JPH09311213A - Production of color filter - Google Patents

Production of color filter

Info

Publication number
JPH09311213A
JPH09311213A JP12754096A JP12754096A JPH09311213A JP H09311213 A JPH09311213 A JP H09311213A JP 12754096 A JP12754096 A JP 12754096A JP 12754096 A JP12754096 A JP 12754096A JP H09311213 A JPH09311213 A JP H09311213A
Authority
JP
Japan
Prior art keywords
pigment
water
particles
color filter
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12754096A
Other languages
Japanese (ja)
Inventor
Takeshi Yoda
剛 依田
Seiichi Tanabe
誠一 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP12754096A priority Critical patent/JPH09311213A/en
Publication of JPH09311213A publication Critical patent/JPH09311213A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a conductive color filter produced by micelle electrolytic method without mixing a film-type foreign matter. SOLUTION: A colloid soln. is prepared by using water-soluble or water- difficult-to-be-dissolved pigment particles and ITO as conductive particles. The pigment particles gives <50μΩ<-1> cm<-1> specific conductivity when 5.0g of the pigment is dissolved in 100ml water and then measured. The prepared colloid soln. is subjected to ultrasonic dispersion and left to stand to obtain a pigment micelle colloid soln. The micelles are broken by electrolysis and precipitate the pigmet particles and transparent conductive particles on a transparent electrode. Thus, the color filter is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶テレビ・パソ
コン用ディスプレイ等に用いられるアクティブ及びパッ
シブカラーパネルに用いるカラーフィルタの製造方法に
関している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a color filter used in active and passive color panels used in liquid crystal televisions, displays for personal computers and the like.

【0002】[0002]

【従来の技術】レドックス反応性を有する界面活性剤の
ミセル水溶液中に、水溶性もしくは水に難溶性の顔料粒
子をコロイド分散した後、該ミセル水溶液を電解するこ
とによりアノードとして用いた所定のパターン形状をも
つ透明電極上に顔料膜を形成する手法を用いたカラーフ
ィルタの製造方法について、本発明者らは既に特許出願
している。さらに、このカラーフィルタに疎水化した導
電粒子を共析させる導電性ミセルカラーフィルタの製造
方法についても出願している(特開平2−267298
号公報)。また、無機粒子表面が親水性の物質を疎水化
処理して無機膜を形成する方法についても出願済みであ
る。このように我々は、導電性のミセルカラーフィルタ
の製造方法を発明した。
2. Description of the Related Art A water-soluble or sparingly water-soluble pigment particle is colloidally dispersed in an aqueous micelle solution of a surfactant having redox reactivity, and the aqueous micelle solution is electrolyzed to form a predetermined pattern used as an anode. The present inventors have already applied for a patent for a method of manufacturing a color filter using a method of forming a pigment film on a transparent electrode having a shape. Further, a patent has also been filed for a method for producing a conductive micelle color filter in which hydrophobic conductive particles are co-deposited on this color filter (JP-A-2-267298).
Issue). In addition, a method for forming an inorganic film by hydrophobizing a substance whose surface of inorganic particles is hydrophilic has already been filed. Thus, we have invented a method for manufacturing a conductive micellar color filter.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記した従来
技術には以下の課題があった。
However, the above-mentioned prior art has the following problems.

【0004】既に出願済みの従来技術を用いてミセルコ
ロイド溶液を作製すると、液中に顔料や導電粒子とは異
なる膜状の異物が存在することがわかった。この異物
は、導電粒子の疎水化処理工程において発生する未反応
カップリング剤と考えられ、水に不溶なため、ミセルコ
ロイド溶液中で析出すると考えられる。さらに、このミ
セル液を用いてカラーフィルタ層を作り膜面を顕微鏡で
観察したところ、1ミクロンから100ミクロン程度の
液中に存在する物と同様の異物の付着や混入あるいはそ
の抜け跡が発見された。これは液晶パネルの場合、次の
ような致命的な欠陥になる。
It was found that when a micelle colloid solution was prepared by using the prior art that has already been filed, a film-like foreign substance different from the pigment and the conductive particles was present in the liquid. This foreign substance is considered to be an unreacted coupling agent generated in the step of hydrophobizing the conductive particles, and is insoluble in water, and is therefore considered to precipitate in the micellar colloid solution. Furthermore, when a color filter layer was formed using this micellar liquid and the film surface was observed with a microscope, the same foreign substances as those existing in the liquid having a size of about 1 to 100 microns were found to be attached or mixed in or traces of their removal. It was This is the following fatal defect in the case of a liquid crystal panel.

【0005】1)異物の付着は、異物を介しての電極間
ショートや基板間のショート、表面粗さの不均一による
液晶の配向不良等が発生する。
[0005] 1) Adhesion of foreign matter causes short-circuiting between electrodes or short-circuiting between substrates due to the foreign matter, poor alignment of liquid crystal due to uneven surface roughness, and the like.

【0006】2)異物の抜け跡は、パネルを点灯した際
に点欠陥となる。
2) The trace of foreign matter becomes a point defect when the panel is turned on.

【0007】すなわち、従来の方法でも導電性カラーフ
ィルタ層の形成はできるものの、異物の混入がないカラ
ーフィルタを作製する手段が無かった。
That is, although the conductive color filter layer can be formed by the conventional method, there is no means for producing a color filter in which foreign matter is not mixed.

【0008】そこで、本発明の目的とするところは、上
記の課題を解決し、アクティブ及びパッシブタイプのカ
ラー液晶パネルにも十分適用できる異物の混入がない導
電性ミセルカラーフィルタを提供することにある。
[0008] Therefore, an object of the present invention is to solve the above problems and to provide a conductive micelle color filter which is sufficiently applicable to active and passive type color liquid crystal panels and which is free of foreign matter. .

