JPH09312160A - Manufacture of lithium secondary battery and carbonaceous negative electrode material to be used for lithium secondary battery - Google Patents

Manufacture of lithium secondary battery and carbonaceous negative electrode material to be used for lithium secondary battery

Info

Publication number
JPH09312160A
JPH09312160A JP8127495A JP12749596A JPH09312160A JP H09312160 A JPH09312160 A JP H09312160A JP 8127495 A JP8127495 A JP 8127495A JP 12749596 A JP12749596 A JP 12749596A JP H09312160 A JPH09312160 A JP H09312160A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
aromatic
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8127495A
Other languages
Japanese (ja)
Inventor
Katsuhisa Tokumitsu
勝久 徳満
Mikio Nishimura
幹夫 西村
Akihiro Mabuchi
昭弘 馬淵
Hiroyuki Fujimoto
宏之 藤本
Takanori Kakazu
隆敬 嘉数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8127495A priority Critical patent/JPH09312160A/en
Publication of JPH09312160A publication Critical patent/JPH09312160A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbonaceous negative electrode material having a large charging and discharging capacity and having a large number of time of charging and discharging by performing the infusible treatment to a carbon precursor in the oxidizing atmosphere, and thereafter, carbonizing it. SOLUTION: A pitch of the aromatic compound, which can react for electrophilic substitution, such as condensed heterocyclic compound, aromatic group oil, petroleum group and cokes group is made to react with bifunctional cross linking agent such as aromatic dimethylene halide, aromatic dimethanol, aromatic dicarbonyl halide and aromatic aldehyde in the existence of acid catalyst so as to obtain carbon precursor. At this stage, this precursor is crushed, and infusible treatment is performed in the oxidizing atmosphere. Thereafter, heating is performed in the non-oxidizing atmosphere for carbonizing so as to obtain the carbonaceous negative electrode material. At the time of infusible treatment, oxygen gas, ozone gas and NOx gas is used as the oxidizing gas, and a treatment is performed within a range at 50 deg.C/min. or less of temperature rising speed and within a range at 200-450 deg.C of heating temperature. Yield of fixed carbon at the time of carbonizing carbon precursor is thereby increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
およびこれに用いる炭素質負極材に関する。
TECHNICAL FIELD The present invention relates to a lithium secondary battery and a carbonaceous negative electrode material used therein.

【0002】[0002]

【従来の技術】電子機器の小型化、薄型化、軽量化が進
む中で、電子機器の電源用の電池として、また電子機器
のバックアップ用電源として、高エネルギ密度で充電で
き、高効率で放電できる二次電池としてリチウム二次電
池が注目を集めている。またリチウムは、環境に与える
影響が少なく、安全性が高いことから、電気自動車の電
源として、さらに分散型の電力貯蔵用電源としての開発
も行われている。
2. Description of the Related Art As electronic equipment is becoming smaller, thinner and lighter, it can be charged with high energy density and discharged with high efficiency as a battery for powering electronic equipment and as a backup power supply for electronic equipment. Lithium secondary batteries have been attracting attention as possible secondary batteries. In addition, since lithium has little impact on the environment and is highly safe, it is being developed as a power source for electric vehicles and as a distributed power source for power storage.

【0003】従来技術の典型的なリチウム二次電池は、
負極活性物質に金属リチウムが箔状で用いられている。
この箔状の金属リチウムは、充放電を繰返す間に、箔表
面に樹枝状リチウムが析出して、陽極に接触し、両極が
短絡するので、充放電回数が少ないという問題がある。
A typical lithium secondary battery of the prior art is
Metallic lithium is used as a foil for the negative electrode active material.
This foil-shaped metallic lithium has a problem that the number of charging / discharging is small because dendritic lithium is deposited on the foil surface during repeated charging / discharging and comes into contact with the anode to short-circuit both electrodes.

【0004】これを改善する方法として、米国特許第4
002492号では、アルミニウム、鉛、カドミウムお
よびインジウムを含む可融性合金を負極活性物質に用
い、充電時にリチウム金属をこれらの可融性合金中に合
金として析出させ、放電時に合金からリチウム金属を溶
解させる方法が提案されている。この方法では、樹枝状
リチウムの析出は抑制できるが、可融性合金は高価であ
り、加工性も悪く、鉛、カドミウムなどが環境に悪影響
を及ぼすという問題がある。
As a method for improving this, US Pat.
In No. 002492, a fusible alloy containing aluminum, lead, cadmium, and indium is used as a negative electrode active material, lithium metal is deposited as an alloy in these fusible alloys during charging, and lithium metal is dissolved from the alloy during discharging. The method of making it proposed is proposed. With this method, the deposition of dendritic lithium can be suppressed, but the fusible alloy is expensive, the workability is poor, and lead, cadmium, and the like have an adverse effect on the environment.

【0005】また、前記負極活性物質として炭素材を用
い、リチウムをイオン状態で炭素材中に担持させること
も考えられるが、炭素中にリチウムイオンを放出する量
を高めることが困難であり、二次電池としての充放電容
量を高められないという問題がある。たとえば、黒鉛を
炭素質材料として用いると、リチウム金属はC6 Liの
組成となり、この物質の理論充放電容量は、372Ah
/kgである。これは、リチウム金属の理論充放電容量
3800Ah/kg(リチウムベース)の1/10以下
と低い。
It is also conceivable that a carbon material is used as the negative electrode active material and lithium is carried in the carbon material in an ionic state, but it is difficult to increase the amount of lithium ions released into carbon. There is a problem that the charge / discharge capacity of the secondary battery cannot be increased. For example, when graphite is used as a carbonaceous material, lithium metal has a composition of C 6 Li, and the theoretical charge / discharge capacity of this material is 372 Ah.
/ Kg. This is as low as 1/10 or less of the theoretical charge / discharge capacity of lithium metal of 3800 Ah / kg (lithium base).

