JPH09309301A - Radial tire - Google Patents

Radial tire

Info

Publication number
JPH09309301A
JPH09309301A JP8129664A JP12966496A JPH09309301A JP H09309301 A JPH09309301 A JP H09309301A JP 8129664 A JP8129664 A JP 8129664A JP 12966496 A JP12966496 A JP 12966496A JP H09309301 A JPH09309301 A JP H09309301A
Authority
JP
Japan
Prior art keywords
tire
maximum
tread
circumferential
equator line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8129664A
Other languages
Japanese (ja)
Inventor
Masaru Masaoka
賢 正岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP8129664A priority Critical patent/JPH09309301A/en
Publication of JPH09309301A publication Critical patent/JPH09309301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tire which is restrained from deflected abrasion of a shoulder part without sacrificing wet performance, etc. SOLUTION: 1.0<=p<=1.7 is satisfied in case of P=(L80-L6)/(W6-W80) on the assumption that (1) a ratio of circumferential grounding length L80 at a position W80 of 80% of a distance from a tire equator line to tread both ends and circumferential grounding length Le on the tire equator line is 0.72-0.85 and (2) circumferential grounding length at W6 positioned inward in the tire shaft direction 3mm from a position of the maximum grounding width W on the tread both ends from the tire equator line is L6 in the shape of a grounding surface at the time of assembling a radial tire furnished with at least one layer of a radial carcass on a standard applicable rim, filling the maximum internal pressure specified in a JATMA standard and loading a load of the maximum load capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、タイヤ接地面形状
において、タイヤ赤道線からトレッド両端の最大接地幅
Wまでの距離の80%の位置W80における周方向接地長
L80とタイヤ赤道線上の周方向接地長Leとの比、所謂
「80%矩形率」と称される値が0.72〜0.85の
タイヤにおけるショルダー部の早期摩耗を防止すること
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circumferential direction on the tire equator along with a circumferential contact length L80 at a position W80 which is 80% of a distance from a tire equator line to a maximum contact width W at both ends of a tread in a tire contact surface shape. The present invention relates to preventing early wear of a shoulder portion of a tire having a ratio with a ground contact length Le, which is a so-called “80% rectangular ratio” of 0.72 to 0.85.

【0002】[0002]

【従来の技術】近年、ウエット性能、特に高速走行での
ウエット性能を改善させるために、所謂「80%矩形
率」を0.75〜0.85にすることが試みられている
が、このようにするとタイヤ特に前輪タイヤが市場で通
常走行中に受ける平均左右加速度である0.05〜0.
08重力加速度を受けた際、タイヤのトレッド端近くの
ショルダー部に摩耗の核が生じ、そこから摩耗が進展す
るという問題がある。このようになるとタイヤ運動性能
やタイヤ外観が低下してしまうばかりでなくタイヤライ
フ自体も大幅に低下してしまうわけである。このため、
トレッドコンパウンドやベルト構造を変更したりしてシ
ョルダー部の摩耗核の発生を抑制することが試みられて
いる。
2. Description of the Related Art In recent years, in order to improve wet performance, especially wet performance at high speed, it has been attempted to set a so-called "80% rectangular ratio" to 0.75 to 0.85. The average lateral acceleration of the tire, especially the front tire, during normal driving in the market is 0.05 to 0.
When subjected to 08 gravitational acceleration, there is a problem that a nucleus of wear is generated in the shoulder portion near the tread end of the tire and the wear progresses from there. In such a case, not only the tire dynamic performance and the tire appearance are deteriorated, but also the tire life itself is significantly decreased. For this reason,
Attempts have been made to suppress the generation of wear nuclei in the shoulder by changing the tread compound or the belt structure.

