JPH093089A - New polyphenol glycoside, its production and use thereof - Google Patents

New polyphenol glycoside, its production and use thereof

Info

Publication number
JPH093089A
JPH093089A JP7176923A JP17692395A JPH093089A JP H093089 A JPH093089 A JP H093089A JP 7176923 A JP7176923 A JP 7176923A JP 17692395 A JP17692395 A JP 17692395A JP H093089 A JPH093089 A JP H093089A
Authority
JP
Japan
Prior art keywords
glycoside
polyphenol
epigallocatechin
gallate
polyphenol glycoside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7176923A
Other languages
Japanese (ja)
Other versions
JP3712285B2 (en
Inventor
Masayuki Suzuki
壯幸 鈴木
Fumio Nanjo
文雄 南条
Masahiko Hara
征彦 原
Takahiko Bandai
隆彦 万代
Takashi Shibuya
孝 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Norin Co Ltd
Hayashibara Seibutsu Kagaku Kenkyujo KK
Original Assignee
Mitsui Norin Co Ltd
Hayashibara Biochemical Laboratories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Norin Co Ltd, Hayashibara Biochemical Laboratories Co Ltd filed Critical Mitsui Norin Co Ltd
Priority to JP17692395A priority Critical patent/JP3712285B2/en
Publication of JPH093089A publication Critical patent/JPH093089A/en
Application granted granted Critical
Publication of JP3712285B2 publication Critical patent/JP3712285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE: To obtain the subject new glycoside, capable of improving astringency and stypticity and excellent in taste and useful for foods, favorite foods, cosmetics and medicines, etc., by reacting a mixture of a tea polyphenol, such as epigallocatechin, and dextrin, etc., with an enzyme. CONSTITUTION: This new polyphenol glycoside is expressed by the formula [R1 and R2 are each OH or a maltooligosaccharide residue having 2-10 polymerization degree; X is H or OH; Y is OH or galoyl; (n) is an integer of 1-9] [e.g. (-)-epigallocatechin 3',7-di-O-α-D-glucopyranoside]. The glycoside is improved in astringency and stypticity of tea polyphenols and excellent in taste and useful in wide fields such as foods, favorite foods, medicines, etc. The polyphenol glycoside is obtained by mixing a tea polyphenol such as (epi)gallocatechin(3- O-gallate) with dextrin, cyclodextrin, starch, etc., and reacting the mixture with cyclomaltodextringlucanotransferase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、茶ポリフェノール類の
配糖体、その製造法およびその用途に関し、さらに詳細
には、呈味性を改良した新規構造のポリフェノール配糖
体、その製造法およびその用途に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glycoside of tea polyphenols, a method for producing the same, and a use thereof. More specifically, the present invention relates to a polyphenol glycoside having a novel structure with improved taste and a method for producing the same. Regarding its use.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】茶ポ
リフェノール類は、コレステロール上昇抑制作用(特公
平2−44449号公報)、抗菌作用(特開平2−27
6562号公報)、抗酸化作用(特公平1−44234
号公報)、抗腫瘍作用(特開昭60−190719号公
報)、血圧上昇抑制作用および酵素活性阻害作用(特開
平3−133928号公報)などの生理活性作用を示
し、その有効成分はエピガロカテキン、エピカテキン3
−O−ガレートおよびエピガロカテキン3−O−ガレー
トであることが知られている。しかしながら、これらの
物質は強い収斂性を持つ渋味成分であることから、呈味
性が著しく損なわれ、食品をはじめ各種分野への利用を
考える上で大きな欠点となっている。
2. Description of the Related Art Tea polyphenols have an inhibitory effect on cholesterol elevation (Japanese Patent Publication No. 2-44449) and an antibacterial effect (JP-A-2-27).
No. 6562), antioxidative effect (Japanese Patent Publication No. 1-44234)
No.), an antitumor effect (JP-A-60-190719), a blood pressure elevation inhibitory effect and an enzyme activity inhibitory effect (JP-A-3-133928), and the active ingredient thereof is epigalo. Catechin, epicatechin 3
-O-gallate and epigallocatechin 3-O-gallate are known. However, since these substances are astringent components having a strong astringent property, their taste properties are significantly impaired, which is a major drawback in considering their use in various fields including foods.

【0003】現在、茶ポリフェノールと類似の構造を持
つ(+)−カテキンについては、(+)−カテキンとグ
ルコース−1−リン酸あるいはシュークロースとの混合
液にシュークロースホスホリラーゼを作用させることに
より、易溶性や色沢安定性を付与した(+)−カテキン
配糖体を製造する方法(特開平5−176786号公
報)や(+)−カテキン配糖体をメラニン色素の生成に
関与するチロシナーゼの阻害剤として皮膚外用剤に利用
する方法(特開平4−273890号公報)が開発され
ている。しかし、コレステロール上昇抑制作用、抗菌作
用、抗酸化作用、抗腫瘍作用や血圧上昇抑制作用などの
生理活性作用においては、(+)−カテキンはエピガロ
カテキン、エピガロカテキン3−O−ガレートおよびエ
ピカテキン3−O−ガレートに比べ、その生理活性が著
しく弱く、また場合によっては活性を持たない。従っ
て、配糖体についても(+)−カテキン配糖体よりもエ
ピガロカテキン、エピガロカテキン3−O−ガレートお
よびエピカテキン3−O−ガレートの配糖体の方がより
生理活性を期待することができる。
At present, for (+)-catechin having a structure similar to that of tea polyphenol, sucrose phosphorylase is allowed to act on a mixed solution of (+)-catechin and glucose-1-phosphate or sucrose. A method for producing a (+)-catechin glycoside to which easy solubility and color stability are imparted (Japanese Patent Laid-Open No. 176786/1993), and a (+)-catechin glycoside of tyrosinase involved in the formation of a melanin pigment. A method (Japanese Patent Application Laid-Open No. 4-273890) has been developed in which it is used as an inhibitor in a skin external preparation. However, (+)-catechin is equivalent to epigallocatechin, epigallocatechin 3-O-gallate, and epigallocatechin in physiologically active actions such as cholesterol elevation inhibitory action, antibacterial action, antioxidant action, antitumor action and blood pressure elevation inhibitory action. Compared with catechin 3-O-gallate, its physiological activity is extremely weak, and in some cases, it has no activity. Therefore, regarding glycosides, the glycosides of epigallocatechin, epigallocatechin 3-O-gallate and epicatechin 3-O-gallate are expected to have more physiological activity than the (+)-catechin glycoside. be able to.

【0004】一方、茶ポリフェノールである(−)−エ
ピカテキン、(−)−エピカテキン3−O−ガレート、
(−)−エピガロカテキンや(−)−エピガロカテキン
3−O−ガレートの配糖体については、これまでに本発
明に示すような構造が明らかにされたとの報告がない。
従って、本発明の新規ポリフェノール配糖体の特性や機
能性についても明らかになっていない。
On the other hand, tea polyphenols (-)-epicatechin, (-)-epicatechin 3-O-gallate,
Regarding the glycosides of (−)-epigallocatechin and (−)-epigallocatechin 3-O-gallate, there is no report that the structure shown in the present invention has been clarified so far.
Therefore, the characteristics and functionality of the novel polyphenol glycoside of the present invention have not been clarified.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の茶
ポリフェノール類とデキストリン、サイクロデキストリ
ン、澱粉もしくはこれらの混合物に、バチルス・ステア
ロサーモフィラス由来のサイクロマルトデキストリング
ルカノトランスフェラーゼを作用させることによって、
ポリフェノール類を配糖化できることを見いだした。さ
らに、得られたポリフェノール配糖体を単離して茶ポリ
フェノール類の3’位、3’と5位および3’と7位が
配糖化された新規化合物の構造を明らかにした。また、
本発明の新規ポリフェノール配糖体は、収斂性のある渋
味がほとんどなく呈味性に優れていることを確認し、本
発明を完成した。
[Means for Solving the Problems] The present inventors acted a cyclomaltodextrin glucanotransferase from Bacillus stearothermophilus on the above tea polyphenols and dextrin, cyclodextrin, starch or a mixture thereof. By letting
It has been found that polyphenols can be glycosylated. Further, the obtained polyphenol glycoside was isolated to clarify the structure of a novel compound in which the 3'position, 3'and 5 position and 3'and 7 position of tea polyphenols were glycosylated. Also,
The novel polyphenol glycoside of the present invention was confirmed to have almost no astringent, astringent and excellent taste properties, and the present invention was completed.