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、充放
電容量が大きく、初期充放電効率が高く、充放電回数が
大きいリチウム二次電池およびそれに用いる炭素質負極
材の製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium secondary battery having a large charge / discharge capacity, a high initial charge / discharge efficiency, and a large number of charge / discharge cycles, and a method for producing a carbonaceous negative electrode material used therein. That is.

【0007】[0007]

【課題を解決するための手段】本発明は、求電子的置換
反応が可能な芳香族化合物を酸触媒の存在下で2官能性
架橋剤と反応させ、炭素前躯体を得る第1工程と、炭素
前躯体を粉砕し、酸化雰囲気で不融化処理する第2工程
と、不融化処理を行った炭素前躯体を非酸化性雰囲気で
加熱処理して炭化する第3工程とを含むことを特徴とす
るリチウム二次電池に用いる炭素質負極材の製造方法で
ある。前記問題点を解決するため、本発明者らは鋭意研
究を重ねて、本発明を完成するに至った。本発明に従え
ば、前記第1工程で得られた炭素前躯体を用いて、炭化
処理する前に不融化(酸化)処理を行うことによって、
リチウム金属がイオンとして放出し易い炭素材を得るこ
とができた。すなわち、不融化処理によって、架橋剤で
炭素構造中に生成される結晶欠陥が消失するのを減少さ
せ、リチウムイオンの吸蔵・放出に関与する有効非結晶
部の割合を増加し、結果としてリチウム二次電池用負極
の充放電容量を向上することができる。求電子的置換反
応が可能な芳香族化合物は、特に限定されるものではな
いが、ナフタレン、アズレン、インダセン、フルオレ
ン、フェネントレン、アントラセン、トリフェニレン、
ピレン、クリセン、ナフタセン、ピセン、ペリレン、ペ
ンタフェン、ペンタセンなどの2環以上の縮合多環炭化
水素;インドール、イソインドール、キノリン、イソキ
ノリン、キノキサン、フタラジン、カルバゾール、アク
リジン、フェナジン、フェナントロジンなどの3員環以
上の複素環基と芳香族炭化水素とが縮合した縮合複素環
化合物;アントラセン油、脱晶アントラセン油、ナフタ
レン油、メチルナフタレン油、タール、クレオソート
油、エチレンボトム油、カルボル油、ソルベントナフサ
などの芳香族系油;石油系または石炭系のピッチなどが
例示される。これらの芳香族成分は、架橋反応に悪影響
を及ぼさない置換基、たとえばアルキル基、ヒドロキシ
ル基、アルコキシ基、カルボキシル基、などを有してい
てもよい。これらの芳香族化合物は、一種または二種以
上使用することができる。さらに、ビフェニル、ビナフ
タレンなどの環集合化合物と併用することもできる。2
官能性架橋剤としては、前記求電子的置換反応が可能な
芳香族化合物の複数の成分または単独の成分を架橋でき
る種々の2官能性化合物が使用できる。具体的には、キ
シレンジクロライドなどの芳香族ジメチレンハライド;
キシレングリコールなどの芳香族ジメタノール;テレフ
タル酸クロライド、イソフタル酸クロライド、フタル酸
クロライド、2,6−ナフタレンジカルボン酸クロライ
ドなどの芳香族ジカルボニルハライド;ベンズアルデヒ
ド、p−ヒドロキシベンズアルデヒド、p−メトキシベ
ンズアルデヒド、2,5−ジヒドロキシベンズアルデヒ
ド、ベンズアルデヒドジメチルアセタール、テレフタル
アルデヒド、イソフタルアルデヒド、サリチルアルデヒ
ドなどの芳香族アルデヒドが例示される。これらの架橋
剤は、一種または二種以上使用できる。架橋剤の使用量
は、求電子的置換反応が可能な芳香族化合物の特性に応
じて広い範囲で選択でき、縮合多環炭化水素および/ま
たは縮合複素環化合物1モルに対する架橋剤の使用量は
0.1〜5モル、好ましくは0.5〜3モル程度であ
る。また、ピッチ類のような芳香族系化合物混合物につ
いては、平均分子量に対して0.01〜5モル、好まし
くは0.05〜3モルである。前記架橋剤による架橋反
応は、通常酸触媒の存在下で行われる。酸触媒として
は、たとえばルイス酸、ブレンステッド酸などの慣用の
酸が使用できる。ルイス酸には、たとえばZnCl2
BF3,AlCl3,SnCl4,TiCl4 などが含ま
れ、ブレンステッド酸には、たとえばp−トルエンスル
ホン酸、フルオロメタンスルホン酸、キシレンスルホン
酸などの有機酸、塩酸、硫酸、硝酸などの鉱酸が含まれ
る。酸触媒には、ブレンステッド酸が好ましい。酸触媒
の使用量は、反応条件および前記求電子的置換反応が可
能な芳香族化合物の反応性などに応じて選択でき、たと
えば前記架橋剤に対して0.01〜10モル当量、好ま
しくは0.5〜3モル当量である。架橋反応は、溶媒を
用いて行うこともできるが、溶媒の不存在下で行うのが
好ましい。反応は、たとえば80〜250℃、好ましく
は100〜200℃で行う。反応は、窒素、ヘリウム、
アルゴンなどの不活性ガス雰囲気中、または空気、酸素
など酸化性雰囲気中いずれでも可能であるが、不融化処
理時間を短縮するためには、酸化性雰囲気が好ましい。
また、反応は撹拌しながら行われ、撹拌不能となる時点
を反応の終点とする。反応時間は、通常30分〜24時
間程度である。得られた炭素前躯体は、室温まで冷却す
ると固体状樹脂として回収できる。固体状樹脂として回
収された前記炭素前躯体を、ハンマーミル、ボールミ
ル、ジェットミルなどの一般的粉砕機によって粉砕し、
酸化性雰囲気中で室温から加熱することにより、不溶不
融の硬化樹脂とすることができる。本処理は、一般的に
不融化処理と呼ばれる。不融化処理を行うことによっ
て、炭素前躯体を炭素化した際の収率(固定炭素量)は
10%以上増加させ得るとともに、不融となるためにに
形状が固定化し、架橋剤により生成される炭素構造中の
欠陥部分を消失することなく炭化させることができる。
不融化処理を行った前記炭素前躯体は、非酸化性雰囲気
中で加熱処理することによって炭化し、非晶部を増加さ
せた炭素質負極材を得ることができる。加熱処理は、窒
素、ヘリウム、アルゴン、ネオンなどの不活性ガス中
で、600〜1800℃、好ましくは700〜1500
℃で前記不融化炭素前躯体を焼成することによって行
う。
The present invention comprises a first step of reacting an aromatic compound capable of an electrophilic substitution reaction with a bifunctional cross-linking agent in the presence of an acid catalyst to obtain a carbon precursor. It is characterized by including a second step of crushing the carbon precursor and infusibilizing it in an oxidizing atmosphere, and a third step of carbonizing the carbon precursor which has been infusibilized by heating it in a non-oxidizing atmosphere. The method for producing a carbonaceous negative electrode material used for a lithium secondary battery. In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and completed the present invention. According to the invention, by using the carbon precursor obtained in the first step and performing infusibilization (oxidation) treatment before carbonization treatment,
It was possible to obtain a carbon material from which lithium metal was easily released as ions. That is, the infusibilization treatment reduces the disappearance of crystal defects generated in the carbon structure by the cross-linking agent, and increases the proportion of effective amorphous parts involved in the absorption and desorption of lithium ions. The charge / discharge capacity of the negative electrode for the secondary battery can be improved. The aromatic compound capable of the electrophilic substitution reaction is not particularly limited, but includes naphthalene, azulene, indacene, fluorene, phenentrene, anthracene, triphenylene,
