JPH09312163A - Solid electrolytic fuel cell - Google Patents

Solid electrolytic fuel cell

Info

Publication number
JPH09312163A
JPH09312163A JP8127063A JP12706396A JPH09312163A JP H09312163 A JPH09312163 A JP H09312163A JP 8127063 A JP8127063 A JP 8127063A JP 12706396 A JP12706396 A JP 12706396A JP H09312163 A JPH09312163 A JP H09312163A
Authority
JP
Japan
Prior art keywords
power generation
fuel
pitch
generation film
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8127063A
Other languages
Japanese (ja)
Inventor
Masafumi Yamamoto
雅史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8127063A priority Critical patent/JPH09312163A/en
Publication of JPH09312163A publication Critical patent/JPH09312163A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To restrict the thermal stress distribution in a plane of a power generation film from being unbalanced. SOLUTION: In a flat plate shaped solid electrolytic fuel cell provided with an inter-connectors 11 and 12 spaced with each other and arranged in parallel and a protruded and recessed power generation film 13 having an air pole arranged between these inter-connectors and formed respectively at a solid electrolyte and on both face sides thereof and a fuel pole and constituted so as to flow an oxidizer 14 on an air pole side of the power generation film 13 and flow a fuel on the foregoing fuel pole side, recessed and protruded pitches of the power generation film 13 become coarse from an inlet from the oxidizer 14 or the fuel toward an exit direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、固体電解質型燃
料電池に関する。
TECHNICAL FIELD The present invention relates to a solid oxide fuel cell.

【0002】[0002]

【従来の技術】従来、例えば図2(A),(B)に示す
ように1段の並行流型タイプの固体電解質型燃料電池が
知られている。ここで、図2(A)は前記電池の断面
図、図2(B)は前記電池の斜視図である。
2. Description of the Related Art Conventionally, a one-stage parallel flow type solid oxide fuel cell is known as shown in FIGS. Here, FIG. 2A is a cross-sectional view of the battery, and FIG. 2B is a perspective view of the battery.

【0003】図中の符番1,2は、各々互いに離間して
平行に配置されたインターコネクタを示す。これらイン
ターコネクタ1,2間には、電解質とその上下面側に形
成された空気極,燃料極(ぞれぞれ図示せず)からなる
凹凸状の発電膜3が配置されている。この発電膜3は、
鋳込み成形、射出成形、冷間加圧成形等された生の成形
体の単品を焼成して構造体とすればよい。ここで、前記
発電膜3を凹凸状にするのは、発電のための比表面積を
多くするためである。前記発電膜3では面内の凹凸は規
則正しく等しいピッチPで配されている。これについて
は、例えば三菱重工技報Vol.32 No.1(1995),p
35〜p37に開示されている。なお、図中の符番4(一点
鎖線)は酸化剤(例えば空気)、符番5(点線)は燃料
(例えば水素)を示す。
Reference numerals 1 and 2 in the figure denote interconnectors which are arranged in parallel with each other. Between the interconnectors 1 and 2, there is disposed an uneven power generation membrane 3 composed of an electrolyte and an air electrode and a fuel electrode (not shown) formed on the upper and lower surfaces thereof. This power generation film 3 is
A single raw molded article that has been cast-molded, injection-molded, cold-pressed or the like may be fired to form a structure. Here, the reason why the power generation film 3 is made uneven is to increase the specific surface area for power generation. In the power generation film 3, the in-plane irregularities are regularly arranged at the same pitch P. Regarding this, for example, Mitsubishi Heavy Industries Technical Report Vol. 32 No. 1 (1995), p
35-p37. In the figure, reference numeral 4 (dashed line) indicates an oxidant (for example, air), and reference numeral 5 (dotted line) indicates a fuel (for example, hydrogen).

【0004】[0004]

【発明が解決しようとする課題】ところで、図2の固体
電解質燃料電池のように、並行流タイプの燃料,酸化剤
の配し方であると、発電に伴う熱発生のため、入口から
出口へと流体(燃料及び酸化剤)の温度は上昇して行
く。ところで、一般的に熱応力σT は(σT はEαΔT
に比例する)という性質をもつ。ここで、Eはヤング
率、αは熱膨脹係数、σT は基準温度からの温度変化分
を示す。
By the way, when the parallel flow type fuel and the oxidizer are arranged as in the solid electrolyte fuel cell of FIG. 2, heat is generated by power generation, so that the fuel flows from the inlet to the outlet. And the temperature of the fluid (fuel and oxidant) rises. By the way, in general, the thermal stress σ T is (σ T is EαΔT
Proportional to) has the property. Here, E is Young's modulus, α is the coefficient of thermal expansion, and σ T is the temperature change from the reference temperature.

