排煙と前記タン
ク内の吸収液とを気液接触させる一定断面形状の導入側
吸収搭と、前記タンクの他側部からら上方に延設され、
スラリを水平方向複数箇所から液柱状で上向きに噴射し
て、前記導入側吸収塔から導出された排煙を前記タンク
内の吸収液と再度気液接触させる一定断面形状の導出側
吸収塔を備えた気液接触装置を使用し、 前記導入側吸収塔と導出側吸収塔のうちの一方を、排煙
が下降する並流式の吸収塔とするとともに、この並流式
の吸収塔における排煙の流速を、粉塵の捕集と亜硫酸ガ
スの吸収に好ましい高流速に設定し、前記導入側吸収塔
と導出側吸収塔のうちの他方を、排煙が上昇する向流式
の吸収塔とするとともに、この向流式の吸収塔における
排煙の流速を、向流式の気液接触における亜硫酸ガスの
吸収に好ましい低流速に設定し、 前記一方の並流式の吸収塔に対する前記吸収液の供給流
量を、処理後排煙中の粉塵が所望値になるように操作
し、前記他方の向流式の吸収塔に対する前記吸収液の供
給流量を、処理後排煙中の少なくとも亜硫酸ガス濃度が
所望値になるように操作することを特徴とする排煙処理
方法。
1. A flue gas treatment method for removing at least sulfurous acid gas and dust in flue gas by bringing the absorbent into gas-liquid contact to remove one tank to which the absorbent is supplied and one side portion of the tank. From above, the slurry is sprayed upward from a plurality of horizontal positions in a liquid column shape, and the untreated smoke and the absorption liquid in the tank are brought into gas-liquid contact with an inlet side absorption tower of a constant cross-sectional shape, Extending upward from the other side of the tank,
A discharge side absorption tower having a constant cross-sectional shape is provided for injecting the slurry upward in a liquid column shape from a plurality of positions in the horizontal direction to bring the smoke exhausted from the introduction side absorption tower into gas-liquid contact with the absorption liquid in the tank again. The gas-liquid contactor is used, and one of the introduction-side absorption tower and the derivation-side absorption tower is used as a co-current type absorption tower in which the flue gas descends, and the flue gas in this co-current type absorption tower is used. Is set to a high flow rate that is preferable for collecting dust and absorbing sulfurous acid gas, and the other of the introduction side absorption tower and the discharge side absorption tower is a countercurrent absorption tower in which the flue gas rises. Together with this, the flow rate of the flue gas in this countercurrent absorption tower is set to a low flow rate that is preferable for the absorption of sulfurous acid gas in the countercurrent gas-liquid contact, and the absorption liquid of the one cocurrent absorption tower is absorbed. Operate the supply flow rate so that the dust in the flue gas after treatment reaches the desired value , Flue gas treatment method of the supply flow rate of the absorbent liquid to the absorption tower of the other counter-current, at least sulfur dioxide concentration in the processed flue gas, characterized in that the operation to a desired value.
【請求項2】 排煙中の少なくとも亜硫酸ガスと粉塵と
を吸収液に気液接触させて除去する排煙処理装置におい
て、 前記吸収液が供給されるタンクと、このタンクの一側部
から上方に延設され、スラリを水平方向複数箇所から液
柱状で上向きに噴射して、未処理排煙と前記タンク内の
吸収液とを気液接触させる一定断面形状の導入側吸収塔
と、前記タンクの他側部から上方に延設され、スラリを
水平方向複数箇所から液柱状で上向きに噴射して、前記
導入側吸収塔から導出された排煙を前記タンク内の吸収
液と再度気液接触させる一定断面形状の導出側吸収塔と
を備え、 前記導入側吸収塔と導出側吸収塔の内の一方を、排煙が
下降する並流式の吸収塔とし、前記導入側吸収塔と導出
側吸収塔の他方を、排煙が上昇する向流式の吸収塔とす
るとともに、 前記一方の並流式の吸収塔の流路断面積を、粉塵の捕集
と亜硫酸ガスの吸収に好ましい高い排煙の流速が得られ
るように前記他方の向流式の吸収塔に比して小さく設定
し、前記他方の向流式の吸収塔の流路断面積を、向流式
の気液接触における亜硫酸ガスの吸収に好ましい排煙の
流速が得られるように前記一方の並流式の吸収塔に比し
大きく設定したことを特徴とする排煙処理装置。
2. A flue gas treatment apparatus for removing at least sulfurous acid gas and dust in flue gas by bringing the absorbent into gas-liquid contact to remove it, and a tank to which the absorbent is supplied and an upper side from one side of the tank. An inlet side absorption tower having a constant cross-sectional shape for injecting the slurry upward in a liquid column shape from a plurality of horizontal positions in a liquid column direction to bring the untreated smoke and the absorbing liquid in the tank into gas-liquid contact, and the tank. Extending upward from the other side part, the slurry is sprayed upward from a plurality of horizontal positions in a liquid column shape, and the flue gas drawn out from the introduction side absorption tower is again brought into gas-liquid contact with the absorption liquid in the tank. And a discharge side absorption tower having a constant cross-sectional shape, one of the introduction side absorption tower and the discharge side absorption tower is a co-current absorption tower in which the smoke is lowered, and the introduction side absorption tower and the discharge side If the other side of the absorption tower is a countercurrent type absorption tower in which smoke emission rises In fact, the flow passage cross-sectional area of the one co-current absorption tower, the countercurrent absorption tower of the other so as to obtain a high flue gas flow rate preferred for dust collection and sulfur dioxide absorption. The flow passage cross-sectional area of the other countercurrent absorption tower is set to be smaller than that of the other countercurrent absorption tower so that a preferable flue gas flow rate for absorption of sulfurous acid gas in countercurrent gas-liquid contact can be obtained. A flue gas treatment device characterized by being set larger than a flow-type absorption tower.
JP13645596A 1996-05-30 1996-05-30 Exhaust gas treatment method and device Expired - Lifetime JP3392635B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13645596A JP3392635B2 (en) 1996-05-30 1996-05-30 Exhaust gas treatment method and device
US08/848,838 US5840263A (en) 1996-05-30 1997-05-05 Flue gas treating process and system
CN97111596A CN1086306C (en) 1996-05-30 1997-05-21 Method for treating fume and system thereof
PL97320250A PL185302B1 (en) 1996-05-30 1997-05-28 Exhaust gas treating method and apparatus
TR97/00442A TR199700442A2 (en) 1996-05-30 1997-05-29 Flue gas treatment method and system.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13645596A JP3392635B2 (en) 1996-05-30 1996-05-30 Exhaust gas treatment method and device