Two or more condensed polycyclic hydrocarbons such as pyrene, chrysene, naphthacene, picene, perylene, pentaphene, and pentacene; 3 such as indole, isoindole, quinoline, isoquinoline, quinoxane, phthalazine, carbazole, acridine, phenazine, phenanthrodine Fused heterocyclic compounds in which a heterocyclic group having at least a member ring is condensed with an aromatic hydrocarbon; anthracene oil, decrystallized anthracene oil, naphthalene oil, methylnaphthalene oil, tar, creosote oil, ethylene bottom oil, carbole oil, solvent Aromatic oils such as naphtha; petroleum-based or coal-based pitches are exemplified. These aromatic components may have a substituent that does not adversely affect the crosslinking reaction, such as an alkyl group, a hydroxyl group, an alkoxy group, a carboxyl group, or the like. These aromatic compounds may be used alone or in combination of two or more. Further, it can be used in combination with a ring assembly compound such as biphenyl or binaphthalene. Two
As the functional crosslinking agent, various bifunctional compounds capable of crosslinking a plurality of components of the aromatic compound capable of the electrophilic substitution reaction or a single component can be used. Specifically, aromatic dimethylene halide such as xylene dichloride;
Aromatic dimethanol such as xylene glycol; aromatic dicarbonyl halide such as terephthalic acid chloride, isophthalic acid chloride, phthalic acid chloride and 2,6-naphthalene dicarboxylic acid chloride; benzaldehyde, p-hydroxybenzaldehyde, p-methoxybenzaldehyde, 2 Aromatic aldehydes such as 5,5-dihydroxybenzaldehyde, benzaldehyde dimethyl acetal, terephthalaldehyde, isophthalaldehyde and salicylaldehyde are exemplified. These cross-linking agents may be used either individually or in combination of two or more. The amount of the cross-linking agent to be used can be selected within a wide range according to the characteristics of the aromatic compound capable of the electrophilic substitution reaction, and the amount of the cross-linking agent to be used per 1 mol of the condensed polycyclic hydrocarbon and / or the condensed heterocyclic compound is It is about 0.1 to 5 mol, preferably about 0.5 to 3 mol. For an aromatic compound mixture such as pitches, the amount is 0.01 to 5 mol, preferably 0.05 to 3 mol, based on the average molecular weight. The crosslinking reaction with the crosslinking agent is usually performed in the presence of an acid catalyst. As the acid catalyst, a commonly used acid such as Lewis acid or Bronsted acid can be used. Lewis acids include, for example, ZnCl 2 ,
BF 3, AlCl 3, SnCl 4 , such TiCl 4 is included, the Bronsted acids such as p- toluenesulfonic acid, trifluoromethanesulfonic acid, organic acids such as xylene sulphonic acid, hydrochloric acid, sulfuric acid, mineral such as nitric acid Includes acid. The acid catalyst is preferably Bronsted acid. The amount of the acid catalyst used can be selected according to the reaction conditions and the reactivity of the aromatic compound capable of the electrophilic substitution reaction, and is, for example, 0.01 to 10 molar equivalents, preferably 0 to the crosslinking agent. 0.5 to 3 molar equivalents. The cross-linking reaction can be carried out using a solvent, but it is preferably carried out in the absence of a solvent. The reaction is carried out, for example, at 80 to 250 ° C, preferably 100 to 200 ° C. The reaction is nitrogen, helium,
It is possible to use either an atmosphere of an inert gas such as argon or an oxidizing atmosphere such as air or oxygen, but an oxidizing atmosphere is preferable in order to shorten the infusibilizing treatment time.
The reaction is carried out with stirring, and the time point at which the stirring becomes impossible is the end point of the reaction. The reaction time is usually about 30 minutes to 24 hours. The obtained carbon precursor can be recovered as a solid resin when cooled to room temperature. The carbon precursor recovered as a solid resin, crushed by a general crusher such as a hammer mill, a ball mill, a jet mill,
By heating from room temperature in an oxidizing atmosphere, an insoluble and infusible cured resin can be obtained. This process is generally called infusibilizing process. By performing the infusibilization treatment, the yield (fixed carbon amount) when the carbon precursor is carbonized can be increased by 10% or more, and the shape is fixed due to the infusibilization, which is generated by the crosslinking agent. It is possible to carbonize the defective portion in the carbon structure without disappearing.
The carbon precursor subjected to the infusibilization treatment is carbonized by heat treatment in a non-oxidizing atmosphere to obtain a carbonaceous negative electrode material having an increased amorphous portion. The heat treatment is performed in an inert gas such as nitrogen, helium, argon or neon at 600 to 1800 ° C., preferably 700 to 1500.
This is done by firing the infusible carbon precursor at ℃.