【0005】従って、等ピッチPをもつ凹凸状の発電膜
3では、ヤング率E、αは熱膨脹係数は入口付近でも出
口付近でも一定である。この結果、例えば室温を基準温
度とすると、入口での熱応力σT1より出口での熱応力σ
T2が大きくなり、面内での熱応力分布にアンバランスが
生じてしまう。
Therefore, in the concavo-convex power generation film 3 having the uniform pitch P, the Young's modulus E, α has a constant coefficient of thermal expansion both near the inlet and near the outlet. As a result, for example, assuming room temperature as the reference temperature, the thermal stress σ T1 at the inlet is
T2 becomes large, causing an imbalance in the in-plane thermal stress distribution.

【0006】この発明はこうした事情を考慮してなされ
たもので、流体の入口から出口方向への凹凸のピッチを
変化させた発電膜を用いることにより、発電膜面内での
熱応力分布にアンバランスが生じるのを抑制しえる固体
電解質型燃料電池を提供することを目的とする。
The present invention has been made in consideration of such circumstances, and by using a power generation film in which the pitch of the unevenness from the fluid inlet to the outlet is changed, the thermal stress distribution in the power generation film plane is not affected. An object of the present invention is to provide a solid oxide fuel cell which can suppress the occurrence of balance.

【0007】[0007]

【課題を解決するための手段】この発明は、互いに離間
して並行に配置されたインターコネクタと、これらイン
ターコネクタ間に配置され、固体電解質と該固体電解質
の両面側に夫々形成された空気極,燃料極とを有する凹
凸状の発電膜とを具備し、前記発電膜の空気極側に酸化
剤を流しかつ前記燃料極側に燃料を流す構成の平板型の
固体電解質燃料電池において、前記発電膜の凹凸のピッ
チが前記酸化剤や燃料の入口から出口方向へ向って変化
していることを特徴とする固体電解質燃料電池である。
DISCLOSURE OF THE INVENTION The present invention is directed to interconnectors which are spaced apart from each other and arranged in parallel, and an air electrode which is disposed between the interconnectors and is formed on both sides of the solid electrolyte and the solid electrolyte. A flat-plate type solid electrolyte fuel cell having a concavo-convex power generation membrane having a fuel electrode, wherein an oxidant is flown to the air electrode side of the power generation membrane and a fuel is flowed to the fuel electrode side. The solid electrolyte fuel cell is characterized in that the pitch of the unevenness of the film changes from the inlet of the oxidizer or the fuel toward the outlet.

【0008】次に、この発明の作用について説明する。
一般的に、熱応力σT はほぼEαΔTに比例すると見積
られている。そこで、例えば図1の様に凹凸のピッチP
1 ,P2 …を入口から出口へと変化させることにより、
入口での熱応力σT1も出口での熱応力σT2もほぼ同程度
の大きさとし、面内での熱応力分布の平滑化を図る。例
えば、もし凹凸ピッチにもかかわらず、熱膨脹係数αが
一様と見做せる様でれば、EΔTの値が一定となる様な
ヤング率Eが得られる様に凹凸ピッチを与えればよい。
あるいは、凹凸ピッチに依存して熱膨張係数αが変化す
る様であれば、EαΔTの値が一定となるようなヤング
率Eと熱膨張係数αの組み合わせが得られる凹凸ピッチ
の分布を与える。
Next, the operation of the present invention will be described.
In general, the thermal stress σ T is estimated to be approximately proportional to EαΔT. Therefore, for example, as shown in FIG.
By changing 1 , P 2 ... from the entrance to the exit,
The thermal stress σ T1 at the inlet and the thermal stress σ T2 at the outlet are set to be approximately the same size, and the thermal stress distribution in the plane is smoothed. For example, if the coefficient of thermal expansion α can be considered to be uniform in spite of the uneven pitch, the uneven pitch may be provided so as to obtain the Young's modulus E such that the value of EΔT is constant.
Alternatively, if the thermal expansion coefficient α changes depending on the uneven pitch, the uneven pitch distribution that gives a combination of the Young's modulus E and the thermal expansion coefficient α such that the value of EαΔT is constant is given.