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成するための研究を重ねた結果、上記膜状異物は、
ミセルコロイド液中のイオン性不純物、特に顔料中のイ
オン性不純物が多く、比電導度にして50μΩ-1cm-1
以上であると助長され、発生し易いことを第一に見い出
した。つまり、顔料中のイオン性不純物を制御し減少さ
せることで、上記異物の発生を抑えることができる。一
般的に、イオン性の不純物を取り除くための精製を行っ
ていない顔料の比電導度は、100μΩ-1cm -μ1
ら300μΩ-1cm -μ1 程度であり、精製をすること
により、50μΩ-1cm-1以下にすることが可能であ
る。従って、我々は下記のような比電導度の顔料を用い
ることにより、異物の発生を抑えることに成功した。な
お、ここで明記した比電導度は、顔料膜の形成に用いる
水溶性もしくは水に難溶性の顔料を、水100ml中に
5.0g溶解して測定した値である。また、顔料の粒径
が7000オングストロームより大きくなると、顔料層
を形成した場合、板状の粒子が一面に析出し、膜の表面
が非常に粗くなることを第二に見い出した。つまり、こ
の顔料を用い、STNカラーパネルを作製した場合、配
向不良等の原因になる。一般的に顔料粒子は小さい方が
品質面では良いが、200オングストーロム以下になる
とコスト高になるという課題がある。従って、我々は下
記のような粒径の顔料を用いることにより、膜の表面が
滑らかな顔料層の作製に成功した。
Means for Solving the Problems As a result of repeated studies for achieving the above object, the present inventors have found that the above film-like foreign matter is
There are many ionic impurities in the micelle colloidal liquid, especially in the pigment, and the specific conductivity is 50 μΩ -1 cm -1.
It was found that the above is promoted and that it is likely to occur. That is, by controlling and reducing the ionic impurities in the pigment, it is possible to suppress the generation of the foreign matter. Generally, specific conductivity of the pigment that has not been purified to remove ionic impurities, 100μΩ -1 cm - 300μΩ from mu 1 -1 cm - a mu of about 1, by purification, 50Myuomega It can be -1 cm -1 or less. Therefore, we have succeeded in suppressing the generation of foreign matter by using a pigment having the following specific electric conductivity. The specific conductivity specified here is a value measured by dissolving 5.0 g of a water-soluble or sparingly water-soluble pigment used for forming a pigment film in 100 ml of water. Secondly, when the particle size of the pigment is larger than 7,000 angstroms, it was found secondly that when the pigment layer was formed, plate-like particles were deposited on one surface and the surface of the film became very rough. That is, when an STN color panel is produced using this pigment, it causes alignment defects and the like. Generally, smaller pigment particles are better in terms of quality, but there is a problem that the cost becomes high when the particle size is 200 angstroms or less. Therefore, we have succeeded in producing a pigment layer having a smooth film surface by using a pigment having the following particle size.

【0010】すなわち、本発明のカラーフィルタの製造
方法は、透明基板上に透明電極を形成し、該透明電極を
所定のパターンに加工後、湿式電解法により該透明電極
をアノードとして該透明電極上に顔料膜を形成する顔料
膜の形成方法で、水溶性もしくは水に難溶性の顔料粒子
と疎水性表面を有する透明導電粒子を、レドックス反応
を有する界面活性剤及び支持塩を基本成分とし、該顔料
粒子と該透明導電粒子を該界面活性剤で取り囲んだ顔料
のミセルコロイド水溶液を調製し、該ミセルを電解によ
り破壊し、透明電極上に顔料粒子と透明導電粒子を析出
させるカラーフィルタの製造方法において、水100m
l中に、顔料膜の形成に用いる水溶性もしくは水に難溶
性の顔料を、5.0g溶解して測定した顔料粒子の比電
導度が、50μΩ-1cm-1より小さいことを特徴とし、
前記水溶性もしくは水に難溶性の顔料粒子の直径が、7
000オングストローム以下であることも特徴とする。
That is, in the method for manufacturing a color filter of the present invention, a transparent electrode is formed on a transparent substrate, the transparent electrode is processed into a predetermined pattern, and then the transparent electrode is used as an anode on the transparent electrode by a wet electrolysis method. In the method for forming a pigment film to form a pigment film, transparent conductive particles having water-soluble or sparingly water-soluble pigment particles and a hydrophobic surface, a surfactant having a redox reaction and a supporting salt as basic components, Method for producing a color filter in which a pigment micelle colloid aqueous solution in which pigment particles and the transparent conductive particles are surrounded by the surfactant is prepared, and the micelles are destroyed by electrolysis to deposit the pigment particles and the transparent conductive particles on the transparent electrode. At the water 100m
The specific conductivity of pigment particles measured by dissolving 5.0 g of a water-soluble or sparingly water-soluble pigment used for forming a pigment film in 1 is smaller than 50 μΩ −1 cm −1 ,
The diameter of the water-soluble or slightly water-soluble pigment particles is 7
It is also characterized in that it is 000 angstroms or less.

【0011】[0011]

【発明の実施の形態】以下、実施例を用いて本発明を詳
細に説明する。なお、ここで明記した比電導度は、顔料
膜の形成に用いる水溶性もしくは水に難溶性の顔料を、
水100ml中に5.0g溶解して測定した値である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail using embodiments. In addition, the specific conductivity specified here is a water-soluble or slightly water-soluble pigment used for forming the pigment film,
It is a value measured by dissolving 5.0 g in 100 ml of water.

【0012】(実施例1)赤色顔料粒子(ジスアントラ
キノニルレッド:比電導度14.0μΩ-1cm-1、粒子
径1000オングストローム)、同じく黄色顔料粒子
(ジスアゾイエローHR:比電導度33.6μΩ-1cm
-1、粒子径3000オングストローム)及び導電性粒子
としてITO(Indium Tin Oxide)を
用いて、以下の組成の赤顔料コロイド水溶液を調製し
た。なお、顔料粒子は大日精化製を用いた。
(Example 1) Red pigment particles (disanthraquinonyl red: specific conductivity 14.0 μΩ -1 cm -1 , particle diameter 1000 Å), and yellow pigment particles (disazo yellow HR: specific conductivity 33. 6 μΩ -1 cm
−1 , a particle diameter of 3000 Å, and ITO (Indium Tin Oxide) as conductive particles were used to prepare a red pigment colloid aqueous solution having the following composition. The pigment particles used were manufactured by Dainichi Seika.