【0003】ここで、本明細書に使用している用語につ
いて説明すると、「接地面形状」とは、タイヤに墨を塗
り所定内圧、荷重の下で紙に転写したものであり、「周
方向接地長」とは、タイヤ軸方向の所定箇所の周方向の
接地長であり、周方向の接地端に溝を含まないように調
節して測った接地長である。タイヤ赤道線以外の箇所で
は左右の平均値を持って表す場合が多い。
Here, the terms used in the present specification will be described. The "ground contact surface shape" is a tire surface painted with black ink and transferred onto paper under a predetermined internal pressure and load. The "ground contact length" is the ground contact length in the circumferential direction at a predetermined position in the tire axial direction, and is the ground contact length measured by adjusting so as not to include a groove at the ground contact end in the circumferential direction. In places other than the tire equator line, the average value on the left and right is often used to represent.

【0004】[0004]

【発明が解決しようとする課題】しかし上記のようにし
た場合タイヤ運動性能や耐久性が低下するといった二律
背反の問題が生じ抜本的改良とはいえない状況にある。
そこで、本発明では他の性能を犠牲にすることなく、シ
ョルダー部の摩耗核の発生を抑制することにより、ひい
てはショルダー部の偏摩耗を抑制したタイヤを提供する
ことにある。
However, in the case described above, there is a trade-off problem that the tire dynamic performance and durability are deteriorated, and it cannot be said to be a drastic improvement.
Therefore, the present invention is to provide a tire in which uneven wear of the shoulder portion is suppressed by suppressing generation of wear nuclei in the shoulder portion without sacrificing other performance.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、少なくとも1層のラジアルカーカスを
具えたラジアルタイヤを標準適用リムに組み、JATM
A規格に定める最大内圧を充填し、最大負荷能力の荷重
を負荷したときの接地面形状おいて、(1)タイヤ赤道
線からトレッド両端の最大接地幅Wまでの距離の80%
の幅W80の位置における周方向接地長L80とタイヤ赤道
線上の周方向接地長Leとの比が0.72〜0.85で
あって、(2)タイヤ赤道線からトレッド両端の最大接
地幅Wの位置から3mmタイヤ軸方向内方の幅W6 の位
置における周方向接地長をL6 とし、P=(L80−L6
)/(W6 −W80)とした場合、1.0≦P≦1.7
を満足するという構成を採用している。
To achieve the above object, in the present invention, a radial tire having at least one layer of radial carcass is mounted on a standard application rim, and JATM is used.
80% of the distance from the tire equatorial line to the maximum contact width W at both ends of the tread in the contact surface shape when the maximum internal pressure specified in the A standard is filled and the maximum load capacity is applied.
The ratio of the circumferential ground contact length L80 at the width W80 position to the circumferential ground contact length Le on the tire equator line is 0.72 to 0.85, and (2) the maximum ground contact width W at both ends of the tread from the tire equator line. L3 is the circumferential ground contact length at the position of width W6 3 mm in the tire axial direction from the position of P = (L80-L6
) / (W6-W80), 1.0≤P≤1.7
It adopts a configuration that satisfies.

【0006】所謂80%矩形率が0.72〜0.85の
タイヤはウエット性能に優れるという特性を持つが、前
輪タイヤが市場で通常走行中に受ける平均左右加速度で
ある0.05〜0.08重力加速度を受けた際、タイヤ
のトレッド端近くのショルダー部に摩耗の核が生じ、そ
こから摩耗が進展するという問題が指摘されている。こ
れは、図3に示すようにタイヤはタイヤ中心(タイヤ赤
道線)からショルダー部に至るまでにタイヤ回転軸に対
し半径差を持つため、転動時には車両が一定距離進む間
に半径の小さなショルダー部は、引きずられながら滑っ
て進行することにより生じるものである。即ち、所謂8
0%矩形率が小さければ小さいほどこの滑りの挙動は大
きくなるものである。
A tire having a so-called 80% rectangular ratio of 0.72 to 0.85 has excellent wet performance, but the average lateral acceleration that a front tire receives during normal driving in the market is 0.05 to 0. It has been pointed out that when subjected to 08 gravitational acceleration, a core of wear is generated in the shoulder portion near the tread end of the tire, and the wear progresses from there. This is because the tire has a radius difference from the tire rotation axis from the tire center (tire equator line) to the shoulder portion as shown in FIG. The part is generated by sliding and advancing while being dragged. That is, so-called 8
The smaller the 0% rectangular ratio, the greater the sliding behavior.