【0008】また本発明は、前記不融化処理が昇温速度
0.1〜50℃/min、200〜450℃の温度で行
われることを特徴とする。本発明に従えば、不融化処理
の条件は、昇温速度50℃/min以下の範囲内で、熱
処理温度200〜450℃の範囲内で行うことが好まし
い。昇温速度が50℃/minより大きいと、不融化反
応が均一に生じにくくなるとともに、一部溶融する現象
も生じる。昇温速度が低ければ低いほど不融化反応は均
一、かつ安定に生じるが、生産性の低下を招くため、
0.1℃/min以上が好ましい。一方、熱処理温度が
200℃より低い場合は、不融化反応が温度律速とな
り、反応に長時間を要するとともに、反応が充分に進行
し得ず、均一な反応が促進されなくなる。一方、450
℃より高い温度での不融化処理は、炭素の消失量が増加
し、結果として不融化収率が低下する。なお、不融化の
際の酸化性ガスの種類および供給量は、特に限定される
ものではない。酸化性ガスには、一般的な酸化性ガス、
たとえば空気、酸素ガス、オゾンガス、NOxガスなど
を用いることができるが、環境に与える影響および取り
扱いの容易性、さらにはコストなどの面から空気を用い
るのが最も好ましい。ガス供給量は不融化反応に必要、
かつ充分な量が反応系中に存在すればよく、たとえば多
段静置式で行う場合の空気供給量は、0.1〜10L/
min程度が好ましい。10L/minを超えると供給
酸素量が過剰となり、経済性が低下するとともに、供給
ガス流速が大きすぎることによって、粉砕された前記炭
素前躯体の熱処理環境外への飛散量が増大し、不融化処
理による収率の低下を生じさせうる。また、空気供給量
が0.1L/minより少ない場合は、不融化反応が酸
素量律速となり、均一な反応が促進されなくなる。空気
以外の酸化性ガスを用いる場合のガス供給量は、酸化反
応に寄与する酸素分圧によって計算される量を用いれば
よい。
Further, the present invention is characterized in that the infusibilizing treatment is carried out at a temperature rising rate of 0.1 to 50 ° C./min and a temperature of 200 to 450 ° C. According to the present invention, it is preferable that the infusibilizing treatment is carried out at a heating rate of 50 ° C./min or less and at a heat treatment temperature of 200 to 450 ° C. When the rate of temperature increase is higher than 50 ° C./min, the infusibilization reaction becomes difficult to occur uniformly and a phenomenon of partial melting occurs. The lower the heating rate is, the more infusible the reaction becomes, and the more stable the infusible reaction occurs.
It is preferably 0.1 ° C./min or more. On the other hand, when the heat treatment temperature is lower than 200 ° C., the infusible reaction is temperature-controlled, the reaction takes a long time, the reaction cannot proceed sufficiently, and the uniform reaction cannot be promoted. On the other hand, 450
The infusibilization treatment at a temperature higher than ° C increases the amount of carbon lost, resulting in a decrease in the infusibilization yield. The type and supply amount of the oxidizing gas at the time of infusibilization are not particularly limited. For oxidizing gas, general oxidizing gas,
For example, air, oxygen gas, ozone gas, NOx gas and the like can be used, but it is most preferable to use air from the viewpoints of influence on the environment, ease of handling, and cost. Gas supply is necessary for infusible reaction,
It is sufficient that a sufficient amount is present in the reaction system. For example, the amount of air supplied in the case of the multistage static system is 0.1 to 10 L /
It is preferably about min. When it exceeds 10 L / min, the amount of oxygen supplied becomes excessive and the economical efficiency decreases, and because the flow rate of the supplied gas is too high, the amount of the crushed carbon precursor scattered to the outside of the heat treatment environment increases, resulting in infusibilization. Treatment can cause a decrease in yield. Further, when the air supply amount is less than 0.1 L / min, the infusible reaction is rate-controlled for the oxygen amount, and the uniform reaction cannot be promoted. The amount of gas supplied when an oxidizing gas other than air is used may be an amount calculated by the partial pressure of oxygen contributing to the oxidation reaction.