【0013】 ジアントラキノニルレッド 8.0g/l ジスアゾイエローHR 1.6g/l フェロセニルPEG 3.4g/l LiBr(支持塩) 10.5g/l 疎水化処理ITO粒子 18.0g/l 上記の顔料コロイド水溶液を超音波分散装置により、9
0分間超音波分散した後、半日放置した。この上澄み液
を採取し顔料ミセルコロイド水溶液とした。この液の平
均粒径は、4700オングストロームであった。
Dianthraquinonyl red 8.0 g / l Disazo yellow HR 1.6 g / l Ferrocenyl PEG 3.4 g / l LiBr (supporting salt) 10.5 g / l Hydrophobized ITO particles 18.0 g / l The above pigments The colloidal aqueous solution was ultrasonic
After ultrasonic dispersion for 0 minutes, the mixture was left for half a day. The supernatant was collected to obtain a pigment micelle colloid aqueous solution. The average particle size of this liquid was 4700 angstroms.

【0014】ここで、ミセル液中に存在する膜状の異物
の量を数えた。異物はミセルコロイド液を強く攪はんす
ると多く発生することがわかっている。そこで。異物量
測定は、ミセルコロイド液をサンプル管に少量入れ1分
間振り混ぜた後に行った。準備したミセルコロイド液約
1mlをプレパラート上に2×2cm程度に広げ、顕微
鏡(×200)で端から端まで走査したときに存在する
異物数を数える。
Here, the amount of film-like foreign matter existing in the micelle liquid was counted. It is known that many foreign substances are generated when the micelle colloid liquid is strongly stirred. Therefore. The amount of foreign matter was measured after a small amount of the micelle colloid solution was placed in a sample tube and shaken for 1 minute. About 1 ml of the prepared micellar colloid solution is spread on a slide to a size of about 2 × 2 cm, and the number of foreign matters existing when scanning from one end to the other with a microscope (× 200) is counted.

【0015】比較例として、従来顔料(ジスアントラキ
ノニルレッド:比電導度150μΩ-1cm-1、粒子径1
000オングストローム、同じくジスアゾイエロー:比
電導度300μΩ-1cm-1、粒子径3000オングスト
ローム)を用いて同様の方法でミセルコロイド液を作製
し、異物量を比較した。その特性データを表1に示す。
As a comparative example, a conventional pigment (disanthraquinonyl red: specific electric conductivity 150 μΩ −1 cm −1 , particle diameter 1
A micellar colloid solution was prepared in the same manner using 000 angstroms, similarly disazo yellow: specific electric conductivity 300 μΩ −1 cm −1 , particle diameter 3000 angstroms), and the amounts of foreign substances were compared. The characteristic data are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】表1からわかるように、本発明の比電導度
の顔料粒子を用いてミセルコロイド液を作製した場合、
従来顔料を用いた場合と比較して異物量が激減した。
As can be seen from Table 1, when a micellar colloidal liquid was prepared using the pigment particles having a specific electric conductivity of the present invention,
The amount of foreign matter was drastically reduced as compared with the case where the conventional pigment was used.

【0018】このミセル水溶液中に、アノードとして前
記電極パターンをもったガラス基板(2×3cm)と、
カソード側にステンレス基板を浸漬させ、+0.8Vの
定電位で15分間電解を行った。ガラス基板は電源を導
通をとるための銀ペーストを塗布してから電源に接続
し、カラーフィルタ層となる電極、アノードとしての対
向電極が完全に液に浸かる水位まで浸漬した。この結
果、ITO電極上に赤色の顔料膜が形成された。この基
板を水洗後、180℃で30分間焼成した。赤色顔料膜
厚を測定したところ、電極周辺部と中心部の膜厚差は無
く、基板面内の膜厚均一で1.05ミクロンであった。
さらに、成膜面を前記と同様の方法で観察した。比較例
として、従来顔料を用いて同様の方法で成膜し異物量を
比較した。その特性データを表2に示す。
In this aqueous micelle solution, a glass substrate (2 × 3 cm) having the above electrode pattern as an anode,
A stainless steel substrate was immersed in the cathode side, and electrolysis was performed at a constant potential of +0.8 V for 15 minutes. The glass substrate was coated with a silver paste for conducting the power source and then connected to the power source, and the glass substrate was immersed to a water level such that the electrode to be the color filter layer and the counter electrode as the anode were completely immersed in the liquid. As a result, a red pigment film was formed on the ITO electrode. After washing this substrate with water, it was baked at 180 ° C. for 30 minutes. When the film thickness of the red pigment was measured, there was no difference in film thickness between the peripheral portion and the central portion of the electrode, and the film thickness was 1.05 μm evenly on the substrate surface.
Further, the film formation surface was observed by the same method as described above. As a comparative example, a conventional pigment was used to form a film by the same method, and the amounts of foreign substances were compared. The characteristic data are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】表2から、本発明の比電導度をもつ顔料粒
子を用いて成膜した場合、異物等の付着が全くなく均一
な膜面であった。
From Table 2, when the pigment particles having a specific electric conductivity of the present invention were used to form a film, a uniform film surface was obtained without any foreign matter adhering thereto.