【0006】すなわち本発明は、一般式1(式中R1
2 はそれぞれ独立に水酸基あるいは重合度2から10
のマルトオリゴ糖残基、Xは水酸基あるいは水素、Yは
水酸基あるいはガロイル基を、またnは1から9の整数
を示す。)で表されるポリフェノール配糖体を提供し、
さらにエピガロカテキン、ガロカテキン、エピガロカテ
キン3−O−ガレ−ト、ガロカテキン3−O−ガレ−
ト、エピカテキン、エピカテキン3−O−ガレ−ト、カ
テキン3−O−ガレ−トあるいはこれらを2種類以上含
むポリフェノール類混合物とデキストリン、サイクロデ
キストリン、澱粉もしくはこれらの混合物にサイクロマ
ルトデキストリングルカノトランスフェラーゼを作用さ
せることを特徴とする上記のポリフェノール配糖体の製
造方法並びに上記のポリフェノール配糖体を含む組成物
を提供するものである。
That is, the present invention relates to the general formula 1 (wherein R 1 ,
R 2 is independently a hydroxyl group or a polymerization degree of 2 to 10
Malto-oligosaccharide residue, X is a hydroxyl group or hydrogen, Y is a hydroxyl group or a galloyl group, and n is an integer from 1 to 9. ) Provides a polyphenol glycoside represented by
Furthermore, epigallocatechin, gallocatechin, epigallocatechin 3-O-gallate, gallocatechin 3-O-gallate
, Epicatechin, epicatechin 3-O-gallate, catechin 3-O-gallate or a mixture of polyphenols containing two or more of these with dextrin, cyclodextrin, starch or a mixture thereof with cyclomaltodextrin glucano It is intended to provide a method for producing the above polyphenol glycoside, which is characterized by causing a transferase to act, and a composition containing the above polyphenol glycoside.

【0007】[0007]

【化5】 Embedded image

【0008】以下に、本発明を詳しく説明する。本発明
に用いるポリフェノールの基本骨格は下記の一般式5で
表される。
Hereinafter, the present invention will be described in detail. The basic skeleton of the polyphenol used in the present invention is represented by the following general formula 5.

【0009】[0009]

【化6】 [Chemical 6]

【0010】この構造式において、ベンゾピラン環の2
位と3位はそれぞれR配置またはS配置のいずれであっ
てもよい。例えば、配糖体のアグリコン部分として
(+)あるいは(−)−ガロカテキン、(+)あるいは
(−)−エピガロカテキン、(+)あるいは(−)カテ
キン3−O−ガレート、(+)あるいは(−)−エピカ
テキン3−O−ガレート、(+)あるいは(−)−ガロ
カテキン3−O−ガレート、(+)あるいは(−)−エ
ピガロカテキン3−O−ガレートが挙げられる。
In this structural formula, 2 of the benzopyran ring is
Positions 3 and 4 may each be in the R or S configuration. For example, (+) or (−)-gallocatechin, (+) or (−)-epigallocatechin, (+) or (−) catechin 3-O-gallate, (+) or ( Examples include-)-epicatechin 3-O-gallate, (+) or (-)-gallocatechin 3-O-gallate, and (+) or (-)-epigallocatechin 3-O-gallate.

【0011】前記の一般式1で表されるポリフェノール
配糖体の製造方法に関しては、特に限定するものではな
く、化学合成法,植物組織培養細胞法や微生物菌体を用
いる方法などが考えられる。これらポリフェノール類の
安定性や呈味性を改善するためには、当該ポリフェノー
ル類の1種あるいは2種以上の混合物に、デキストリ
ン、サイクロデキストリン、澱粉もしくはこれらの混合
物を添加し、これにサイクロマルトデキストリングルカ
ノトランスフェラーゼを作用させる方法を用いることが
できる。 サイクロマルトデキストリングルカノトラン
スフェラーゼとしては、バチルス属由来のものが用いら
れ、特にバチルス・ステアロサーモフィラス(Bacillus
stearothermophilus)由来の酵素がポリフェノール類へ
の配糖化能が高く、有利に利用できる。
The method for producing the polyphenol glycoside represented by the above general formula 1 is not particularly limited, and chemical synthesis method, plant tissue culture cell method, method using microbial cells and the like can be considered. In order to improve the stability and taste of these polyphenols, dextrin, cyclodextrin, starch or a mixture thereof is added to one or a mixture of two or more of the polyphenols, and cyclomaltodextrin is added thereto. A method of acting glucanotransferase can be used. As the cyclomaltodextrin glucanotransferase, those derived from the genus Bacillus are used, and particularly Bacillus stearothermophilus (Bacillus
The enzyme derived from stearothermophilus) has a high ability to glycosylate polyphenols and can be advantageously used.

【0012】酵素反応の条件としては、反応のpHを3
〜9、好ましくはpH5〜8、反応温度を20〜80
℃、好ましくは30〜70℃、基質濃度としてポリフェ
ノール類を0.1〜20%(w/v)、好ましくは0.
5〜10%(w/v)、デキストリン、サイクロデキス
トリン、澱粉もしくはこれらの混合物を1〜40%(w
/v)、好ましくは2〜30%(w/v)含む反応液を
用いる。また、酵素量や反応時間は、上記の反応条件に
合わせ最適に設定することができる。
The condition of the enzyme reaction is that the pH of the reaction is 3
-9, preferably pH 5-8, reaction temperature 20-80
C., preferably 30 to 70.degree. C., and a substrate concentration of polyphenols of 0.1 to 20% (w / v), preferably 0.1.
5-10% (w / v), dextrin, cyclodextrin, starch or a mixture of these 1-40% (w / v).
/ V), preferably a reaction solution containing 2 to 30% (w / v). Further, the amount of enzyme and the reaction time can be optimally set according to the above reaction conditions.

【0013】このようにして一般式1で表されるポリフ
ェノール配糖体が得られる。ポリフェノール配糖体とし
ては、ポリフェノールとして、例えばガロカテキンを用
いた場合は、一般式2で表されるポリフェノール配糖体
が得られ、ガロカテキン3−O−ガレートを用いた場合
は、一般式3で表されるポリフェノール配糖体が得ら
れ、カテキン3−O−ガレートを用いた場合は、一般式
4で表されるポリフェノール配糖体が得られる。
Thus, the polyphenol glycoside represented by the general formula 1 is obtained. As the polyphenol glycoside, for example, when gallocatechin is used as the polyphenol, the polyphenol glycoside represented by the general formula 2 is obtained, and when gallocatechin 3-O-gallate is used, the polyphenol glycoside is represented by the general formula 3. The polyphenol glycoside is obtained, and when catechin 3-O-gallate is used, the polyphenol glycoside represented by the general formula 4 is obtained.

【0014】[0014]

【化7】 [Chemical 7]

【0015】[0015]

【化8】 Embedded image

【0016】[0016]

【化9】 Embedded image

【0017】このようにして得られたポリフェノール配
糖体を含有する反応溶液は、そのまま各種用途に使用す
ることができるが、反応溶液を必要に応じてシロップや
粉末とした後に使用することもできる。また、以下に述
べるように精製したものを使用することもできる。
The reaction solution containing the polyphenol glycoside thus obtained can be used as it is for various purposes, but can also be used after forming the reaction solution into a syrup or a powder, if necessary. . Further, it is also possible to use a product purified as described below.

【0018】高純度のポリフェノール配糖体を採取する
場合には、多孔性合成吸着剤、例えば三菱化学株式会社
製の商品名、ダイアイオンHP−10,ダイアイオンH
P−20,ダイアイオンHP−40等や、Rohm & Haas
社製の商品名、アンバーライトXAD−1,アンバーラ
イトXAD−4,アンバーライトXAD−7,アンバー
ライトXAD−8等を用いて、ポリフェノール配糖体と
夾雑物との吸着性の違いを利用して精製することができ
る。
In the case of collecting high-purity polyphenol glycoside, a porous synthetic adsorbent such as DIAION HP-10, DIAION HP-10 manufactured by Mitsubishi Chemical Co., Ltd.
P-20, Diaion HP-40, Rohm & Haas
Using the trade name of Amberlite XAD-1, Amberlite XAD-4, Amberlite XAD-7, Amberlite XAD-8, etc., the difference in the adsorption between polyphenol glycosides and impurities is used. Can be purified.