【0009】また本発明は、前記の方法で製造した炭素
質負極材にリチウムイオンを含浸させた負極活性物質を
用いたことを特徴とするリチウム二次電池である。本発
明に従えば、前記で製造された炭素質負極材がリチウム
二次電池に用いられる。一般に、炭素原子は、二次的な
炭素網構造が三次元的に積層した構造を有する。リチウ
ム二次電池の負極活性物質として炭素質材料を用いる場
合、充電時にはリチウムがある種のイオン状態で上述し
た炭素構造中に吸蔵され、放電時には逆の経路を通って
電解液中に放出される。このような炭素層間への異種元
素の取り込み、放出反応のことを一般にインターカレー
ションおよびデインターカレーション反応と呼ぶ。リチ
ウム二次電池に炭素材料を負極活性物質として用いた場
合、まさにこの反応を利用しており、電解液からリチウ
ムを炭素材に取り込むことによって電池として電気エネ
ルギを貯蔵し、リチウムを電解液中に放出することによ
って系外に電気エネルギを取り出す。しかしながら、こ
のような炭素結晶構造を利用したリチウム二次電池の負
極の組成はC6Liであり、その容量は前述したように
論理的に372Ah/kgとなり、実際はさらに低くな
る。一方、炭素材料は結晶部と非晶部を同時に有する多
結晶体と考えられており、この炭素構造中の非晶部を利
用したリチウムの吸蔵量は、C6Liの組成に拘束され
ず、より密にリチウムを吸蔵することが可能と考えられ
る。前記方法によって製造された炭素質材料は、第1工
程によって炭素前躯体中に生じた非晶部が、第2工程の
不融化処理によって消失されることなく安定に存在す
る。これに対し、不融化処理をせずに加熱処理を行った
炭素質材料は、非晶部が消失するものと推定される。し
たがって、本発明のリチウム二次電池は、充放電の繰返
しによっても樹枝状物質の析出を防止できるともに、充
放電容量を増大させることができる。
Further, the present invention is a lithium secondary battery characterized by using a negative electrode active material obtained by impregnating a carbonaceous negative electrode material produced by the above method with lithium ions. According to the present invention, the carbonaceous negative electrode material produced above is used for a lithium secondary battery. Generally, carbon atoms have a structure in which secondary carbon network structures are three-dimensionally stacked. When a carbonaceous material is used as the negative electrode active material of a lithium secondary battery, lithium is occluded in the above-mentioned carbon structure in a certain ionic state during charging, and is discharged into the electrolytic solution through the reverse path during discharging. . Incorporation and release reactions of different elements between the carbon layers are generally called intercalation and deintercalation reactions. When a carbon material is used as a negative electrode active material in a lithium secondary battery, exactly this reaction is utilized.By incorporating lithium from the electrolytic solution into the carbon material, electrical energy is stored as a battery, and lithium is stored in the electrolytic solution. Electric energy is taken out of the system by releasing. However, the composition of the negative electrode of the lithium secondary battery using such a carbon crystal structure is C 6 Li, and the capacity thereof is theoretically 372 Ah / kg, which is actually lower. On the other hand, the carbon material is considered to be a polycrystal having both a crystal part and an amorphous part at the same time, and the amount of lithium absorbed using the amorphous part in the carbon structure is not restricted by the composition of C 6 Li. It is considered possible to occlude lithium more densely. In the carbonaceous material produced by the above method, the amorphous portion generated in the carbon precursor in the first step is stably present without being lost by the infusibilizing treatment in the second step. On the other hand, it is presumed that the amorphous portion disappears in the carbonaceous material that has been heat-treated without infusibilizing treatment. Therefore, the lithium secondary battery of the present invention can prevent the deposition of dendritic substances even when charging and discharging are repeated, and can increase the charging and discharging capacity.

【0010】[0010]

【発明の実施の形態】以下、実施例によって本発明をよ
り具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically with reference to Examples.

【0011】図1は、本発明の一実施の形態のリチウム
二次電池1の構造を示す断面図である。リチウム二次電
池1は、正極2と、負極3と、これら両極間に介在する
セパレータ4とを有する。そしてこれらはケース5に収
納され、ケース5の開口部は開口板6および絶縁パッキ
ング7によって封止されている。
FIG. 1 is a sectional view showing the structure of a lithium secondary battery 1 according to an embodiment of the present invention. The lithium secondary battery 1 has a positive electrode 2, a negative electrode 3, and a separator 4 interposed between these two electrodes. Then, these are housed in the case 5, and the opening of the case 5 is sealed by the opening plate 6 and the insulating packing 7.