【0007】本発明では、ショルダー部の滑り挙動によ
って問題になるのは、トレッド端に近い部分であって、
この部分が摩耗の核になった場合は、その後の摩耗の進
展が早くなるという事実に基づいている。そしてそれ
は、ショルダー端に近いW80から最大幅Wまでの周方向
接地長の変化を適正化することにより達成できるという
知見に基づいたものである。ここで、本発明では最大幅
Wでの周方向接地長は正確に測定が不可能なためその値
を代表するものとしてそれより軸方向内側に3mmに位
置するW6 での接地長L6 の値を用いている。即ち、タ
イヤ赤道線からトレッド両端の最大接地幅Wの位置から
3mmタイヤ軸方向内方の幅W6 の位置における周方向
接地長をL6 とし、P=(L80−L6 )/(W6 −W8
0)とした場合、1.0≦P≦1.7を満足すればよい
わけである。ここで、Pの値を1.0以上としたのは、
1.0より小さいと、ウエット性能が当初の目標通り得
られなくなるためであり、1.7より大きいとトレッド
端近傍のショルダー部の滑りが大きくなってしまい摩耗
の核が発生しやすくなるためである。
In the present invention, the problem due to the sliding behavior of the shoulder portion is the portion near the tread edge,
It is based on the fact that if this part becomes the core of wear, the subsequent progress of wear becomes faster. And, it is based on the finding that it can be achieved by optimizing the change in the circumferential ground contact length from W80 close to the shoulder end to the maximum width W. Here, in the present invention, since the circumferential contact length at the maximum width W cannot be accurately measured, the value thereof is represented as a representative value, and the value of the contact length L6 at W6 located 3 mm axially inward of the value is represented. I am using. That is, L6 is the circumferential contact length at the position of the width W6 that is 3 mm inward in the tire axial direction from the position of the maximum contact width W at both ends of the tread from the tire equator line, and P = (L80-L6) / (W6-W8
In the case of 0), it is sufficient to satisfy 1.0 ≦ P ≦ 1.7. Here, the value of P is set to 1.0 or more because
If it is less than 1.0, the wet performance cannot be obtained as originally intended, and if it is more than 1.7, the slippage of the shoulder portion near the tread edge becomes large, and the nucleus of wear easily occurs. is there.

【0008】本発明のようにPの値を設定する手段とし
ては、具体的には図2の点線に示すようにショルダー部
のクラウン形状を若干持ち上げるようにすればよいが、
例えばベルト構造やトレッドパターン等との関連もあ
り、ある程度試行錯誤的な面があるといえる。
As a means for setting the value of P as in the present invention, specifically, the crown shape of the shoulder portion may be slightly raised as shown by the dotted line in FIG.
For example, there is a relationship between the belt structure and the tread pattern, and it can be said that there is some trial and error.

【0009】[0009]

【発明の実施の形態】以下本発明に従う実施例のラジア
ルタイヤおよび従来例・比較例のラジアルタイヤについ
て説明する。いずれもタイヤサイズは乗用車用タイヤの
205/65R15である。タイヤは、表1に示すよう
に5種類Pの値の異なるものを用意した。これらのタイ
ヤは、接地形状が異なるだけで他の構造や形状はまった
く同一のものとしている。
BEST MODE FOR CARRYING OUT THE INVENTION A radial tire of an embodiment according to the present invention and radial tires of a conventional example and a comparative example will be described below. The tire size is 205 / 65R15 for passenger car tires. As shown in Table 1, tires having different values of 5 types of P were prepared. These tires have the same other structures and shapes except for the ground contact shape.