【0009】より具体的には、E(ヤング率)はピッチ
に依存すると考えている(あるいは依存して変化するよ
うに製作する)。α(熱膨張係数)についてはピッチ依
存の具合がよく判明していない。そこで、αがピッチに
依存しないとすると、Eのピッチ依存を用いて、例えば
比例係数C(一定)を用いて、熱応力σT は、 σT はCE(ピッチ)αΔT=D(一定値) 従って、D(つまりσT )を一定として、場所の関数で
ある温度上昇ΔTに対して、 E=D/(CαΔT) …αが一定の場合 となるように作成すればよい。もし、αがピッチ依存で
あれば、 Eα=D/(CΔT) …αが変数の場合 とする。
More specifically, it is considered that E (Young's modulus) depends on the pitch (or is manufactured so as to change depending on the pitch). Regarding α (coefficient of thermal expansion), the degree of pitch dependence is not well known. Therefore, assuming that α does not depend on the pitch, using the pitch dependence of E, for example, using the proportional coefficient C (constant), the thermal stress σ T is σ T , CE (pitch) α ΔT = D (constant value) Therefore, D (that is, σ T ) may be set to be constant, and E = D / (CαΔT) ... α may be set to be constant with respect to the temperature increase ΔT that is a function of the place. If α is pitch dependent, it is assumed that Eα = D / (CΔT) ... α is a variable.

【0010】例えば、発電膜面内での温度分布の予測あ
るいは実測値を基に、発電膜構成材料の温度依存の物性
値を利用していくつかのピッチについて例えば均質化法
の様な数値解析手法を援用し、凹凸ピッチ対ヤング率
E,熱膨張係数αの対応を準備し、逆にEαΔTが一定
になる様なE,αの組を与えるピッチを定めればよい。
For example, based on the predicted or actually measured value of the temperature distribution in the plane of the power generation membrane, the temperature-dependent physical properties of the power generation membrane constituent materials are used to numerically analyze several pitches such as the homogenization method. By using the method, the correspondence between the uneven pitch and the Young's modulus E and the thermal expansion coefficient α is prepared, and conversely, the pitch that gives a set of E and α such that EαΔT is constant may be determined.

【0011】[0011]

【発明の実施の形態】以下、この発明の一実施例を図1
を参照して説明する。図中の符番11,12は、各々互いに
離間して平行に配置されたインターコネクタを示す。こ
れらインターコネクタ11,12間には、電解質とその上下
面側に形成された空気極,燃料極(ぞれぞれ図示せず)
からなる凹凸状の発電膜13が配置されている。この発電
膜13は、従来の発電膜の形成工程において生の成形体の
単品を焼成して構造体とする工程があるが、この生の成
形体を形成する時にピッチを変えて成形すればよい。な
お、図中の符番14(一点鎖線)は酸化剤(例えば空気)
を示し、符番15(点線)は燃料(例えば水素)を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
This will be described with reference to FIG. Reference numerals 11 and 12 in the figure denote interconnectors arranged in parallel with each other. Between the interconnectors 11 and 12, an electrolyte and an air electrode and a fuel electrode (not shown) formed on the upper and lower surfaces thereof, respectively.
The uneven power generation film 13 made of is arranged. This power generation membrane 13 has a step of firing a single raw molded body to form a structure in the conventional power generation membrane forming step, but it may be formed by changing the pitch when forming the raw molded body. . In addition, the number 14 (one-dot chain line) in the figure is an oxidizing agent (for example, air).
The numeral 15 (dotted line) indicates fuel (for example, hydrogen).

【0012】前記発電膜13を凹凸状にするのは、発電の
ための比表面積を多くするためである。前記発電膜13で
は、面内の凹凸のピッチP1 ,P2 ,P3 ,…P10は、
酸化剤又は燃料の入口から出口へ向って粗くなるように
設定されている。つまり、ピッチは、P1 <P2 <P3
<……<P10と順次大きくなる。ここで、凹凸ピッチの
分布については、もし熱膨脹係数αの分布効果を無視で
きる様であれば、EΔTが一定となることを目途とし、
あるいは熱膨張係数αの分布効果が重要であれば、Eα
ΔTが一定となるE及びαの組み合わせ分布を与える凹
凸ピッチ分布とする。
The reason why the power generation film 13 is made uneven is to increase the specific surface area for power generation. In the power generation film 13, the pitch P 1 of the irregularities in the plane, P 2, P 3, ... P 10 is
It is set to become coarse from the inlet of the oxidant or the fuel toward the outlet. That is, the pitch is P 1 <P 2 <P 3
<... <P 10 and the size gradually increases. Here, regarding the distribution of the uneven pitch, if the distribution effect of the thermal expansion coefficient α can be ignored, the aim is that EΔT becomes constant,
Or if the distribution effect of the coefficient of thermal expansion α is important, Eα
The uneven pitch distribution that gives a combined distribution of E and α with which ΔT is constant is set.