【0019】例えば、ポリフェノール配糖体、ポリフェ
ノール類および遊離の糖類を分離する場合は、反応溶液
を多孔性合成吸着剤を充填したカラムに通液すれば、遊
離の糖類はカラムに吸着されずに溶出するが、ポリフェ
ノール化合物は吸着される。次いで、吸着されたポリフ
ェノール配糖体などのポリフェノール化合物を低級アル
コール溶液、例えば50%(v/v)エタノール水溶液
などで溶出し、この溶出液を濃縮してシロップ化、さら
には乾燥、粉末化して採取することができる。さらに、
ポリフェノール配糖体と未反応のポリフェノール類とを
分離する必要がある場合には、分液などによりこれらの
化合物の極性の差を利用して、酢酸エチルなどの有機溶
媒相に未反応のポリフェノール類を移行させて除去する
こともできる。また、ポリフェノール配糖体をクロマト
グラフィーなどの方法によって、特定の画分を採取して
利用することもできる。
For example, when separating polyphenol glycosides, polyphenols and free saccharides, the reaction solution is passed through a column packed with a porous synthetic adsorbent and free saccharides are not adsorbed on the column. Elute, but the polyphenol compound is adsorbed. Then, the adsorbed polyphenol compound such as polyphenol glycoside is eluted with a lower alcohol solution, for example, a 50% (v / v) ethanol aqueous solution, and the eluate is concentrated to form a syrup, and further dried and powdered. Can be collected. further,
When it is necessary to separate polyphenol glycosides and unreacted polyphenols, polyphenols unreacted in an organic solvent phase such as ethyl acetate can be used by utilizing the difference in polarities of these compounds by liquid separation. Can also be removed by shifting. It is also possible to collect and use a specific fraction of the polyphenol glycoside by a method such as chromatography.

【0020】以上に述べたようにして採取される本発明
のポリフェノール配糖体は、従来のポリフェノール類と
は異なり、苦味,渋味,えぐみや収斂性などの嫌味がほ
とんどなく、その精製の程度や純度を問わず、そのまま
で、あるいは他の素材と共に含有させて食品、医薬部外
品、化粧品、医薬品などの広い分野に用いることができ
る。
Unlike the conventional polyphenols, the polyphenol glycoside of the present invention collected as described above has little bitterness, astringency, harshness such as acridness and astringency, and its degree of purification. It can be used in a wide range of fields such as foods, quasi-drugs, cosmetics, and pharmaceuticals, as it is or together with other materials, regardless of its purity.

【0021】また、本発明のポリフェノール配糖体は、
α−グルコシダーゼやグルコアミラーゼによって分解さ
れて元のポリフェノールを遊離することが確認されてい
る。従って、本発明のポリフェノール配糖体を人体に投
与した場合、体内のα−アミラーゼやα−グルコシダー
ゼなどの作用により、容易にポリフェノール類が遊離
し、ポリフェノール類本来の生理活性機能、例えばコレ
ステロール上昇抑制作用、抗菌作用、抗酸化作用、抗腫
瘍作用や血圧上昇抑制作用などを示すようになる。それ
故、本発明のポリフェノール配糖体は、ポリフェノール
類本来の生理活性機能を低減させることなく、食品、医
薬部外品、化粧品、医薬品などの広い分野に用いること
ができる。特に、健康増進食品、健康維持食品、健康回
復食品などに有利に利用できる。
Further, the polyphenol glycoside of the present invention is
It has been confirmed that the original polyphenol is released by being decomposed by α-glucosidase or glucoamylase. Therefore, when the polyphenol glycoside of the present invention is administered to the human body, the polyphenols are easily released by the action of α-amylase or α-glucosidase in the body, and the physiological activity functions inherent to the polyphenols, for example, cholesterol elevation suppression. It exhibits an action, an antibacterial action, an antioxidant action, an antitumor action, a blood pressure increase suppressing action, and the like. Therefore, the polyphenol glycoside of the present invention can be used in a wide range of fields such as foods, quasi-drugs, cosmetics, and pharmaceuticals without reducing the physiological activity of polyphenols. In particular, it can be advantageously used for health promotion food, health maintenance food, health recovery food, and the like.

【0022】本発明のポリフェノール配糖体の利用分野
を列挙すれば、調味料、和菓子、洋菓子、氷菓子、シロ
ップ類、果実加工品、野菜加工品、漬物類、畜肉製品、
魚肉製品、珍味類、缶詰・ビン詰類、酒類、清涼飲料、
即席飲食品などの食品類、タバコ、練歯磨、口紅、リッ
プクリーム、内服薬、トローチ、肝油ドロップ、口中清
涼剤、口中香錠、うがい薬など各種固形状、ペースト
状、液状の嗜好品、化粧品、医薬品などやこれらの原料
である。
The fields of application of the polyphenol glycoside of the present invention are listed as seasonings, Japanese confectionery, Western confectionery, ice confectionery, syrups, fruit processed products, vegetable processed products, pickles, livestock meat products,
Fish products, delicacies, canned / bottled products, alcoholic beverages, soft drinks,
Foods such as instant food and drink, tobacco, toothpaste, lipstick, lip balm, internal medicine, troches, liver oil drops, mouth fresheners, oral pastilles, mouthwash, various solids, pastes, liquids, cosmetics, Pharmaceuticals and raw materials for these.

【0023】[0023]

【実施例】次に、本発明を実施例により詳しく説明する
が、かかる説明によって本発明は何ら制限されるもので
はない。 実施例1 デキストリン(商品名:パインデックス#1、松谷化学
株式会社製)100gと(−)−エピガロカテキン(三
井農林株式会社製)5gを10mM塩化カルシウムを含
む0.1M酢酸緩衝液(pH5.5)500mlに溶解
後、バチルス・ステアロサーモフィラス由来のサイクロ
マルトデキストリングルカノトランスフェラーゼ(株式
会社林原生物化学研究所製)をデキストリン固形分1グ
ラム当たり1000単位加え、50℃で24時間反応さ
せた。次いで、UF膜濾過により酵素を除去後、この反
応液に0.1M酢酸緩衝液(pH4.5)1000ml
とリゾプス・ニベウス由来のグルコアミラーゼ(生化学
工業株式会社製)を固形物1グラム当たり50単位加
え、40℃で20時間反応を行った。反応終了後、酵素
をUF膜を用いて取り除いた後、得られた反応液を水で
平衡化したダイアイオンHP−10(三菱化学株式会社
製)1000mlを充填したカラムに吸着させた。
EXAMPLES Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. Example 1 100 g of dextrin (trade name: Paindex # 1, manufactured by Matsutani Chemical Co., Ltd.) and 5 g of (−)-epigallocatechin (manufactured by Mitsui Norin Co., Ltd.) in 0.1 M acetate buffer (pH 5) containing 10 mM calcium chloride. .5) After dissolving in 500 ml, add 1000 units of Bacillus stearothermophilus-derived cyclomaltodextrin glucanotransferase (manufactured by Hayashibara Biochemical Research Institute) per 1 g of dextrin solid content, and react at 50 ° C. for 24 hours Let Then, after removing the enzyme by UF membrane filtration, 1000 ml of 0.1 M acetate buffer (pH 4.5) was added to the reaction solution.
And 50 units of glucoamylase derived from Rhizopus niveus (manufactured by Seikagaku Corporation) were added per 1 gram of solid matter, and the reaction was carried out at 40 ° C. for 20 hours. After the reaction was completed, the enzyme was removed using a UF membrane, and the resulting reaction solution was adsorbed on a column packed with 1000 ml of Diaion HP-10 (manufactured by Mitsubishi Chemical Corporation) equilibrated with water.

【0024】カラムを脱イオン水3000mlで洗浄
後、50%(v/v)メタノール水溶液1000ml、
次いで100%(v/v)メタノール2000mlを用
いて溶出し、吸着画分を回収した。溶出液を減圧濃縮し
てメタノールを除去したのち、500mlの蒸留水に溶
解した。この溶液を酢酸エチル500mlで5回洗浄
し、未反応の(−)−エピガロカテキンを除去した。次
いで、この水溶液画分をダイアイオンHP−20SSカ
ラム2500mlに展開し、蒸留水で十分に洗浄後、2
5%(v/v)メタノール水溶液8000mlで溶出し
て2000mlづつを分画した。さらに、50%(v/
v)メタノール溶液5リットルで溶出した。これらの画
分についてHPLCで分析を行い、エピガロカテキン配
糖体を含む画分AおよびBを得た。これらの画分につい
ては、分取用HPLCで分離を行いA画分からエピガロ
カテキン配糖体1(127mg)とエピガロカテキン配
糖体2(85mg)、B画分からエピガロカテキン配糖
体3(327mg)を得た。これらの配糖体はHPLC
分析で単一ピークを示した。
After washing the column with 3000 ml of deionized water, 1000 ml of 50% (v / v) aqueous methanol solution,
Then, the mixture was eluted with 2000 ml of 100% (v / v) methanol to collect the adsorbed fraction. The eluate was concentrated under reduced pressure to remove methanol and then dissolved in 500 ml of distilled water. This solution was washed 5 times with 500 ml of ethyl acetate to remove unreacted (−)-epigallocatechin. Next, this aqueous solution fraction was developed on 2500 ml of Diaion HP-20SS column, washed thoroughly with distilled water, and
Elution was performed with 8000 ml of a 5% (v / v) methanol aqueous solution, and 2000 ml fractions were fractionated. Furthermore, 50% (v /
v) Elution with 5 liters of methanol solution. These fractions were analyzed by HPLC to obtain fractions A and B containing epigallocatechin glycoside. These fractions were separated by preparative HPLC, and from the A fraction, epigallocatechin glycoside 1 (127 mg) and epigallocatechin glycoside 2 (85 mg), and from the B fraction, epigallocatechin glycoside 3 (327 mg) was obtained. These glycosides are HPLC
Analysis showed a single peak.