【0021】(実施例2)青色顔料粒子(フタロシアニ
ンブルーR:比電導度18.2μΩ-1cm-1、粒子径2
000オングストローム)、同じく紫色顔料粒子(ジオ
キサンバイオレット:比電導度33.2μΩ-1cm-1
粒子径600オングストローム)及び導電性粒子として
ITOを用いて、以下の組成の青顔料コロイド水溶液を
調製した。なお、顔料粒子は大日精化製を用いた。
(Example 2) Blue pigment particles (phthalocyanine blue R: specific electric conductivity of 18.2 μΩ -1 cm -1 , particle diameter 2)
000 angstroms), and also purple pigment particles (dioxane violet: specific electric conductivity 33.2 μΩ −1 cm −1 ,
A blue pigment colloid aqueous solution having the following composition was prepared using ITO as a conductive particle and a particle diameter of 600 angstrom). The pigment particles used were manufactured by Dainichi Seika.

【0022】 フタロシアニンブルーR 5.2g/l ジオキサンバイオレット 0.9g/l フェロセニルPEG 3.7g/l LiBr(支持塩) 10.5g/l 疎水化処理ITO粒子 18.0g/l 上記の顔料コロイド水溶液を超音波分散装置により、9
0分間超音波分散した後、半日放置した。この上澄み液
を採取し顔料ミセルコロイド水溶液とした。この液の平
均粒径は、3480オングストロームであった。
Phthalocyanine blue R 5.2 g / l Dioxane violet 0.9 g / l Ferrocenyl PEG 3.7 g / l LiBr (supporting salt) 10.5 g / l Hydrophobized ITO particles 18.0 g / l Aqueous solution of the above pigment colloid With an ultrasonic disperser
After ultrasonic dispersion for 0 minutes, the mixture was left for half a day. The supernatant was collected to obtain a pigment micelle colloid aqueous solution. The average particle size of this solution was 3480 angstroms.

【0023】赤ミセルコロイド液と同様の方法で異物量
を測定した。表1に示すように従来顔料(フタロシアニ
ンブルー:比電導度19.0μΩ-1cm-1、粒子径40
00オングストローム)、同じくジオキサンバイオレッ
ト:比電導度55.0μΩ-1cm-1、粒子径700オン
グストローム)を用いた場合と比較すると、本発明の比
電導度の顔料を用いることにより異物量が減った。
The amount of foreign matter was measured by the same method as for the red micelle colloid solution. As shown in Table 1, the conventional pigment (phthalocyanine blue: specific electric conductivity 19.0 μΩ −1 cm −1 , particle diameter 40
00 angstrom), also using dioxane violet: specific electric conductivity of 55.0 μΩ −1 cm −1 , particle size of 700 angstrom), the amount of foreign matter was reduced by using the pigment of specific electric conductivity of the present invention. .

【0024】このミセル水溶液中に、アノードとして前
記電極パターンをもったガラス基板(2×3cm)と、
カソード側にステンレス基板を浸漬させ、+0.6Vの
定電位で15分間電解を行った。ガラス基板は電源を導
通をとるための銀ペーストを塗布してから電源に接続
し、カラーフィルタ層となる電極、アノードとしての対
向電極が完全に液に浸かる水位まで浸漬した。この結果
ITO電極上に青色の顔料膜が形成された。この基板を
水洗後、180℃で30分間焼成した。青色顔料膜厚を
測定したところ、電極周辺部と中心部の膜厚差は無く基
板面内の膜厚均一で0.98ミクロンであった。表2に
示すように、さらに成膜面を前記と同様の方法で観察し
たところ、異物等の付着が無い均一な膜面であった。
In this aqueous micelle solution, a glass substrate (2 × 3 cm) having the above-mentioned electrode pattern as an anode,
A stainless steel substrate was immersed in the cathode side, and electrolysis was performed for 15 minutes at a constant potential of + 0.6V. The glass substrate was coated with a silver paste for conducting the power source and then connected to the power source, and the glass substrate was immersed to a water level such that the electrode to be the color filter layer and the counter electrode as the anode were completely immersed in the liquid. As a result, a blue pigment film was formed on the ITO electrode. After washing this substrate with water, it was baked at 180 ° C. for 30 minutes. The film thickness of the blue pigment was measured, and it was found that there was no film thickness difference between the peripheral portion and the central portion of the electrode, and that the film thickness was uniform within the substrate surface and was 0.98 μm. As shown in Table 2, when the film-forming surface was further observed by the same method as described above, it was a uniform film surface without adhesion of foreign matters and the like.

【0025】(比較例1)赤色顔料粒子(ジアントラキ
ノニルレッド:比電導度100μΩ-1cm-1)、同じく
黄色顔料粒子(ジスアゾイエロー:比電導度300μΩ
-1cm-1)及び導電性粒子としてITOを用いて、以下
の組成の赤顔料コロイド水溶液を調製した。なお、顔料
粒子は御国色素製を用いた。
(Comparative Example 1) Red pigment particles (dianthraquinonyl red: specific electric conductivity of 100 μΩ −1 cm −1 ) and yellow pigment particles (disazo yellow: specific electric conductivity of 300 μΩ)
-1 cm -1 ) and ITO as the conductive particles, a red pigment colloid aqueous solution having the following composition was prepared. The pigment particles used were made by Mikuni dye.

【0026】 ジアントラキノニルレッド 6.1g/l ジスアゾイエロー 4.1g/l フェロセニルPEG 3.3g/l LiBr(支持塩) 10.5g/l 疎水化処理ITO粒子 10.8g/l 上記の顔料コロイド水溶液を超音波分散装置により、9
0分間超音波分散した後、半日放置した。この上澄み液
を採取し顔料ミセルコロイド水溶液とした。この液の平
均粒径は、5000オングストロームであった。
Dianthraquinonyl red 6.1 g / l Disazo yellow 4.1 g / l Ferrocenyl PEG 3.3 g / l LiBr (supporting salt) 10.5 g / l Hydrophobized ITO particles 10.8 g / l The above pigment colloid Use an ultrasonic dispersion device to
After ultrasonic dispersion for 0 minutes, the mixture was left for half a day. The supernatant was collected to obtain a pigment micelle colloid aqueous solution. The average particle size of this solution was 5000 Å.