【0013】このように、上記実施例に係る固体電解質
型燃料電池によれば、発電膜13の面内の凹凸のピッチP
1 ,P2 ,P3 ,…P10が酸化剤又は燃料の入口から出
口へ向って粗くなるように設定された構成となっている
ため、発電膜13のヤング率Eを入口から出口へ向って弱
くし、入口から出口へ向っての温度上昇効果をキャンセ
ルし、面内の熱応力σT の平滑化を図ることができる。
As described above, according to the solid oxide fuel cell of the above-mentioned embodiment, the pitch P of the unevenness in the plane of the power generation membrane 13 is set.
1, P 2, P 3, ... toward since P 10 is a set configured to be rough toward the outlet from the inlet of the oxidant or fuel, the Young's modulus E of the power generation film 13 from the inlet to the outlet The temperature rise effect from the inlet to the outlet can be canceled, and the in-plane thermal stress σ T can be smoothed.

【0014】なお、上記実施例では、発電膜の凹凸のピ
ッチが酸化剤(又は燃料)の入口から出口へ向って粗く
なるように設定されている場合について述べたが、これ
に限定されない。つまり、上記実施例は入口から出口に
向けて温度が上昇している場合を想定しているために徐
々にピッチを大きくしたが、例えば中央で温度のピーク
があるとすると入口から中央に向けてピッチが大きくな
り、中央から出口に向けてピッチを小さくするというよ
うに、ピッチは温度分布に依存して変える。
In the above embodiment, the case where the pitch of the unevenness of the power generation film is set to become coarser from the inlet of the oxidizer (or the fuel) toward the outlet has been described, but the present invention is not limited to this. In other words, in the above example, the pitch is gradually increased because it is assumed that the temperature rises from the inlet to the outlet, but if there is a temperature peak at the center, for example, from the inlet to the center. The pitch changes depending on the temperature distribution, such as increasing the pitch and decreasing the pitch from the center toward the exit.

【0015】[0015]

【発明の効果】以上詳述したようにこの発明によれば、
流体の入口から出口方向へピッチを変化させた発電膜を
用いることにより、発電の結果生じる温度分布Δのため
面内で均一なヤング率E,及び/あるいは熱膨張計数α
をもつ凹凸状の発電膜の面内熱応力の不均一について、
ヤング率E及び/あるいは熱膨張計数αを調整して面内
の熱応力の平滑化を図ることができる固体電解質燃料電
池を提供できる。
As described above in detail, according to the present invention,
By using a power generation membrane whose pitch is changed from the inlet to the outlet of the fluid, the Young's modulus E and / or the coefficient of thermal expansion α which is uniform in the plane due to the temperature distribution Δ resulting from power generation.
Regarding the non-uniformity of in-plane thermal stress of the uneven power generation film with
It is possible to provide a solid electrolyte fuel cell in which the Young's modulus E and / or the thermal expansion coefficient α can be adjusted to smooth the in-plane thermal stress.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る固体電解質燃料電池
の断面図。
FIG. 1 is a sectional view of a solid oxide fuel cell according to an embodiment of the present invention.

【図2】従来の固体電解質燃料電池の説明図で、図2
(A)は断面図、図2(B)は図2(A)の斜視図。
2 is an explanatory view of a conventional solid oxide fuel cell, and FIG.
2A is a cross-sectional view, and FIG. 2B is a perspective view of FIG.

【符号の説明】[Explanation of symbols]