【0025】分析HPLC条件は、以下の通りである。 カラム:資生堂カプセルパック AG-120 ODS (4.6×
250mm) 移動相:アセトニトリル:酢酸エチル:0.05%(v
/v)燐酸水=12:0.6:90 流 速:1.0ml/min 検 出:UV 280nm (40℃) 分取HPLC条件は、以下の通りである。 カラム:カプセルパック ODS AG-120 S-5 (50×500mm) 移動相:A画分:0.05%(v/v)燐酸水を含む10%(v/v)メタノ ール水溶液 B画分:0.05%(v/v)燐酸水を含む15%(v/v)メタノ ール水溶液 流 速:120ml/min 検 出:UV 280nm (室温)
Analytical HPLC conditions are as follows. Column: Shiseido Capsule Pack AG-120 ODS (4.6 x
250 mm) Mobile phase: acetonitrile: ethyl acetate: 0.05% (v
/ V) Phosphoric acid water = 12: 0.6: 90 Flow rate: 1.0 ml / min Detection: UV 280 nm (40 ° C.) Preparative HPLC conditions are as follows. Column: Capsule pack ODS AG-120 S-5 (50 × 500 mm) Mobile phase: A fraction: 10% (v / v) aqueous methanol solution containing 0.05% (v / v) phosphoric acid aqueous solution B fraction : 15% (v / v) methanol aqueous solution containing 0.05% (v / v) phosphoric acid water Flow rate: 120 ml / min Detection: UV 280 nm (room temperature)

【0026】これらの配糖体1、2および3をNMRお
よびMSによる機器分析で解析した結果、下記の構造で
あると決定した。また、機器分析の結果も併せて列記し
た。なお、参考として(−)−エピガロカテキン配糖体
3の 1H−NMR、13C−NMRスペクトルおよびマス
スペクトルを図1、図2および図3にそれぞれ示した。
As a result of analyzing these glycosides 1, 2 and 3 by instrumental analysis by NMR and MS, it was determined to have the following structure. The results of instrumental analysis are also listed. For reference, 1 H-NMR, 13 C-NMR spectrum and mass spectrum of (-)-epigallocatechin glycoside 3 are shown in FIGS. 1, 2 and 3, respectively.

【0027】(−)−エピガロカテキン配糖体1 (−)−エピガロカテキン3’,7−ジ−O−α−D−
グルコピラノシド1 H-NMR(ppm, methanol(d4)-D2O) 2.80(1H,dd,H-4a), 2.
87(1H,dd,H-4b),3.45-3.92(12H,ring H,Glcx2), 4.21(1
H,m,H-3), 4.83(1H,s,H-2),5.36(1H,d,H-1'",JH-1'",H-
2'"=4 Hz), 5.41(1H,d,H-1",JH-1",H-2"=4 Hz), 6.26(1
H,d,H-8), 6.31(1H,d,H-6), 6.76(1H,d,H-6'), 6.98(1
H,d,H-2')13 C-NMR(ppm, methanol(d4)-D2O) 28.5(C-4), 60.5(C-
6",C-6'"), 64.5(C-3),69.8(C-4",C-4'"), 71.6(C-2"),
72.0(C-2'"), 73.0(C-3"), 73.1(C-3'"), 73.5(C-5"),
73.6(C-5'"), 78.2(C-2), 95.6(C-8), 96.7(C-6), 98.
0(C-1"), 100.6(C-1'"), 101.5(C-4a), 107.9(C-2'), 1
09.8(C-6'), 129.6(C-1'), 134.9 (C-4'), 145.1(C-
3'), 145.3(C-5'), 155.6(C-8a), 156.3(C-7), 156.5(C
-5) FAB-MS(pos.) m/z=631 =(M+H)+ , 分子量630
(-)-Epigallocatechin glycoside 1 (-)-Epigallocatechin 3 ', 7-di-O-α-D-
Glucopyranoside 1 H-NMR (ppm, methanol (d 4 ) -D 2 O) 2.80 (1H, dd, H-4a), 2.
87 (1H, dd, H-4b), 3.45-3.92 (12H, ring H, Glcx2), 4.21 (1
H, m, H-3), 4.83 (1H, s, H-2), 5.36 (1H, d, H-1 '", JH-1'", H-
2 '"= 4 Hz), 5.41 (1H, d, H-1", JH-1 ", H-2" = 4 Hz), 6.26 (1
H, d, H-8), 6.31 (1H, d, H-6), 6.76 (1H, d, H-6 '), 6.98 (1
H, d, H-2 ') 13 C-NMR (ppm, methanol (d 4 ) -D 2 O) 28.5 (C-4), 60.5 (C-
6 ", C-6 '"), 64.5 (C-3), 69.8 (C-4 ", C-4'"), 71.6 (C-2 "),
72.0 (C-2 '"), 73.0 (C-3"), 73.1 (C-3'"), 73.5 (C-5"),
73.6 (C-5 '"), 78.2 (C-2), 95.6 (C-8), 96.7 (C-6), 98.
0 (C-1 "), 100.6 (C-1 '"), 101.5 (C-4a), 107.9 (C-2'), 1
09.8 (C-6 '), 129.6 (C-1'), 134.9 (C-4 '), 145.1 (C-
3 '), 145.3 (C-5'), 155.6 (C-8a), 156.3 (C-7), 156.5 (C
-5) FAB-MS (pos.) M / z = 631 = (M + H) + , molecular weight 630

【0028】(−)−エピガロカテキン配糖体2 (−)−エピガロカテキン3’,5−ジ−O−α−D−
グルコピラノシド1 H-NMR(ppm, methanol(d4)) 2.79(1H,dd,H-4a), 3.03(1
H,dd,H-4b),3.43-3.92(12H,ring H,Glcx2), 4.20(1H,m,
H-3), 4.83(1H,s,H-2), 5.37(1H,d,H-1'", JH-1'",H-
2'"=3.5 Hz), 5.52 (1H,d,H-1",JH-1",H-2"=3.5 Hz),
6.09(1H,d,H-8), 6.33(1H,d,H-6), 6.74(1H,d,H-6'),
6.97(1H,d,H-2') FAB-MS(pos.) m/z=631 =(M+H)+ , 分子量630
(−)-Epigallocatechin glycoside 2 (−)-Epigallocatechin 3 ′, 5-di-O-α-D-
Glucopyranoside 1 H-NMR (ppm, methanol (d 4 )) 2.79 (1H, dd, H-4a), 3.03 (1
H, dd, H-4b), 3.43-3.92 (12H, ring H, Glcx2), 4.20 (1H, m,
H-3), 4.83 (1H, s, H-2), 5.37 (1H, d, H-1 '", JH-1'", H-
2 '"= 3.5 Hz), 5.52 (1H, d, H-1", JH-1 ", H-2" = 3.5 Hz),
6.09 (1H, d, H-8), 6.33 (1H, d, H-6), 6.74 (1H, d, H-6 '),
6.97 (1H, d, H-2 ') FAB-MS (pos.) M / z = 631 = (M + H) + , molecular weight 630