【0027】表1に示すように、ここで実施例1と同様
の方法でミセルコロイド溶液中に存在する膜状の異物量
を測定したところ、140個であった。
As shown in Table 1, the amount of film-like foreign matter present in the micellar colloid solution was measured by the same method as in Example 1 and found to be 140.

【0028】このミセル水溶液中に、アノードとして前
記電極パターンをもったガラス基板(2×3cm)と、
カソード側にステンレス基板を浸漬させ、+0.8Vの
定電位で15分間電解を行った。ガラス基板は電源を導
通をとるための銀ペーストを塗布してから電源に接続
し、カラーフィルタ層となる電極、アノードとしての対
向電極が完全に液に浸かる水位まで浸漬した。この結果
ITO電極上に赤色の顔料膜が形成された。この基板を
水洗後、180℃で30分間焼成した。赤色顔料膜厚を
測定したところ、電極周辺部と中心部の膜厚差は無く基
板面内の膜厚均一で1.20ミクロンであった。ここで
成膜面を観察したところ、10から100ミクロン程度
の異物が表面に付着し、さらに異物の抜け跡が多量に発
生した。表2に示すように、顕微鏡(×200)で2c
m程度走査しながら異物の数を数えたところ、20個あ
った。これは液晶パネルにした場合、異物を介しての電
極間ショートや基板間ショート、表面粗さの不均一によ
る液晶の配向不良が発生し、異物の抜け跡はパネルを点
灯した際に点欠陥になる。
In this aqueous micelle solution, a glass substrate (2 × 3 cm) having the above electrode pattern as an anode,
A stainless steel substrate was immersed in the cathode side, and electrolysis was performed at a constant potential of +0.8 V for 15 minutes. The glass substrate was coated with a silver paste for conducting the power source and then connected to the power source, and the glass substrate was immersed to a water level such that the electrode to be the color filter layer and the counter electrode as the anode were completely immersed in the liquid. As a result, a red pigment film was formed on the ITO electrode. After washing this substrate with water, it was baked at 180 ° C. for 30 minutes. When the film thickness of the red pigment was measured, there was no film thickness difference between the peripheral portion and the central portion of the electrode, and the film thickness was 1.20 μm evenly within the substrate surface. When the film-forming surface was observed, foreign matter of about 10 to 100 μm adhered to the surface, and a large number of traces of the foreign matter were generated. As shown in Table 2, 2c with a microscope (× 200)
When the number of foreign substances was counted while scanning about m, there were 20 foreign substances. This is because, when a liquid crystal panel is used, a short circuit between electrodes or a short circuit between substrates due to foreign matter, poor alignment of liquid crystal due to uneven surface roughness occurs, and a trace of foreign matter becomes a point defect when the panel is turned on. Become.

【0029】(比較例2)青色顔料粒子(フタロシアニ
ンブルー:比電導度150μΩ-1cm-1)、同じく紫色
顔料粒子(ジオキサンバイオレット:比電導度200μ
Ω-1cm-1)及び導電性粒子としてITOを用いて、以
下の組成の青顔料コロイド水溶液を調製した。なお、顔
料粒子は御国色素製を用いた。
Comparative Example 2 Blue pigment particles (phthalocyanine blue: specific electric conductivity 150 μΩ −1 cm −1 ) and purple pigment particles (dioxane violet: specific electric conductivity 200 μ)
Ω −1 cm −1 ) and ITO as the conductive particles were used to prepare a blue pigment colloid aqueous solution having the following composition. The pigment particles used were made by Mikuni dye.

【0030】 フタロシアニンブルー 5.2g/l ジオキサンバイオレット 0.9g/l フェロセニルPEG 4.6g/l LiBr(支持塩) 10.5g/l 疎水化処理ITO粒子 18.0g/l 上記の顔料コロイド水溶液を超音波分散装置により、9
0分間超音波分散した後、半日放置した。この上澄み液
を採取し顔料ミセルコロイド水溶液とした。この液の平
均粒径は、4000オングストロームであった。
Phthalocyanine blue 5.2 g / l Dioxane violet 0.9 g / l Ferrocenyl PEG 4.6 g / l LiBr (supporting salt) 10.5 g / l Hydrophobized ITO particles 18.0 g / l 9 by ultrasonic disperser
After ultrasonic dispersion for 0 minutes, the mixture was left for half a day. The supernatant was collected to obtain a pigment micelle colloid aqueous solution. The average particle size of this solution was 4000 Å.

【0031】表1に示すように、ここで実施例2と同様
の方法でミセルコロイド溶液中に存在する膜状の異物量
を測定したところ、450個であった。
As shown in Table 1, the amount of film-like foreign matter present in the micelle colloid solution was measured by the same method as in Example 2 and found to be 450.