【0010】上記本発明に従う実施例1乃至2のラジア
ルタイヤと比較例1乃至2のラジアルタイヤと従来例の
タイヤについて下記の試験をして評価した。ウエット性
能については、水深5mmの路面を直進走行してハイド
ロプレーニングの発生限界速度を測定して、従来タイヤ
の発生速度を100として評価し、偏摩耗については、
タクシーに装着して東京都内をおよびその近郊を約1万
5千km走行させ、その前輪の偏摩耗発生状況評価し
た。評価は、接地端から3mmタイヤ軸方向内方の位置
と接地幅までの距離の80%の位置との摩耗差を従来タ
イヤを100として評価した。便宜上数値は、大きい程
摩耗差が少ない(良好)ということを示すようにしてい
る。評価結果は、同じく表1に示してある。
The radial tires of Examples 1 and 2 according to the present invention, the radial tires of Comparative Examples 1 and 2 and the conventional tires were evaluated by the following tests. Regarding wet performance, straight running on a road surface with a water depth of 5 mm was carried out to measure the critical speed of hydroplaning, and the speed of conventional tires was evaluated as 100.
The vehicle was mounted on a taxi and traveled in and around Tokyo for about 15,000 km, and the uneven wear of front wheels was evaluated. In the evaluation, the wear difference between the position 3 mm in the tire axial direction from the ground contact end and the position of 80% of the distance to the ground contact width was evaluated with the conventional tire as 100. For the sake of convenience, the larger the numerical value, the smaller the difference in wear (good). The evaluation results are also shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】以上の結果より、本発明のタイヤはハイド
ロプレーニング発生速度は従来タイヤと同等であり、偏
摩耗については大幅に改良されていることがわかる。な
お、比較例1のタイヤは偏摩耗については、大幅に改良
されているが、ハイドロプレーニング発生速度が低い結
果となっている。
From the above results, it is understood that the tire of the present invention has a hydroplaning generation rate equivalent to that of the conventional tire, and the uneven wear is greatly improved. Although the tire of Comparative Example 1 was significantly improved in uneven wear, it resulted in a low hydroplaning generation rate.

【0013】[0013]

【発明の効果】以上述べたように本発明に従うラジアル
タイヤはウエット性能を殆ど低下させることなく偏摩耗
の抑制をすることができる。
As described above, the radial tire according to the present invention can suppress uneven wear with almost no deterioration in wet performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従うラジアルタイヤの接地面形状を示
す図である。
FIG. 1 is a diagram showing a contact surface shape of a radial tire according to the present invention.

【図2】本発明に従うクラウン形状および従来例に従う
クラウン形状を示す図である。
FIG. 2 is a diagram showing a crown shape according to the present invention and a crown shape according to a conventional example.

【図3】タイヤ幅方向で回転軸に対して半径差を持つこ
とを示す図である。
FIG. 3 is a diagram showing that there is a radius difference with respect to a rotation axis in the tire width direction.

【符号の説明】[Explanation of symbols]

T タイヤクラウン部 E タイヤ赤道線 1 本発明に従うクラウン形状 2 従来のクラウン形状 T tire crown portion E tire equatorial line 1 crown shape according to the present invention 2 conventional crown shape

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1層のラジアルカーカスを具
えたラジアルタイヤを標準適用リムに組み、JATMA
規格に定める最大内圧を充填し、最大負荷能力の荷重を
負荷したときの接地面形状おいて、(1)タイヤ赤道線
からトレッド両端の最大接地幅Wまでの距離の80%の
位置W80における周方向接地長L80とタイヤ赤道線上の
周方向接地長Le との比が0.72〜0.85であっ
て、(2)タイヤ赤道線からトレッド両端の最大接地幅
Wの位置から3mmタイヤ軸方向内方に位置するW6 に
おける周方向接地長をL6 とし、P=(L80−L6 )/
(W6 −W80)とした場合、 1.0≦P≦1.7 を満足することを特徴としたラジ
アルタイヤ。
1. A radial tire having at least one layer of a radial carcass mounted on a standard application rim, and JATMA.
In the contact surface shape when the maximum internal pressure specified in the standard is filled and the maximum load capacity is applied, (1) the circumference at the position W80 of 80% of the distance from the tire equatorial line to the maximum contact width W at both ends of the tread. The ratio of the direction ground contact length L80 to the circumferential ground contact length Le on the tire equator line is 0.72 to 0.85, and (2) 3 mm from the position of the maximum ground contact width W at both ends of the tread to the tire axial direction from the tire equator line. Let L6 be the circumferential contact length at W6 located inward, and P = (L80-L6) /
A radial tire characterized by satisfying 1.0 ≦ P ≦ 1.7 when (W6-W80).
JP8129664A 1996-05-24 1996-05-24 Radial tire Pending JPH09309301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8129664A JPH09309301A (en) 1996-05-24 1996-05-24 Radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8129664A JPH09309301A (en) 1996-05-24 1996-05-24 Radial tire