【0029】(−)−エピガロカテキン配糖体3 (−)−エピガロカテキン3’−O−α−D−グルコピ
ラノシド1 H-NMR(ppm, methanol(d4)-D2O) 2.73(1H,dd,H-4a), 2.
85(1H,dd,H-4b), 3.45(1H,dd,H-4"), 3.57(1H,dd,H-
2"), 3.78(3H,m,H-3",6"), 3.88(1H,m,H-5"), 4.18(1H,
m,H-3), 4.79(1H,s,H-2),5.35(1H,d,H-1", JH-1",H-2"=
3.2 Hz), 5.91(1H,d,H-8), 5.93(1H,d,H-6), 6.75(1H,
d,H-6'), 6.95(1H,d,H-2')13 C-NMR(ppm, methanol(d4)-D2O) 29.3(C-4), 62.4(C-
6"), 67.4(C-3), 71.4(C-4"), 73.5(C-2"), 74.4(C-
3"), 74.9(C-5"), 79.3(C-2), 95.9(C-8), 96.4(C-6),1
00.0(C-4a), 101.2(C-1"), 108.9(C-2'), 110.4(C-6'),
131.6(C-1'), 135.9 (C-4'), 146.7(C-3',5'), 157.2
(C-8a), 157.6(C-7), 158.0(C-5) FAB-MS(pos.) m/z=469 =(M+H)+ , 分子量468
(−)-Epigallocatechin glycoside 3 (−)-Epigallocatechin 3′-O-α-D-glucopyranoside 1 H-NMR (ppm, methanol (d 4 ) -D 2 O) 2.73 ( 1H, dd, H-4a), 2.
85 (1H, dd, H-4b), 3.45 (1H, dd, H-4 "), 3.57 (1H, dd, H-
2 "), 3.78 (3H, m, H-3", 6 "), 3.88 (1H, m, H-5"), 4.18 (1H,
m, H-3), 4.79 (1H, s, H-2), 5.35 (1H, d, H-1 ", JH-1", H-2 "=
3.2 Hz), 5.91 (1H, d, H-8), 5.93 (1H, d, H-6), 6.75 (1H,
d, H-6 '), 6.95 (1H, d, H-2') 13 C-NMR (ppm, methanol (d 4 ) -D 2 O) 29.3 (C-4), 62.4 (C-
6 "), 67.4 (C-3), 71.4 (C-4"), 73.5 (C-2 "), 74.4 (C-
3 "), 74.9 (C-5"), 79.3 (C-2), 95.9 (C-8), 96.4 (C-6), 1
00.0 (C-4a), 101.2 (C-1 "), 108.9 (C-2 '), 110.4 (C-6'),
131.6 (C-1 '), 135.9 (C-4'), 146.7 (C-3 ', 5'), 157.2
(C-8a), 157.6 (C-7), 158.0 (C-5) FAB-MS (pos.) M / z = 469 = (M + H) + , molecular weight 468

【0030】実施例2 (−)−エピガロカテキン3−O−ガレート(三井農林
株式会社製)5gを用いて実施例1と同様にサイクロマ
ルトデキストリングルカノトランスフェラーゼ反応とグ
ルコアミラーゼ反応を行った後、ダイアイオンHP−1
0を用いて未反応の糖を除去した。吸着画分をメタノー
ル水溶液を用いて溶出させ減圧濃縮後、分取HPLCに
供し、エピガロカテキンガレート配糖体1(315m
g)およびエピガロカテキンガレート配糖体2(780
mg)を得た。この配糖体は、上記条件(実施例1)に
よるHPLC分析でそれぞれ単一のピークを示した。
Example 2 After the cyclomaltodextrin glucanotransferase reaction and the glucoamylase reaction were carried out in the same manner as in Example 1 using 5 g of (−)-epigallocatechin 3-O-gallate (manufactured by Mitsui Norin Co., Ltd.). , Diaion HP-1
0 was used to remove unreacted sugar. The adsorbed fraction was eluted with an aqueous methanol solution, concentrated under reduced pressure, and then subjected to preparative HPLC to obtain epigallocatechin gallate glycoside 1 (315 m
g) and epigallocatechin gallate glycoside 2 (780
mg). This glycoside showed a single peak in the HPLC analysis under the above conditions (Example 1).

【0031】分取HPLC条件は、以下の通りである。 カラム:カプセルパック AG-120 ODS S-5 (50×50
0mm) 移動相:0.05%(v/v)燐酸水を含む20%(v
/v)メタノール水溶液; 40min 流 速:120ml/min 検 出:UV 280nm(室温)
Preparative HPLC conditions are as follows. Column: Capsule pack AG-120 ODS S-5 (50 x 50
Mobile phase: 0.05% (v / v) 20% (v) containing phosphoric acid water
/ V) Methanol aqueous solution; 40 min Flow rate: 120 ml / min Detection: UV 280 nm (room temperature)

【0032】これらの配糖体をNMRおよびMSによる
機器分析で解析した結果、下記の構造であると決定し
た。また、機器分析の結果も併せて列記した。 (−)−エピガロカテキンガレート配糖体1 (−)−エピガロカテキンガレート3’,7−ジ−O−
α−D−グルコピラノシド1 H-NMR(ppm, methanol(d4)-D2O) 2.94(1H,dd,H-4a), 3.
08(1H,dd,H-4b),3.43-3.92(12H,ring H,Glcx2), 4.87(1
H,d,H-1"", JH-1"",H-2""=4 Hz), 5.06(1H,s,H-2), 5.5
0(1H,d,H-1'",JH-1'",H-2'"=3.5 Hz), 5.51(1H,m,H-3),
6.38(1H,d, H-8), 6.38(1H,d,H-6), 6.71(1H,d,H-6'),
7.02(2H,s,H-2",6"), 7.13(1H,d,H-2')13 C-NMR(ppm, methanol(d4))-D2O) 27.7(C-4), 62.7(C-
6'"), 63.1(C-6""), 70.5(C-3), 71.7(C-4'"), 72.3(C-
4""), 74.1(C-2'"), 74.2(C-2""), 74.7(C-3'"), 75.0
(C-3""), 75.7(C-5'"), 75.7(C-5""), 79.6(C-2), 98.4
(C-8), 99.0(C-6), 99.9(C-4a), 101.9(C-1'"), 102.9
(C-1""), 109.5(C-2'), 111.1(C-6'), 111.2(C-2",6"),
122.0(C-1"), 131.4(C-1'), 136.7(C-4"), 140.8(C-
4'), 147.1(C-3",5"), 147.3(C-3'), 147.8(C-5'), 15
7.9(C-8a), 158.5(C-7), 158.9(C-5),168.1(C-7") FAB-MS(pos.) m/z=783 =(M+H)+ , 分子量782
As a result of analyzing these glycosides by instrumental analysis by NMR and MS, it was determined to have the following structure. The results of instrumental analysis are also listed. (-)-Epigallocatechin gallate glycoside 1 (-)-Epigallocatechin gallate 3 ', 7-di-O-
α-D-glucopyranoside 1 H-NMR (ppm, methanol (d 4 ) -D 2 O) 2.94 (1H, dd, H-4a), 3.
08 (1H, dd, H-4b), 3.43-3.92 (12H, ring H, Glcx2), 4.87 (1
H, d, H-1 "", JH-1 "", H-2 "" = 4 Hz), 5.06 (1H, s, H-2), 5.5
0 (1H, d, H-1 '", JH-1'", H-2 '"= 3.5 Hz), 5.51 (1H, m, H-3),
6.38 (1H, d, H-8), 6.38 (1H, d, H-6), 6.71 (1H, d, H-6 '),
7.02 (2H, s, H-2 ", 6"), 7.13 (1H, d, H-2 ') 13 C-NMR (ppm, methanol (d 4 ))-D 2 O) 27.7 (C-4) , 62.7 (C-
6 '"), 63.1 (C-6""), 70.5 (C-3), 71.7 (C-4'"), 72.3 (C-
4 ""), 74.1 (C-2 '"), 74.2 (C-2""), 74.7 (C-3'"), 75.0
(C-3 ""), 75.7 (C-5 '"), 75.7 (C-5""), 79.6 (C-2), 98.4
(C-8), 99.0 (C-6), 99.9 (C-4a), 101.9 (C-1 '"), 102.9
(C-1 ""), 109.5 (C-2 '), 111.1 (C-6'), 111.2 (C-2 ", 6"),
122.0 (C-1 "), 131.4 (C-1 '), 136.7 (C-4"), 140.8 (C-
4 '), 147.1 (C-3 ", 5"), 147.3 (C-3'), 147.8 (C-5 '), 15
7.9 (C-8a), 158.5 (C-7), 158.9 (C-5), 168.1 (C-7 ") FAB-MS (pos.) M / z = 783 = (M + H) + , molecular weight 782