【0032】このミセル水溶液中にアノードとして前記
電極パターンをもったガラス基板(2×3cm)と、カ
ソード側にステンレス基板を浸漬させ、+0.6Vの定
電位で15分間電解を行った。該ガラス基板は電源を導
通をとるための銀ペーストを塗布してから電源に接続
し、カラーフィルタ層となる電極、アノードとしての対
向電極が完全に液に浸かる水位まで浸漬した。この結果
ITO電極上に青色の顔料膜が形成された。この基板を
水洗後、180℃で30分間焼成した。青色顔料膜厚を
測定したところ、電極周辺部と中心部の膜厚差は無く基
板面内の膜厚均一で0.90ミクロンであった。ここで
成膜面を観察したところ、10から100ミクロン程度
の異物が表面に付着し、さらに異物の抜け跡が多量に発
生した。表2に示すように、顕微鏡(×200)で2c
m程度走査しながら異物の数を数えたところ、45個あ
った。これは液晶パネルにした場合、異物を介しての電
極間ショートや基板間ショート、表面粗さの不均一によ
る液晶の配向不良が発生し、異物の抜け跡はパネルを点
灯した際に点欠陥になる。
A glass substrate (2 × 3 cm) having the above electrode pattern as an anode and a stainless steel substrate on the cathode side were immersed in this aqueous micelle solution, and electrolysis was performed at a constant potential of +0.6 V for 15 minutes. The glass substrate was coated with a silver paste for conducting a power source and then connected to the power source, and the glass substrate was immersed to a water level where the electrodes to be the color filter layer and the counter electrode as the anode were completely immersed in the liquid. As a result, a blue pigment film was formed on the ITO electrode. After washing this substrate with water, it was baked at 180 ° C. for 30 minutes. When the blue pigment film thickness was measured, there was no difference in film thickness between the peripheral portion and the central portion of the electrode, and it was 0.90 micron in terms of uniform film thickness within the substrate surface. When the film-forming surface was observed, foreign matter of about 10 to 100 μm adhered to the surface, and a large number of traces of the foreign matter were generated. As shown in Table 2, 2c with a microscope (× 200)
When the number of foreign matters was counted while scanning about m, it was 45. This is because, when a liquid crystal panel is used, a short circuit between electrodes or a short circuit between substrates due to foreign matter, poor alignment of liquid crystal due to uneven surface roughness occurs, and a trace of foreign matter becomes a point defect when the panel is turned on. Become.

【0033】(実施例3)30cm角のガラス基板2枚
を用意し、それぞれ透明電極として用いるITOをスパ
ッタリングにより形成し、さらにフォトリソグラフィー
法により、カラーフィルタ用基板としては0.08mm
幅、0.1ミクロンピッチで640本×3=1920
本、対向電極としてはカラーフィルタの電極に直交する
向きに0.28mm幅、0.3mmピッチで480本か
らなるストライプパターンに加工した。パターン端部
は、後工程で液晶駆動用ICが実装できるように所定の
形状にパターングした。最初に、カラーフィルタ側(パ
ターン数1920本)の透明電極間に、ブラックマトリ
ックス層を0.2mm幅、膜厚が0.8〜1.0μmに
なるようにフォトリソグラフィー法で形成する。そし
て、実施例1及び実施例2で用いた顔料・組成を用い
て、電気化学的方法により所定のITO透明電極上に導
電性の色素層をB,G,Rの順にそれぞれ、0.7〜
0.9μm、0.8〜1.0μm、0.8〜1.0μm
になるように形成した。ここで、電気化学的方法とは、
水に不溶性もしくは難溶性の顔料粒子(R:ジアントラ
キノニルレッド、G:フタロシアニングリーン、B:フ
タロシアニンブルー、Y:ジスアゾイエロー、V:ジオ
キサジンバイオレット)および疎水化したITO粒子、
さらに電解により荷電する界面活性剤(フェロセンPE
G)および支持電解質(臭化リチウム)を基本成分と
し、顔料粒子およびITO粒子を界面活性剤で取り囲ん
だ顔料およびITOのミセルコロイド水溶液を調製し、
このミセルを電解(0.4〜1.0V)により破壊し、
透明電極上に顔料粒子およびITO粒子を析出させ、導
電性顔料薄膜を形成するものである。
(Embodiment 3) Two 30 cm square glass substrates were prepared, ITO used as a transparent electrode for each was formed by sputtering, and further, by photolithography, 0.08 mm as a color filter substrate.
Width, 640 at 0.1 micron pitch x 3 = 1920
As a counter electrode, a stripe pattern consisting of 480 stripes having a width of 0.28 mm and a pitch of 0.3 mm was formed in the direction orthogonal to the electrodes of the color filter. The pattern ends were patterned into a predetermined shape so that a liquid crystal driving IC could be mounted in a later step. First, a black matrix layer having a width of 0.2 mm and a film thickness of 0.8 to 1.0 μm is formed between the transparent electrodes on the color filter side (the number of patterns: 1920) by a photolithography method. Then, using the pigments / compositions used in Examples 1 and 2, an electro-chemical method was used to form a conductive dye layer on a predetermined ITO transparent electrode in the order of B, G and R in the order of 0.7 to 7, respectively.
0.9 μm, 0.8 to 1.0 μm, 0.8 to 1.0 μm
Was formed. Here, the electrochemical method is
Water-insoluble or sparingly soluble pigment particles (R: dianthraquinonyl red, G: phthalocyanine green, B: phthalocyanine blue, Y: disazo yellow, V: dioxazine violet) and hydrophobized ITO particles,
Furthermore, a surfactant that is charged by electrolysis (ferrocene PE
G) and a supporting electrolyte (lithium bromide) as basic components, and a pigment and ITO particles surrounded by a surfactant to prepare a pigment and ITO micellar colloid aqueous solution,
This micelle is destroyed by electrolysis (0.4 to 1.0 V),
The conductive pigment thin film is formed by depositing pigment particles and ITO particles on the transparent electrode.

【0034】3色を形成した後、180℃、30分焼成
する。その後、0.2μmの平坦化膜を塗布し、再び1
80℃、1時間の焼成を行い、導電性の色素層とブラッ
クマトリックス層の膜厚差が、最大0.2μm程度の導
電性ミセルカラーフィルタを作製した。
After forming three colors, it is baked at 180 ° C. for 30 minutes. After that, apply a 0.2 μm flattening film,
By firing at 80 ° C. for 1 hour, a conductive micelle color filter having a maximum difference in film thickness between the conductive dye layer and the black matrix layer of about 0.2 μm was produced.

【0035】このカラーフィルタおよび対向基板を用い
て、所定の液晶パネル化工程を通すことにより、STN
カラー液晶パネルを作製した。1/240Duty駆動
し、パネルの表示ムラ及び欠陥を測定した結果、従来の
顔料を用いて作製したSTNカラー液晶パネルに比べ、
異物が原因と考えられる電極間ショートや基板間ショー
ト及び液晶の配向不良やパネルを点灯した際の点欠陥は
認められなかった。
By using this color filter and the counter substrate, a predetermined liquid crystal panel forming process is performed to obtain STN.
A color liquid crystal panel was produced. As a result of measuring the display unevenness and defects of the panel by driving 1/240 Duty, as compared with the STN color liquid crystal panel manufactured using the conventional pigment,
No short circuit between electrodes, short circuit between substrates, defective liquid crystal alignment and point defects when the panel was lit, which were considered to be caused by foreign matter, were not observed.