Publications (2)

Publication Number Publication Date
JPH09313880A true JPH09313880A (en) 1997-12-09
JP3392635B2 JP3392635B2 (en) 2003-03-31

Family

ID=15175522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13645596A Expired - Lifetime JP3392635B2 (en) 1996-05-30 1996-05-30 Exhaust gas treatment method and device

Country Status (1)

Country Link
JP (1) JP3392635B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062426A (en) * 2001-08-28 2003-03-04 Babcock Hitachi Kk Method for washing mist eliminator of exhaust gas desulfurization equipment and exhaust gas desulfurization method
JP2013237021A (en) * 2012-05-16 2013-11-28 Sumco Techxiv株式会社 Exhaust gas treatment apparatus
JP2014114469A (en) * 2012-12-07 2014-06-26 Jfe Steel Corp Dust removal water quantity control method of shaft furnace effluent gas, and dust removal water quantity control apparatus
CN103908879A (en) * 2014-03-14 2014-07-09 中国石油大学(北京) Flue gas dust removal desulphurization system of double-circulation Venturi rod tower
CN110665339A (en) * 2019-10-31 2020-01-10 上海蓝科石化环保科技股份有限公司 Security and stability maintenance device for acidic water storage tank and safety automatic control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104069729A (en) * 2014-07-04 2014-10-01 中国海诚工程科技股份有限公司 Regeneration flue gas desulfurization and absorption liquid circulation treating process
CN105126501A (en) * 2015-08-05 2015-12-09 湖南华银能源技术有限公司 Method and apparatus for removing fine dust and gas pollutants in flue gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062426A (en) * 2001-08-28 2003-03-04 Babcock Hitachi Kk Method for washing mist eliminator of exhaust gas desulfurization equipment and exhaust gas desulfurization method
JP2013237021A (en) * 2012-05-16 2013-11-28 Sumco Techxiv株式会社 Exhaust gas treatment apparatus
JP2014114469A (en) * 2012-12-07 2014-06-26 Jfe Steel Corp Dust removal water quantity control method of shaft furnace effluent gas, and dust removal water quantity control apparatus
CN103908879A (en) * 2014-03-14 2014-07-09 中国石油大学(北京) Flue gas dust removal desulphurization system of double-circulation Venturi rod tower
CN110665339A (en) * 2019-10-31 2020-01-10 上海蓝科石化环保科技股份有限公司 Security and stability maintenance device for acidic water storage tank and safety automatic control method thereof
CN110665339B (en) * 2019-10-31 2023-08-04 上海蓝科石化环保科技股份有限公司 Security maintenance device for acidic water storage tank and security automatic control method thereof

Also Published As

Publication number Publication date
JP3392635B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
EP0162536B1 (en) Apparatus for wet type flue gas desulfurization
US5674459A (en) Hydrogen peroxide for flue gas desulfurization
US5565180A (en) Method of treating gases
US5192517A (en) Gas reacting method
US5512072A (en) Flue gas scrubbing apparatus
JP2003001055A (en) Wet type gas treatment apparatus
CZ196896A3 (en) Apparatus for wet purification of combustion products
CN101708420A (en) Treatment technique for pollutants in sinter fume and spraying and absorbing tower thereof
WO2007066443A1 (en) Wet flue-gas desulfurization apparatus and method of wet flue-gas desulfurization
CA2809655A1 (en) Flue gas desulfurization device, combustion system, and combustion method
US5840263A (en) Flue gas treating process and system
EP2762221A1 (en) Dual-chamber multi-absorption wet flue desulfurization device
CN104607021B (en) Double-circulating flue gas dust removal desulfurization tower and flue gas desulfurization method
JP3392635B2 (en) Exhaust gas treatment method and device
CN104607009A (en) Flue gas dust removal desulfurization tower and flue gas desulfurization method
JP2001327831A (en) Wet type exhaust gas desulfurizer
CN104607010A (en) Flue gas dust removal desulfurization tower and flue gas desulfurization method
JP2002253925A (en) Wet type stack gas desulfurization apparatus
CN104607008B (en) Double-circulating flue gas dust removal desulfurization tower and flue gas desulfurization method
JP3337380B2 (en) Exhaust gas treatment method
JP2003103139A (en) Wet process flue gas desulfurizer
JP3068452B2 (en) Wet flue gas desulfurization equipment
JP2002153727A (en) Double chamber type wet flue gas desulfurization device
JP3453250B2 (en) Gas-liquid contact device and smoke exhaust treatment device
JPH0910546A (en) Wet type flue gas desulfurization device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140124

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531