【0012】正極2に用いる活性物質としては、TiS
2,MoS2,NbSe3,FeS,VS2,VSe2等の
層状構造を有する金属カルコゲン化物、CoO2,Cr3
5,TiO2,CuO,V36,Mo3O,V25(・
25),Mn2O(・Li2O)等の金属酸化物、ポリ
アセチレン、ポリアニリン、ポリパラフェニレン、ポリ
チオフェン、ポリピロール等の導電性を有する共役系高
分子物質が例示される。これらのうちで、V25 ,M
2Oなどの金属酸化物が好ましい。このような正極物
質は、たとえばポリテトラフルオロエチレンなどの結合
材で結合させて使用される。
The active material used for the positive electrode 2 is TiS.
2 , metal chalcogenides having a layered structure such as 2 , MoS 2 , NbSe 3 , FeS, VS 2 , VSe 2, etc., CoO 2 , Cr 3
O 5 , TiO 2 , CuO, V 3 O 6 , Mo 3 O, V 2 O 5 (・
Examples thereof include metal oxides such as P 2 O 5 ) and Mn 2 O (.Li 2 O), and conjugated polymer materials having conductivity such as polyacetylene, polyaniline, polyparaphenylene, polythiophene, and polypyrrole. Of these, V 2 O 5 , M
Metal oxides such as n 2 O are preferred. Such a positive electrode material is used by being bound with a binding material such as polytetrafluoroethylene.

【0013】負極3に用いる活性物質は、後述する炭素
質材料をリチウムイオンまたはリチウムイオンを主体と
するナトリウム、カリウムなどのアルカリ金属イオンを
含む電解液、たとえば1mol/Lの濃度のLiClO
4に浸漬し、陽極にリチウム金属単体を用い、炭素質材
料を陰極として電解含浸させる。
The active substance used for the negative electrode 3 is an electrolytic solution containing a carbonaceous material described later and containing lithium ions or alkali metal ions such as sodium and potassium mainly containing lithium ions, for example, LiClO having a concentration of 1 mol / L.
It is immersed in 4 , and a lithium metal simple substance is used for the anode, and a carbonaceous material is used as the cathode for electrolytic impregnation.

【0014】セパレータ4は、保液性を有する材料、た
とえば多孔質ポリプロピレン製不織布に非水溶媒系電解
液を含浸させたものが用いられる。非水溶媒系電解液と
しては、プロピレンカーボネート、エチレンカーボネー
ト、γ−ブチロラクトン、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、ジオキソラン、4−メチルジ
オキソラン、スルホラン、1,2−ジメトキシエタン、
ジメチルスルホキシド、アセトニトリル、N,N−ジメ
チルホルムアミド、ジエチレングリコール、ジメチルエ
ーテル等の非プロトン性溶媒、好ましくは、テトラヒド
ロフラン、2−メチルテトラヒドロフラン、ジオキソラ
ン、4−メチルジオキソランのような強い還元雰囲気で
も安定なエーテル系溶媒、あるいは前記した溶媒2種類
以上の混合溶媒に、LiPF6,LiClO4,LiBF
4,LiAsF6,LiSbF6,LiAlO4,LiAl
Cl4,LiCl,LiI等の溶媒和しにくてアニオン
を生成する塩を溶解させたものが例示される。
The separator 4 is made of a liquid-retaining material, for example, a porous polypropylene nonwoven fabric impregnated with a non-aqueous solvent electrolyte. As the non-aqueous solvent-based electrolytic solution, propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, sulfolane, 1,2-dimethoxyethane,
Aprotic solvents such as dimethyl sulfoxide, acetonitrile, N, N-dimethylformamide, diethylene glycol and dimethyl ether, preferably ether solvents which are stable even in a strong reducing atmosphere such as tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane and 4-methyldioxolane. , Or a mixed solvent of two or more of the above-mentioned solvents, LiPF 6 , LiClO 4 , LiBF
4 , LiAsF 6 , LiSbF 6 , LiAlO 4 , LiAl
Illustrative examples include salts in which a salt that is difficult to solvate, such as Cl 4 , LiCl, and LiI, to generate an anion is dissolved.

【0015】二次電池の形状は、円筒型、角型またはボ
タン型などいずれの形態であってもよい。
The secondary battery may have any shape such as a cylindrical shape, a square shape or a button shape.

【0016】[0016]

【実施例1】 [炭素材料の調製]ピレンとパラキシレングリコール
(2,3−ジメチル−1,4−ジメタノール)を出発原
料として、酸触媒にパラトルエンスルホン酸を用い、反
応温度155℃において炭素前躯体(GPCにおけるT
HF可溶分の数平均分子量1640)を調製した。その
後、室温まで冷却し、得られた固形炭素前躯体をボール
ミルで粉砕し、昇温速度2℃/min、空気供給量2L
/minで、300℃まで昇温して不融化処理を行っ
た。その後、通常の熱処理炉により窒素気流中で110
0℃まで昇温し、2時間保持することにより炭素質材料
を得た。
Example 1 [Preparation of carbon material] Pyrene and para-xylene glycol (2,3-dimethyl-1,4-dimethanol) were used as starting materials, and para-toluenesulfonic acid was used as an acid catalyst at a reaction temperature of 155 ° C. Carbon precursor (T in GPC
The number average molecular weight of the HF soluble component was 1640). Then, it is cooled to room temperature, the obtained solid carbon precursor is crushed by a ball mill, the temperature rising rate is 2 ° C / min, and the air supply rate is 2L.
/ Min, the temperature was raised to 300 ° C. to perform infusibilization treatment. Then, using a normal heat treatment furnace in a nitrogen stream, 110
A carbonaceous material was obtained by raising the temperature to 0 ° C. and holding it for 2 hours.

【0017】[負極体の作成]熱処理後の炭素質材料を
99重量部とディスパージョンタイプのPTFE(ダイ
キン工業(株)製、D−1)1重量部とを混合し、液相
で均一に撹拌した後、乾燥させ、ペースト状とした。こ
うして得られた負極物質30mgを、ニッケルメッシュ
に圧着させることで負極体を作製した。
[Preparation of Negative Electrode Body] 99 parts by weight of the carbonaceous material after heat treatment and 1 part by weight of dispersion type PTFE (D-1 manufactured by Daikin Industries, Ltd.) were mixed and uniformly mixed in a liquid phase. After stirring, it was dried to give a paste. 30 mg of the negative electrode material thus obtained was pressed onto a nickel mesh to prepare a negative electrode body.