【0036】(比較例3)実施例3及び実施例4の顔
料、組成を用い作製した導電性ミセルカラーフィルタ側
基板を用い、実施例3と同条件でSTNカラー液晶パネ
ルを作製し、同条件で駆動した。その結果、異物が原因
と考えられる基板間ショート及び液晶の配向不良やパネ
ルを点灯した際の点欠陥が認められた。
Comparative Example 3 An STN color liquid crystal panel was prepared under the same conditions as in Example 3 using the conductive micelle color filter side substrate prepared using the pigments and compositions of Examples 3 and 4, and under the same conditions. Driven by. As a result, a short circuit between substrates, a liquid crystal alignment defect, and a point defect when the panel was turned on were considered to be caused by foreign matter.

【0037】(実施例4)実施例2と粒子径のみが大き
く異なる青色顔料粒子(フタロシアニンブルーR:比電
導度18.0μΩ-1cm-1、粒子径7000オングスト
ローム)、同じく紫色顔料粒子(ジオキサンバイオレッ
ト:比電導度35.0μΩ-1cm-1、粒子径700オン
グストローム)及び導電性粒子としてITOを用いて、
以下の組成の青顔料コロイド水溶液を調製した。なお、
顔料粒子は大日精化製を用いた。
Example 4 Blue pigment particles (phthalocyanine blue R: specific electric conductivity 18.0 μΩ −1 cm −1 , particle diameter 7,000 Å) which differ greatly from Example 2 only in particle diameter, and also purple pigment particles (dioxane) Violet: specific electric conductivity of 35.0 μΩ −1 cm −1 , particle size of 700 Å) and ITO as conductive particles,
A blue pigment colloidal aqueous solution having the following composition was prepared. In addition,
The pigment particles used were made by Dainichiseika.

【0038】 フタロシアニンブルーR 5.2g/l ジオキサンバイオレット 0.9g/l フェロセニルPEG 3.7g/l LiBr(支持塩) 10.5g/l 疎水化処理ITO粒子 18.0g/l 上記の顔料コロイド水溶液を超音波分散装置により、9
0分間超音波分散した後、半日放置した。この上澄み液
を採取し顔料ミセルコロイド水溶液とした。この液の平
均粒径は、4400オングストロームであった。
Phthalocyanine blue R 5.2 g / l Dioxane violet 0.9 g / l Ferrocenyl PEG 3.7 g / l LiBr (supporting salt) 10.5 g / l Hydrophobized ITO particles 18.0 g / l The above pigment colloid aqueous solution With an ultrasonic disperser
After ultrasonic dispersion for 0 minutes, the mixture was left for half a day. The supernatant was collected to obtain a pigment micelle colloid aqueous solution. The average particle size of this liquid was 4400 angstroms.

【0039】ここで実施例2と同様の方法でミセルコロ
イド溶液中に存在する膜状の異物量を測定したところ、
60個であった。
The amount of foreign matter in the form of a film present in the micellar colloid solution was measured by the same method as in Example 2.
It was 60 pieces.

【0040】このミセル水溶液中にアノードとして前記
電極パターンをもったガラス基板(2×3cm)と、カ
ソード側にステンレス基板を浸漬させ、+0.6Vの定
電位で15分間電解を行った。ガラス基板は電源を導通
をとるための銀ペーストを塗布してから電源に接続し、
カラーフィルタ層となる電極、アノードとしての対向電
極が完全に液に浸かる水位まで浸漬した。この結果IT
O電極上に青色の顔料膜が形成された。この基板を水洗
後、180℃で30分間焼成した。青色顔料膜厚を測定
したところ、電極周辺部と中心部の膜厚差は無く基板面
内の膜厚均一で1.00ミクロンであった。さらに成膜
面を前記と同様の方法で観察したところ、異物等の付着
は無い均一な膜面であった。しかしながら、膜の表面状
態は、板上の粒子が一面に存在し非常に粗くなった。こ
の析出層をカラーフィルタとしてSTN用カラーパネル
にした場合、配向不良等の原因となる可能性があるた
め、STN用カラーフィルタとしては用いることができ
ない。
A glass substrate (2 × 3 cm) having the above electrode pattern as an anode and a stainless steel substrate on the cathode side were immersed in this aqueous micelle solution, and electrolysis was performed at a constant potential of +0.6 V for 15 minutes. The glass substrate is coated with silver paste to keep the power supply connected, and then connected to the power supply.
The electrode to be the color filter layer and the counter electrode as the anode were soaked to the water level that they were completely immersed in the liquid. This results in IT
A blue pigment film was formed on the O electrode. After washing this substrate with water, it was baked at 180 ° C. for 30 minutes. When the blue pigment film thickness was measured, there was no difference in film thickness between the peripheral portion and the central portion of the electrode, and it was 1.00 micron in terms of uniform film thickness within the substrate surface. Further, when the film-forming surface was observed by the same method as described above, it was a uniform film surface with no foreign matter attached. However, the surface condition of the film became very rough because particles on the plate were present on one side. When this deposited layer is used as a color filter for STN as a color filter, it may cause defective alignment, and therefore cannot be used as a color filter for STN.