11,12…インターコネクタ、 13…発電膜、 14…酸化剤(空気)、 15…燃料(水素)。 11, 12 ... Interconnector, 13 ... Power generation membrane, 14 ... Oxidizer (air), 15 ... Fuel (hydrogen).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 互いに離間して並行に配置されたインタ
ーコネクタと、これらインターコネクタ間に配置され、
固体電解質と該固体電解質の両面側に夫々形成された空
気極,燃料極とを有する凹凸状の発電膜とを具備し、前
記発電膜の空気極側に酸化剤を流しかつ前記燃料極側に
燃料を流す構成の平板型の固体電解質燃料電池におい
て、前記発電膜の凹凸のピッチが前記酸化剤や燃料の入
口から出口方向へ向って変化していることを特徴とする
固体電解質燃料電池。
1. An interconnector arranged in parallel and spaced apart from each other, and arranged between these interconnectors,
A solid electrolyte and an uneven power generation membrane having an air electrode and a fuel electrode respectively formed on both sides of the solid electrolyte, and flowing an oxidant to the air electrode side of the power generation membrane and to the fuel electrode side. In a flat plate type solid electrolyte fuel cell configured to flow a fuel, the pitch of the irregularities of the power generation film is changed from the inlet of the oxidizer or the fuel toward the outlet thereof.
JP8127063A 1996-05-22 1996-05-22 Solid electrolytic fuel cell Withdrawn JPH09312163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8127063A JPH09312163A (en) 1996-05-22 1996-05-22 Solid electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8127063A JPH09312163A (en) 1996-05-22 1996-05-22 Solid electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH09312163A true JPH09312163A (en) 1997-12-02

Family

ID=14950675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8127063A Withdrawn JPH09312163A (en) 1996-05-22 1996-05-22 Solid electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH09312163A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229935A (en) * 1999-12-27 2001-08-24 Corning Inc Solid oxide electrolyte fuel cell module and its production method
JP2001319665A (en) * 2000-05-08 2001-11-16 Honda Motor Co Ltd Manufacturing method of fuel cell and its electrolyte
WO2004082058A1 (en) * 2003-03-13 2004-09-23 Tokyo Gas Company Limited Solid-oxide shaped fuel cell module
JP2008524808A (en) * 2004-12-17 2008-07-10 コーニング インコーポレイテッド Electrolyte sheet with corrugated pattern
JP2009507341A (en) * 2005-09-02 2009-02-19 コーニング インコーポレイテッド Electrolyte sheet with corrugated pattern

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229935A (en) * 1999-12-27 2001-08-24 Corning Inc Solid oxide electrolyte fuel cell module and its production method
JP2001319665A (en) * 2000-05-08 2001-11-16 Honda Motor Co Ltd Manufacturing method of fuel cell and its electrolyte
WO2004082058A1 (en) * 2003-03-13 2004-09-23 Tokyo Gas Company Limited Solid-oxide shaped fuel cell module
EP1603183A1 (en) * 2003-03-13 2005-12-07 Tokyo Gas Company Limited Solid-oxide shaped fuel cell module
EP1603183A4 (en) * 2003-03-13 2008-03-12 Tokyo Gas Co Ltd Solid-oxide shaped fuel cell module
US7989113B2 (en) 2003-03-13 2011-08-02 Tokyo Gas Co., Ltd. Solid-oxide shaped fuel cell module
JP2008524808A (en) * 2004-12-17 2008-07-10 コーニング インコーポレイテッド Electrolyte sheet with corrugated pattern
JP2009507341A (en) * 2005-09-02 2009-02-19 コーニング インコーポレイテッド Electrolyte sheet with corrugated pattern

Similar Documents

Publication Publication Date Title
US8518601B2 (en) Gas separator for fuel cells and fuel cell equipped with gas separator
CN101133506B (en) Enhanced flowfield plates
EP1316118B1 (en) Fuel cell assembly and method for making the same
EP0642185B1 (en) Solid oxide electrolyte fuel cell
JP4984534B2 (en) Fuel cell system
US4478918A (en) Fuel cell stack
JPH09312163A (en) Solid electrolytic fuel cell
JPH06290795A (en) Separator for fuel cell
JPS6240168A (en) Stacked fuel cell
JP2001043871A (en) Solid polymer electrolyte type fuel cell
US7846590B2 (en) Fuel cell system cathode inlet relative humidity control
US7235323B2 (en) Fuel cell assembly and method for making the same
JP4403706B2 (en) Polymer electrolyte fuel cell
JP2006286592A (en) Fuel cell
JP5237614B2 (en) Solid oxide fuel cell
JPH09161828A (en) Fuel cell
JPS58166658A (en) Fuel cell
US20050089598A1 (en) Mold for fuel cell separator, method of producing fuel cell separator, fuel cell separator, apparatus for producing fuel cell separator and fuel cell
JP2007141694A (en) Fuel cell stack
JPH0650640B2 (en) Fuel cell
JPH0831434A (en) Solid electrolyte fuel cell
US7968246B2 (en) Solid oxide fuel cell
JPS63236265A (en) Fuel cell
JP5278050B2 (en) Fuel cell
JP2000182638A (en) Fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805