【0018】[電池の作成]前記で得られた負極体と、
正極体としてのLiCoO2 と、セパレータとして1m
ol/Lの濃度に、LiClO4を溶解させたプロピレ
ンカーボネートとをポリプロピレン不織布に含浸させ
て、図1に示すようなリチウム二次電池を作成した。
[Preparation of Battery] The negative electrode body obtained above,
LiCoO 2 as a positive electrode body and 1 m as a separator
A polypropylene non-woven fabric was impregnated with propylene carbonate in which LiClO 4 was dissolved at a concentration of ol / L to prepare a lithium secondary battery as shown in FIG.

【0019】[0019]

【実施例2】実施例1の[炭素材料の調製]において、
不融化処理温度を200℃で行った以外、実施例1と同
様にして、リチウム二次電池を作製した。
Example 2 In [Preparation of Carbon Material] of Example 1,
A lithium secondary battery was produced in the same manner as in Example 1 except that the infusibilizing temperature was 200 ° C.

【0020】[0020]

【実施例3】実施例1の[炭素材料の調製]において、
不融化処理時の昇温速度を10℃/minで行った以
外、実施例1と同様にして、リチウム二次電池を作製し
た。
Example 3 In [Preparation of carbon material] of Example 1,
A lithium secondary battery was produced in the same manner as in Example 1 except that the temperature rising rate during the infusibilizing treatment was 10 ° C./min.

【0021】[0021]

【比較例1】実施例1の[炭素材料の調製]において、
不融化処理を行わない以外、実施例1と同様にして、リ
チウム二次電池を作製した。
Comparative Example 1 In [Preparation of Carbon Material] of Example 1,
A lithium secondary battery was produced in the same manner as in Example 1 except that the infusibilizing treatment was not performed.

【0022】[0022]

【比較例2】実施例2の[炭素材料の調製]において、
不融化処理温度を150℃で行った以外、実施例2と同
様にして、リチウム二次電池を作製した。
Comparative Example 2 In [Preparation of carbon material] of Example 2,
A lithium secondary battery was produced in the same manner as in Example 2 except that the infusibilizing treatment temperature was 150 ° C.

【0023】[0023]

【比較例3】実施例3の[炭素材料の調製]において、
不融化処理時の昇温速度を20℃/minで行った以
外、実施例3と同様にして、リチウム二次電池を作製し
た。
Comparative Example 3 In [Preparation of Carbon Material] of Example 3,
A lithium secondary battery was produced in the same manner as in Example 3 except that the temperature rising rate during the infusibilizing treatment was 20 ° C./min.

【0024】上記の実施例および比較例で得られたリチ
ウム二次電池の放電特性を測定した。その結果を、表1
に示す。
The discharge characteristics of the lithium secondary batteries obtained in the above Examples and Comparative Examples were measured. The results are shown in Table 1.
Shown in

【0025】[0025]

【表1】 [Table 1]

【0026】注:doo2 は、積層した炭素網平面の面
間隔を示す。Lcは、炭素網平面に垂直な厚み方向(c
軸)の結晶子サイズの大きさを示す。Laは、炭素網平
面と平行な面の広がり方向(a軸)の結晶子サイズの大
きさを示す。なお測定は、0.1mA/cm2の定電流
充放電下で行い、放電容量は電池が2.0Vに低下する
までの容量とした。
Note: doo 2 indicates the plane spacing of the laminated carbon mesh planes. Lc is the thickness direction (c
(Axis) indicates the size of the crystallite size. La represents the crystallite size in the spreading direction (a-axis) of the plane parallel to the carbon net plane. The measurement was performed under a constant current charge / discharge of 0.1 mA / cm 2 , and the discharge capacity was the capacity until the battery dropped to 2.0V.

【0027】表1から不融化処理を行わない比較例1
は、放電容量が著しく低く、不融化処理を本発明の好ま
しい条件で行わない比較例2,3は、実施例に比べて放
電容量が低いことが判る。
From Table 1, Comparative Example 1 without infusibilizing treatment
It can be seen that Comparative Examples 2 and 3 which have extremely low discharge capacities and in which the infusibilizing treatment is not performed under the preferable conditions of the present invention have lower discharge capacities than the Examples.

【0028】[0028]