【0033】(−)−エピガロカテキンガレート配糖体
2 (−)−エピガロカテキンガレート3’−O−α−D−
グルコピラノシド1 H-NMR(ppm, methanol(d4)-D2O) 2.87(1H,dd,H-4a), 2.
99(1H,dd,H-4b), 3.42(1H,dd,H-4'"), 3.51(1H,t,H-
2'"), 3.68(1H,dt,H-5'"), 3.81(1H,t,H-3'"), 3.85(2
H,m,H-6'"), 4.90(1H,d,H-1'", JH-1'",H-2'"=4 Hz),
5.94(1H,d,H-8), 5.95(1H,d,H-6), 6.64(1H,d,H-6'),
7.00(2H,s,H-2",6"), 7.11(1H,d,H-2')13 C-NMR(ppm, methanol(d4)-D2O) 27.8(C-4), 63.0(C-
6'"), 70.2(C-3), 71.0(C-4'"), 74.2(C-2'"), 74.7(C-
3'"), 75.5(C-5'"), 80.1(C-2),98.6(C-8), 99.3(C-6),
100.2(C-4a),101.8(C-1'"), 109.8(C-2'), 111.3(C-
6'), 111.5(C- 2",6"), 122.1(C-1"), 131.5(C-1'), 13
6.5(C-4"), 141.0(C-4'), 147.1(C-3", 5"),147.1(C-
3'), 147.5(C-5'), 158.0(C-8a), 158.5(C-7), 158.6(C
-5), 168.0(C-7") FAB-MS(pos.) m/z=621 =(M+H)+ , 分子量620
(-)-Epigallocatechin gallate glycoside 2 (-)-Epigallocatechin gallate 3'-O-α-D-
Glucopyranoside 1 H-NMR (ppm, methanol (d 4 ) -D 2 O) 2.87 (1H, dd, H-4a), 2.
99 (1H, dd, H-4b), 3.42 (1H, dd, H-4 '"), 3.51 (1H, t, H-
2 '"), 3.68 (1H, dt, H-5'"), 3.81 (1H, t, H-3 '"), 3.85 (2
H, m, H-6 '"), 4.90 (1H, d, H-1'", JH-1 '", H-2'" = 4 Hz),
5.94 (1H, d, H-8), 5.95 (1H, d, H-6), 6.64 (1H, d, H-6 '),
7.00 (2H, s, H-2 ", 6"), 7.11 (1H, d, H-2 ') 13 C-NMR (ppm, methanol (d 4 ) -D 2 O) 27.8 (C-4), 63.0 (C-
6 '"), 70.2 (C-3), 71.0 (C-4'"), 74.2 (C-2 '"), 74.7 (C-
3 '"), 75.5 (C-5'"), 80.1 (C-2), 98.6 (C-8), 99.3 (C-6),
100.2 (C-4a), 101.8 (C-1 '"), 109.8 (C-2'), 111.3 (C-
6 '), 111.5 (C-2 ", 6"), 122.1 (C-1 "), 131.5 (C-1'), 13
6.5 (C-4 "), 141.0 (C-4 '), 147.1 (C-3", 5 "), 147.1 (C-
3 '), 147.5 (C-5'), 158.0 (C-8a), 158.5 (C-7), 158.6 (C
-5), 168.0 (C-7 ") FAB-MS (pos.) M / z = 621 = (M + H) + , molecular weight 620

【0034】実施例3 (−)−ガロカテキン(三井農林株式会社製)5gを用
いて実施例1と同様にサイクロマルトデキストリングル
カノトランスフェラーゼ反応とグルコアミラーゼ反応を
行った後、ダイアイオンHP−10を用いて未反応の糖
を除去した。吸着画分をメタノール水溶液を用いて溶出
させ減圧濃縮後、酢酸エチルと水で溶媒分画を行った。
水層を減圧濃縮した後に、分取用HPLCに供し、ガロ
カテキン配糖体1(750mg)を得た。この配糖体
は、実施例1によるHPLC分析で単一のピークを示し
た。
Example 3 (−)-Galocatechin (manufactured by Mitsui Norin Co., Ltd.) was subjected to cyclomaltodextrin glucanotransferase reaction and glucoamylase reaction in the same manner as in Example 1, and then DIAION HP-10 was added. Used to remove unreacted sugar. The adsorbed fraction was eluted with an aqueous methanol solution, concentrated under reduced pressure, and then subjected to solvent fractionation with ethyl acetate and water.
The aqueous layer was concentrated under reduced pressure and then subjected to preparative HPLC to obtain gallocatechin glycoside 1 (750 mg). This glycoside showed a single peak in the HPLC analysis according to Example 1.

【0035】分取HPLC条件は、以下の通りである。 カラム:カプセルパック AG-120 ODS S-5 (50×50
0mm) 移動相:10%(v/v)アセトニトリル水溶液; 40
min 流 速:100ml/min 検 出:UV 280nm(室温)
Preparative HPLC conditions are as follows. Column: Capsule pack AG-120 ODS S-5 (50 x 50
0 mm) Mobile phase: 10% (v / v) acetonitrile aqueous solution; 40
min Flow rate: 100 ml / min Detection: UV 280 nm (room temperature)

【0036】この配糖体をNMRおよびMSによる機器
分析で解析した結果、下記の構造であると決定した。ま
た、機器分析の結果も併せて列記した。 (−)−ガロカテキン配糖体1 (−)−ガロカテキン3’−O−α−D−グルコピラノ
シド1 H-NMR(ppm, methanol-d4) 2.73(1H,dd,H-4a), 2.87(1
H,dd,H-4b),3.42-3.94(6H, ring H,Glc), 4.00(1H,ddd,
H-3), 5.39(1H,d,H-1", JH-1",H-2"=4.1 Hz), 5.55(1H,
d,H-2) 5.88(1H,d,H-8), 5.96(1H,d,H-6), 6.63(1H,d,
H-6'), 6.89(1H,d,H-2') FAB-MS(pos.) m/z=455 =(M+H)+ , 分子量454
As a result of analyzing this glycoside by instrumental analysis by NMR and MS, it was determined to have the following structure. The results of instrumental analysis are also listed. (−)-Gallocatechin glycoside 1 (−)-Gallocatechin 3′-O-α-D-glucopyranoside 1 H-NMR (ppm, methanol-d 4 ) 2.73 (1H, dd, H-4a), 2.87 (1
H, dd, H-4b), 3.42-3.94 (6H, ring H, Glc), 4.00 (1H, ddd,
H-3), 5.39 (1H, d, H-1 ", JH-1", H-2 "= 4.1 Hz), 5.55 (1H,
d, H-2) 5.88 (1H, d, H-8), 5.96 (1H, d, H-6), 6.63 (1H, d,
H-6 '), 6.89 (1H, d, H-2') FAB-MS (pos.) M / z = 455 = (M + H) + , molecular weight 454

【0037】実施例4 (−)−エピカテキン3−O−ガレート(三井農林株式
会社製)5gを用いて実施例1と同様にサイクロマルト
デキストリングルカノトランスフェラーゼ反応とグルコ
アミラーゼ反応を行った後、ダイアイオンHP−10を
用いて未反応の糖を除去した。吸着画分をメタノール水
溶液を用いて溶出させ減圧濃縮後、分取HPLCに供
し、エピカテキンガレート配糖体1(923mg)を得
た。この配糖体は、実施例1によるHPLC分析で単一
のピークを示した。
Example 4 The cyclomaltodextrin glucanotransferase reaction and the glucoamylase reaction were carried out in the same manner as in Example 1 using 5 g of (-)-epicatechin 3-O-gallate (manufactured by Mitsui Norin Co., Ltd.). Unreacted sugar was removed using Diaion HP-10. The adsorbed fraction was eluted with an aqueous methanol solution, concentrated under reduced pressure, and then subjected to preparative HPLC to obtain epicatechin gallate glycoside 1 (923 mg). This glycoside showed a single peak in the HPLC analysis according to Example 1.