【0041】[0041]

【発明の効果】以上のように、本発明によれば、顔料膜
の形成に用いる水溶性もしくは水に難溶性の顔料を、水
100ml中に5.0g溶解して測定した顔料粒子の比
電導度が、50μΩ-1cm-1より小さいことを特徴とす
る顔料を用いてミセルコロイド液を作製すると、ミセル
液中に発生する異物及び成膜後膜中に存在する異物を無
くすことが可能である。これは本発明の比電導度の顔料
を用いてミセルコロイド液を作製すると、ミセル電解法
により析出させたカラーフィルタ層に異物の付着がない
ことで判断できる。
As described above, according to the present invention, the specific conductivity of pigment particles measured by dissolving 5.0 g of a water-soluble or sparingly water-soluble pigment used for forming a pigment film in 100 ml of water was measured. When a micellar colloidal solution is prepared using a pigment characterized by having a degree of less than 50 μΩ −1 cm −1, it is possible to eliminate the foreign matter generated in the micellar solution and the foreign matter present in the film after film formation. is there. This can be judged by the fact that when a micellar colloidal solution is prepared using the pigment of the present invention, the foreign matter does not adhere to the color filter layer deposited by the micellar electrolysis method.

【0042】[0042]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 透明基板上に透明電極を形成し、該透明
電極を所定のパターンに加工後、湿式電解法により該透
明電極をアノードとして該透明電極上に顔料膜を形成す
る顔料膜の形成方法で、水溶性もしくは水に難溶性の顔
料粒子と疎水性表面を有する透明導電粒子を、レドック
ス反応を有する界面活性剤及び支持塩を基本成分とし、
該顔料粒子と該透明導電粒子を該界面活性剤で取り囲ん
だ顔料のミセルコロイド水溶液を調製し、該ミセルを電
解により破壊し、透明電極上に顔料粒子と透明導電粒子
を析出させるカラーフィルタの製造方法において、顔料
膜の形成に用いる水溶性もしくは水に難溶性の顔料を、
水100ml中に5.0g溶解して測定した顔料粒子の
比電導度が、50μΩ-1cm-1より小さいことを特徴と
するカラーフィルタの製造方法。
1. A pigment film is formed by forming a transparent electrode on a transparent substrate, processing the transparent electrode into a predetermined pattern, and then forming a pigment film on the transparent electrode using the transparent electrode as an anode by a wet electrolysis method. In the method, water-soluble or water-insoluble pigment particles and transparent conductive particles having a hydrophobic surface, a surfactant and a supporting salt having a redox reaction as a basic component,
Manufacture of a color filter in which a micellar colloid aqueous solution of a pigment in which the pigment particles and the transparent conductive particles are surrounded by the surfactant is prepared, and the micelles are destroyed by electrolysis to precipitate the pigment particles and the transparent conductive particles on the transparent electrode. In the method, a water-soluble or water-insoluble pigment used for forming the pigment film is used.
A method for producing a color filter, wherein the specific conductivity of pigment particles measured by dissolving 5.0 g in 100 ml of water is smaller than 50 μΩ −1 cm −1 .
【請求項2】 前記水溶性もしくは水に難溶性の顔料粒
子の直径が、7000オングストローム以下であること
を特徴とする請求項1記載のカラーフィルタの製造方
法。
2. The method for producing a color filter according to claim 1, wherein the diameter of the water-soluble or slightly water-soluble pigment particles is 7,000 angstroms or less.
JP12754096A 1996-05-22 1996-05-22 Production of color filter Pending JPH09311213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12754096A JPH09311213A (en) 1996-05-22 1996-05-22 Production of color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12754096A JPH09311213A (en) 1996-05-22 1996-05-22 Production of color filter

Publications (1)

Publication Number Publication Date
JPH09311213A true JPH09311213A (en) 1997-12-02

Family

ID=14962546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12754096A Pending JPH09311213A (en) 1996-05-22 1996-05-22 Production of color filter

Country Status (1)

Country Link
JP (1) JPH09311213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2340283A (en) * 1998-07-31 2000-02-16 Sharp Kk Liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2340283A (en) * 1998-07-31 2000-02-16 Sharp Kk Liquid crystal display device
US6480253B1 (en) 1998-07-31 2002-11-12 Sharp Kabushiki Kaisha LCD device having electrodes comprising conductive resin or conductive color filter and manufacturing method of the same
GB2340283B (en) * 1998-07-31 2003-01-15 Sharp Kk Liquid crystal display device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
EP0132068B1 (en) Multi-colour display device and process of fabricating same
NL8500576A (en) ELECTRICALLY CONDUCTIVE COMPOSITION FOR ELECTROLYTIC COATING.
US20140146381A1 (en) Optically variable thin film with electrochemical capacitance property and use thereof
JP2699422B2 (en) Color filter for liquid crystal panel and liquid crystal device
JPH09311213A (en) Production of color filter
JPH10311913A (en) Device for manufacturing color filter
JP2707746B2 (en) Color filter, method of manufacturing the same, and liquid crystal device
JP2893840B2 (en) Color filter manufacturing method and color liquid crystal panel
JP2707704B2 (en) Method for forming thin film, color filter for liquid crystal device, and liquid crystal device
JPH09278487A (en) Production of conductive particle, production of color filter using the particle, and color filter, display panel and electronic device using the particle
EP0407947A2 (en) Color filter and process for preparing the same
JPH0634809A (en) Color filter for liquid crystal panel and production thereof
JP2687665B2 (en) Color filter manufacturing method
JPH11248923A (en) Manufacturing device for color filter
JPH06130220A (en) Production of color filter for liquid crystal panel
JP2762541B2 (en) Thin film formation method
JP2707793B2 (en) Method for forming thin film, color filter for liquid crystal device, and liquid crystal device
JPH04179918A (en) Production of color liquid crystal display device
JPH08220332A (en) Production of transparent electric conductive particle, production of color filter using the same and color filter using the same
JP2906568B2 (en) Thin film deposition by micellar electrolysis
JP2674272B2 (en) Color filter manufacturing method
JPS60186803A (en) Multi-color display device and its production
JPH0345803B2 (en)
JP2707787B2 (en) Method of forming thin film and method of manufacturing color filter for liquid crystal device
JPH03293635A (en) Production of color filter