【発明の効果】以上のように本発明によれば、炭素質負
極材中に存在する非晶部の割合を増加することができ、
この炭素質負極材は多くのリチウムイオンを含むことが
できるので、これを用いたリチウム二次電池は、単位重
量当りの放電容量が大きい。また、充放電回数を飛躍的
に増加できる。
As described above, according to the present invention, it is possible to increase the proportion of the amorphous portion present in the carbonaceous negative electrode material,
Since this carbonaceous negative electrode material can contain many lithium ions, the lithium secondary battery using this material has a large discharge capacity per unit weight. In addition, the number of times of charge and discharge can be dramatically increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態のリチウム二次電池1の
断面図である。
FIG. 1 is a sectional view of a lithium secondary battery 1 according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 リチウム二次電池 2 正極 3 負極 4 セパレータ 5 ケース 6 開口板 7 絶縁パッキング 1 Lithium secondary battery 2 Positive electrode 3 Negative electrode 4 Separator 5 Case 6 Opening plate 7 Insulating packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 宏之 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 嘉数 隆敬 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Fujimoto 4-1-2, Hirano-cho, Chuo-ku, Osaka City, Osaka Prefecture Osaka Gas Co., Ltd. (72) Inventor Takanori Kazaka 4 Chome 1-2 Osaka Gas Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 求電子的置換反応が可能な芳香族化合物
を酸触媒の存在下で2官能性架橋剤と反応させ、炭素前
躯体を得る第1工程と、 炭素前躯体を粉砕し、酸化雰囲気で不融化処理する第2
工程と、 不融化処理を行った炭素前躯体を非酸化性雰囲気で加熱
処理して炭化する第3工程とを含むことを特徴とするリ
チウム二次電池に用いる炭素質負極材の製造方法。
1. A first step of reacting an aromatic compound capable of electrophilic substitution reaction with a bifunctional cross-linking agent in the presence of an acid catalyst to obtain a carbon precursor, and crushing and oxidizing the carbon precursor. Second infusibilizing treatment in the atmosphere
A method for producing a carbonaceous negative electrode material used in a lithium secondary battery, comprising: a step; and a third step of carbonizing the carbon precursor which has been subjected to the infusibilizing treatment by heating in a non-oxidizing atmosphere.
【請求項2】 前記不融化処理が昇温速度0.1〜50
℃/min、200〜450℃の温度で行われることを
特徴とする請求項1記載のリチウム二次電池に用いる炭
素質負極材の製造方法。
2. The infusibilizing treatment has a temperature rising rate of 0.1 to 50.
The method for producing a carbonaceous negative electrode material used in a lithium secondary battery according to claim 1, wherein the method is performed at a temperature of 200 to 450 ° C./° C./min.
【請求項3】 請求項1記載の方法で製造した炭素質負
極材にリチウムイオンを含浸させた負極活性物質を用い
たことを特徴とするリチウム二次電池。
3. A lithium secondary battery comprising a negative electrode active material obtained by impregnating a carbonaceous negative electrode material produced by the method according to claim 1 with lithium ions.
JP8127495A 1996-05-22 1996-05-22 Manufacture of lithium secondary battery and carbonaceous negative electrode material to be used for lithium secondary battery Pending JPH09312160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8127495A JPH09312160A (en) 1996-05-22 1996-05-22 Manufacture of lithium secondary battery and carbonaceous negative electrode material to be used for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8127495A JPH09312160A (en) 1996-05-22 1996-05-22 Manufacture of lithium secondary battery and carbonaceous negative electrode material to be used for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH09312160A true JPH09312160A (en) 1997-12-02

Family

ID=14961388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8127495A Pending JPH09312160A (en) 1996-05-22 1996-05-22 Manufacture of lithium secondary battery and carbonaceous negative electrode material to be used for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH09312160A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283063A (en) * 1992-03-31 1993-10-29 Osaka Gas Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using same electrode
JPH06187991A (en) * 1992-12-16 1994-07-08 Osaka Gas Co Ltd Manufacture of negative electrode material and lithium secondary battery
JPH07335218A (en) * 1994-06-07 1995-12-22 Fuji Elelctrochem Co Ltd Nonaqueous electrolytic secondary battery
JPH0869798A (en) * 1994-04-01 1996-03-12 Toshiba Corp Negative electrode for lithium secondary battery and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283063A (en) * 1992-03-31 1993-10-29 Osaka Gas Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using same electrode
JPH06187991A (en) * 1992-12-16 1994-07-08 Osaka Gas Co Ltd Manufacture of negative electrode material and lithium secondary battery
JPH0869798A (en) * 1994-04-01 1996-03-12 Toshiba Corp Negative electrode for lithium secondary battery and its manufacture
JPH07335218A (en) * 1994-06-07 1995-12-22 Fuji Elelctrochem Co Ltd Nonaqueous electrolytic secondary battery

Similar Documents

Publication Publication Date Title
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JP2001102049A (en) Non-aqueous electrolyte secondary battery
WO2004001880A1 (en) Electrode and cell comprising the same
JP3965567B2 (en) battery
JP3624270B2 (en) Method for producing negative electrode material for lithium secondary battery and negative electrode material thereof
JP4150202B2 (en) battery
JPH06236755A (en) Negative electrode material, its manufacture, and lithium secondary battery
JP2003157900A (en) Battery
JPH0927344A (en) Nonaqueous electrolyte secondary battery
JP2005197175A (en) Positive electrode, negative electrode, electrolyte and battery
JP3552377B2 (en) Rechargeable battery
JPH10308236A (en) Nonaqueous electrolyte secondary battery
JPH06187991A (en) Manufacture of negative electrode material and lithium secondary battery
JPH06187972A (en) Manufacture of negative electrode material, and lithium secondary battery
JP2004363076A (en) Battery
JPH06119923A (en) Carbon electrode, its manufacture, and lithium secondary battery
JP3863514B2 (en) Lithium secondary battery
JP3557240B2 (en) Non-aqueous electrolyte secondary battery
JP2003151627A (en) Battery
JPH05325948A (en) Manufacture of negative electrode material and lithium secondary battery
JPH09312160A (en) Manufacture of lithium secondary battery and carbonaceous negative electrode material to be used for lithium secondary battery
JP3787943B2 (en) Non-aqueous electrolyte secondary battery
JPH08264180A (en) Lithium secondary battery negative electrode material and lithium secondary battery using it
JP2009231297A (en) Hybrid capacitor
JP2003282049A (en) Manufacturing method of negative electrode material for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207