【0038】分取HPLC条件は、下記のとおりであ
る。 カラム:カプセルパック AG-120 ODS S-5 (50×50
0mm) 移動相:0.05%(v/v)燐酸水を含む20%(v
/v)メタノール水溶液; 40min 流 速:120ml/min 検 出:UV 280nm(室温)
Preparative HPLC conditions are as follows. Column: Capsule pack AG-120 ODS S-5 (50 x 50
Mobile phase: 0.05% (v / v) 20% (v) containing phosphoric acid water
/ V) Methanol aqueous solution; 40 min Flow rate: 120 ml / min Detection: UV 280 nm (room temperature)

【0039】この配糖体をNMRおよびMSによる機器
分析で解析した結果、下記の構造であると決定した。ま
た、機器分析の結果も併せて列記した。 (−)−エピカテキン3−O−ガレート配糖体1 (−)−エピカテキンガレート3’−O−α−D−グル
コピラノシド1 H-NMR(ppm, methanol-d4) 2.86(1H,dd,H-4a), 3.01(1
H,dd,H-4b),3.30-3.87(6H, ring H,Glc), 4.93(1H,d,H-
1'", JH-1'",H-2'"=3.8 Hz), 5.05(1H,s,H-2),5.48(1H,
m,H-3), 5.95(1H,d,H-8), 5.97(1H,d,H-6), 6.77(1H,d,
H-5'), 7.00(1H,dd,H-6'), 7.01(2H,s, H-2",6"), 7.57
(1H,d,H-2')13 C-NMR(ppm, methanol-d4) 26.9(C-4), 61.8(C-6'"),
70.0(C-3), 70.7(C-4'"), 73.4(C-2'"), 73.9(C-5'"),
74.9(C-3'"), 78.6(C-2), 95.9(C-8), 96.6(C-6), 99.2
(C-4a), 101.1(C-1'"), 110.4(C-2",6"), 116.6(C-5'),
117.3(C-2'),121.2(C-1"), 123.0(C-6'), 131.6(C-
1'), 139.9(C-4"), 146.3(C-4'), 146.3(C-3",5"), 14
8.0(C-3'), 157.2(C-8a), 157.8(C-7), 157.8(C-5), 16
7.3(C-7") FAB-MS(pos.) m/z=605 =(M+H)+ , 分子量604
As a result of analyzing this glycoside by instrumental analysis by NMR and MS, it was determined to have the following structure. The results of instrumental analysis are also listed. (−)-Epicatechin 3-O-gallate glycoside 1 (−)-Epicatechin gallate 3′-O-α-D-glucopyranoside 1 H-NMR (ppm, methanol-d 4 ) 2.86 (1H, dd, H-4a), 3.01 (1
H, dd, H-4b), 3.30-3.87 (6H, ring H, Glc), 4.93 (1H, d, H-
1 '", JH-1'", H-2 '"= 3.8 Hz), 5.05 (1H, s, H-2), 5.48 (1H,
m, H-3), 5.95 (1H, d, H-8), 5.97 (1H, d, H-6), 6.77 (1H, d,
H-5 '), 7.00 (1H, dd, H-6'), 7.01 (2H, s, H-2 ", 6"), 7.57
(1H, d, H-2 ') 13 C-NMR (ppm, methanol-d 4 ) 26.9 (C-4), 61.8 (C-6'"),
70.0 (C-3), 70.7 (C-4 '"), 73.4 (C-2'"), 73.9 (C-5 '"),
74.9 (C-3 '"), 78.6 (C-2), 95.9 (C-8), 96.6 (C-6), 99.2
(C-4a), 101.1 (C-1 '"), 110.4 (C-2", 6 "), 116.6 (C-5'),
117.3 (C-2 '), 121.2 (C-1 "), 123.0 (C-6'), 131.6 (C-
1 '), 139.9 (C-4 "), 146.3 (C-4'), 146.3 (C-3", 5 "), 14
8.0 (C-3 '), 157.2 (C-8a), 157.8 (C-7), 157.8 (C-5), 16
7.3 (C-7 ") FAB-MS (pos.) M / z = 605 = (M + H) + , molecular weight 604

【0040】実施例5 デキストリン(商品名:パインデックス#1、松谷化学
株式会社製)100gと(−)−エピガロカテキン、
(−)−エピガロカテキン 3−O−ガレート、(−)
−エピカテキン3−O−ガレート(すべて三井農林株式
会社製)それぞれ5gずつを10mM塩化カルシウムを
含む0.1M酢酸緩衝液(pH5.5)500mlに別
々に溶解した。各混合液にバチルス・ステアロサーモフ
ィラス由来のサイクロマルトデキストリングルカノトラ
ンスフェラーゼ(株式会社林原生物化学研究所製)をデ
キストリン固形分1グラム当たり1000単位加え、5
0℃で24時間反応させた。次いで、反応液を100℃
で30分加熱して酵素を失活させた。
Example 5 100 g of dextrin (trade name: Paindex # 1, manufactured by Matsutani Chemical Co., Ltd.) and (−)-epigallocatechin,
(-)-Epigallocatechin 3-O-gallate, (-)
-Epicatechin 3-O-gallate (all manufactured by Mitsui Norin Co., Ltd.) was dissolved separately in 500 ml of a 0.1 M acetate buffer (pH 5.5) containing 10 mM calcium chloride. Cyclomaltodextrin glucanotransferase from Bacillus stearothermophilus (Hayashibara Biochemical Laboratories, Inc.) was added to each mixed solution in an amount of 1000 units per 1 g of dextrin solid content, and 5
The reaction was performed at 0 ° C. for 24 hours. Then, the reaction solution is at 100 ° C
The enzyme was inactivated by heating at 30 minutes.

【0041】得られた3種類の反応液をそれぞれ水で平
衡化したダイアイオンHP−10(三菱化学株式会社
製)1000mlを充填したカラムに吸着させた。カラ
ムを脱イオン水3000mlで洗浄後、70%(v/
v)エタノール水溶液1000mlを用いて溶出し吸着
画分を回収した。溶出液を減圧濃縮してエタノールを除
去し、500mlの蒸留水に溶解した。この溶液を酢酸
エチル500mlで5回洗浄し、未反応のポリフェノー
ル類を除去した。未反応のポリフェノールが除去されて
いることを実施例1のHPLC法で確認した。酢酸エチ
ルで洗浄した反応液をそれぞれ凍結乾燥してポリフェノ
ール配糖体を得た。このようにして得られた配糖体の収
量はエピガロカテキンから21.4g、エピガロカテキ
ン3−O−ガレートから13.8g、エピカテキンガレ
ートから16.2gであった。得られた配糖体をそれぞ
れ蒸留水に溶解して紫外線の吸収を測定した。分子吸光
係数から各ポリフェノール1分子当り平均で6〜8個グ
ルコースが結合しているものと考えられた。
Each of the obtained three kinds of reaction solutions was adsorbed on a column filled with 1000 ml of Diaion HP-10 (manufactured by Mitsubishi Chemical Corporation) equilibrated with water. After washing the column with 3000 ml of deionized water, 70% (v /
v) The adsorbed fraction was collected by elution with 1000 ml of an aqueous ethanol solution. The eluate was concentrated under reduced pressure to remove ethanol and dissolved in 500 ml of distilled water. This solution was washed 5 times with 500 ml of ethyl acetate to remove unreacted polyphenols. It was confirmed by the HPLC method of Example 1 that the unreacted polyphenol was removed. The reaction solutions washed with ethyl acetate were lyophilized to obtain polyphenol glycosides. The yields of the glycosides thus obtained were 21.4 g from epigallocatechin, 13.8 g from epigallocatechin 3-O-gallate, and 16.2 g from epicatechin gallate. Each of the obtained glycosides was dissolved in distilled water and the absorption of ultraviolet rays was measured. From the molecular extinction coefficient, it was considered that an average of 6 to 8 glucoses were bound to each polyphenol molecule.

【0042】実施例6 実施例5で得られた3種類のポリフェノール配糖体をそ
れぞれ100mgずつ秤取って、1mlの蒸留水に溶解
した。溶解した液にそれぞれグルコアミラーゼ(グルク
ザイムAF6、天野製薬株式会社製)1.6mgとα−グ
ルコシダーゼ(シグマ社製)0.23mgずつを加えて
よく撹拌した。混合液を37℃で3時間インキュベート
した。反応液を以下のHPLC法で分析した。
Example 6 100 mg of each of the three kinds of polyphenol glycosides obtained in Example 5 were weighed and dissolved in 1 ml of distilled water. Glucoamylase (Gluczyme AF6, manufactured by Amano Pharmaceutical Co., Ltd.) (1.6 mg) and α-glucosidase (manufactured by Sigma) (0.23 mg) were added to the dissolved liquids, and the mixture was stirred well. The mixture was incubated at 37 ° C for 3 hours. The reaction solution was analyzed by the following HPLC method.