Publications (1)

Publication Number Publication Date
JPH09309301A true JPH09309301A (en) 1997-12-02

Family

ID=15015106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8129664A Pending JPH09309301A (en) 1996-05-24 1996-05-24 Radial tire

Country Status (1)

Country Link
JP (1) JPH09309301A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029215A (en) * 2000-07-18 2002-01-29 Bridgestone Corp Pneumatic tire
JP2010023653A (en) * 2008-07-18 2010-02-04 Bridgestone Corp Pneumatic tire
JP2013178116A (en) * 2012-02-28 2013-09-09 Sumitomo Rubber Ind Ltd Evaluation method of tire
US9132698B2 (en) * 2008-09-01 2015-09-15 Sumitomo Rubber Industries, Ltd. Rubber composition for studless tire and studless tire using the same
JP2017094980A (en) * 2015-11-26 2017-06-01 住友ゴム工業株式会社 Evaluation method for pneumatic tire
US20190118583A1 (en) * 2016-04-18 2019-04-25 Bridgestone Corporation Tire
US20220063337A1 (en) * 2020-08-27 2022-03-03 Sumitomo Rubber Industries, Ltd. Tire
WO2023119789A1 (en) 2021-12-24 2023-06-29 株式会社ブリヂストン Heavy-duty pneumatic tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029215A (en) * 2000-07-18 2002-01-29 Bridgestone Corp Pneumatic tire
JP2010023653A (en) * 2008-07-18 2010-02-04 Bridgestone Corp Pneumatic tire
US9132698B2 (en) * 2008-09-01 2015-09-15 Sumitomo Rubber Industries, Ltd. Rubber composition for studless tire and studless tire using the same
JP2013178116A (en) * 2012-02-28 2013-09-09 Sumitomo Rubber Ind Ltd Evaluation method of tire
JP2017094980A (en) * 2015-11-26 2017-06-01 住友ゴム工業株式会社 Evaluation method for pneumatic tire
US20190118583A1 (en) * 2016-04-18 2019-04-25 Bridgestone Corporation Tire
US20220063337A1 (en) * 2020-08-27 2022-03-03 Sumitomo Rubber Industries, Ltd. Tire
WO2023119789A1 (en) 2021-12-24 2023-06-29 株式会社ブリヂストン Heavy-duty pneumatic tire

Similar Documents

Publication Publication Date Title
JP3240118B2 (en) Pneumatic tire
EP0602989A1 (en) Pneumatic tyre
AU643905B2 (en) A tread for a tire
US10759231B2 (en) Pneumatic tire
JP4180910B2 (en) Heavy duty radial tire
JP2703172B2 (en) Heavy duty tire
JPH09309301A (en) Radial tire
JP2004122904A (en) Pneumatic tire
JPH06156011A (en) Pneumatic radial tire
JPH0648117A (en) Radial tire
JP3371038B2 (en) Pneumatic tire
JP2951458B2 (en) Spare tire
JPH0577609A (en) Pneumatic radial tire for heavy load
JP2021049791A (en) tire
JPH10100613A (en) Pneumatic radial tire
JP2000006616A (en) Pneumatic tire
EP4079540B1 (en) Tire
JP2879699B2 (en) Flat pneumatic tire for heavy loads
US4905747A (en) Pneumatic radial tire shoulder structure
JP2018161998A (en) Pneumatic tire
JPS592641B2 (en) Radial pneumatic tires for heavy vehicles
JP3516742B2 (en) Pneumatic radial tire
JPH1159128A (en) Pneumatic radial tire for heavy load
JP3938235B2 (en) Pneumatic tire
JPH08188015A (en) Front and rear wheel pneumatic tire pair for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308