【0043】HPLC条件は、以下の通りである。 カラム:資生堂カプセルパック AG-120 ODS (4.6×
250mm) 移動相:アセトニトリル:酢酸エチル:0.05%(v
/v)燐酸水=12:0.6:90 流 速:1.0ml/min 検 出:フォトダイオードアレイ検出器
The HPLC conditions are as follows. Column: Shiseido Capsule Pack AG-120 ODS (4.6 x
250 mm) Mobile phase: acetonitrile: ethyl acetate: 0.05% (v
/ V) Phosphoric acid water = 12: 0.6: 90 Flow rate: 1.0 ml / min Detection: Photodiode array detector

【0044】エピガロカテキン配糖体の反応液からはエ
ピガロカテキンが、エピガロカテキン3−O−ガレート
配糖体の反応液からはエピガロカテキン3−O−ガレー
トが、エピカテキン3−O−ガレート配糖体の反応液か
らはエピカテキン3−O−ガレートがそれぞれ検出され
た。
From the reaction solution of epigallocatechin glycoside, epigallocatechin, and from the reaction solution of epigallocatechin 3-O-gallate glycoside, epigallocatechin 3-O-gallate, epicatechin 3-O. -Epicatechin 3-O-gallate was detected in each reaction liquid of gallate glycoside.

【0045】以上の結果は、実施例4で行った配糖化反
応によって実際にポリフェノール類がそのまま配糖化さ
れていることを示すものである。さらに、本ポリフェノ
ール配糖体はα−グルコシダーゼやグルコアミラーゼに
よって加水分解されて、ポリフェノール類が遊離するこ
とから、生体内においてもα−グルコシダーゼやα−ア
ミラーゼ等の酵素によっても容易に加水分解されて、生
理活性機能を持つポリフェノール類を遊離して、ポリフ
ェノール類本来の生理活性機能を示すものと考えられ
る。
The above results show that the polyphenols are actually glycosylated as they are by the glycosylation reaction carried out in Example 4. Furthermore, since the polyphenol glycoside is hydrolyzed by α-glucosidase or glucoamylase to release polyphenols, it can be easily hydrolyzed in vivo by enzymes such as α-glucosidase and α-amylase. It is considered that the polyphenols having the physiologically active function are released to exhibit the original physiologically active function of the polyphenols.

【0046】実施例7 実施例5で得られた配糖体の渋味の強さを20人のパネ
ラーに対して官能検査を行って調べた。結果を第1表に
示した。
Example 7 The astringency of the glycoside obtained in Example 5 was examined by a sensory test on 20 panelists. The results are shown in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】第1表から明らかなように、ポリフェノー
ル類が100〜200ppmで渋味を感じ始めるのに対
して、ポリフェノール配糖体では1000ppmでも渋
味は感じられず、2000ppmでわずかに収斂性を感
じ始めるようになった。このように、ポリフェノール配
糖体は従来のポリフェノール類に比べて呈味性が改善さ
れた物質である。従って、本発明のポリフェノール配糖
体は食品、嗜好品、化粧品、医薬品を問わずその呈味を
味わうことのできるすべての物品に応用できる。
As is clear from Table 1, polyphenols begin to feel astringency at 100 to 200 ppm, whereas polyphenol glycosides do not feel astringency at 1000 ppm, and slightly astringent at 2000 ppm. I started to feel it. As described above, polyphenol glycosides are substances having improved taste properties as compared with conventional polyphenols. Therefore, the polyphenol glycoside of the present invention can be applied to all articles that can enjoy the taste regardless of foods, luxury items, cosmetics, and pharmaceuticals.

【0049】実施例8 ゼリー菓子 実施例5と同様の方法で得たエピガロカテキン3−O−
ガレート配糖体10gとカップリングシュガー(登録商
標、株式会社林原製)126g、オリゴメイト50(商
品名:ヤクルト薬品工業社製)136g、乳糖6g、ア
スパルテーム(商品名、味の素株式会社製)0.3gに
水150gを加えて混合後、撹拌しつつ溶解した。この
溶液にペクチン4.5gを徐々に加えて溶解後、50%
(w/v)クエン酸溶液3.3g、1/5濃縮レモン果
汁6g、天然色素0.1gおよびレモンフレーバー0.
2gを加えて十分に混合し、この溶液を型に流し込み、
室温で12時間放冷して固化させペクチンゼリーを作製
した。本品はポリフェノール類特有の渋味がなく、風味
に優れたゼリー菓子である。また、ポリフェノール類の
機能性を有するゼリー菓子として好適である。
Example 8 Jelly Confectionary Epigallocatechin 3-O-obtained in the same manner as in Example 5.
Galate glycosides 10 g, coupling sugar (registered trademark, manufactured by Hayashibara Co., Ltd.) 126 g, Oligomate 50 (trade name: Yakult Pharmaceutical Co., Ltd.) 136 g, lactose 6 g, aspartame (trade name, manufactured by Ajinomoto Co., Inc.) To 3 g, 150 g of water was added and mixed, and then dissolved while stirring. 4.5g of pectin was gradually added to this solution to dissolve it, then 50%
(W / v) 3.3 g of citric acid solution, 6 g of 1/5 concentrated lemon juice, 0.1 g of natural pigment, and lemon flavor of 0.
Add 2 g and mix well, pour this solution into a mold,
A pectin jelly was prepared by allowing it to cool at room temperature for 12 hours for solidification. This product is a jelly confectionery that has no astringency peculiar to polyphenols and has an excellent flavor. It is also suitable as a jelly confectionery having the functionality of polyphenols.

【0050】実施例9 粉末乳酸発泡飲料 1カップ当り実施例5と同様の方法で得たエピガロカテ
キン3−O−ガレート配糖体0.6g、砂糖2.7g、
ビタミンC0.6g、発泡剤(重曹)0.6g、酸味料
(クエン酸)0.6g、粉末発酵乳0.5g、粉末香料
(ストロベリー)0.2gを均一に混合して粉末乳酸発
泡飲料を試作した。本品を冷水180mlに溶かして飲
んだところ、さわやかな味と香りを持つ飲みやすい飲料
であった。また、本品はポリフェノール類本来の、例え
ばコレステロール上昇抑制作用、血糖値上昇抑制作用、
抗酸化作用などの機能性を有する飲み易い粉末乳酸発砲
飲料である。
Example 9 Powdered lactic acid effervescent beverage 0.6 g of epigallocatechin 3-O-gallate glycoside and 2.7 g of sugar per cup were obtained by the same method as in Example 5.
Vitamin C 0.6 g, effervescent agent (baking soda) 0.6 g, acidulant (citric acid) 0.6 g, powdered fermented milk 0.5 g, and powdered flavor (strawberry) 0.2 g are uniformly mixed to prepare a powdered lactic acid effervescent beverage. I made a prototype. When this product was dissolved in 180 ml of cold water and drunk, it was a drink with a refreshing taste and aroma that was easy to drink. In addition, this product is an original polyphenol, for example, cholesterol elevation inhibitory action, blood glucose elevation inhibitory action,
It is an easy-to-drink powdered lactic acid foamed beverage that has antioxidant and other functionalities.

【0051】実施例10 化粧用クリーム スクワラン23g、ステアリン酸5g、ベヘニルアルコ
ール0.8g、モノステアリン酸ポリエチレングリコー
ル2g、自己乳化型モノステアリン酸グリセリン2.5
g、酸化チタン2.5gおよびパラオキシ安息香酸メチ
ル0.05gを加熱溶解後80℃とし、これにアラント
イン0.1g、1,3−ブチレングリコール2g、パラ
オキシ安息香酸メチル0.15g、実施例6と同様に調
製したエピガロカテキンガレート配糖体1gおよび精製
水を加熱溶解して80℃としたものを加えて、混合乳化
した。よく撹拌しながら30℃まで冷却後、容器に充填
して製品とした。本品はポリフェノール類特有の、例え
ば抗酸化作用、紫外線吸収作用などの機能性を有する化
粧用クリームである。
Example 10 Cosmetic Cream Squalane 23 g, stearic acid 5 g, behenyl alcohol 0.8 g, polyethylene glycol monostearate 2 g, self-emulsifying glyceryl monostearate 2.5.
g, titanium oxide 2.5 g and methyl paraoxybenzoate 0.05 g were dissolved under heating to 80 ° C., and allantoin 0.1 g, 1,3-butylene glycol 2 g, methyl paraoxybenzoate 0.15 g, and Example 6 were added. In a similar manner, 1 g of epigallocatechin gallate glycoside and purified water that had been heated and dissolved at 80 ° C. were added, and mixed and emulsified. After cooling to 30 ° C. with good stirring, the product was filled in a container. This product is a cosmetic cream that is unique to polyphenols and has functionality such as antioxidation and ultraviolet absorption.

【0052】[0052]

【発明の効果】本発明のポリフェノール配糖体は、従来
のポリフェノール類の持つ強い渋味や収斂性を効果的に
改善し、呈味性に優れているだけでなく、生体内でポリ
フェノール類を遊離することが期待できることから、食
品、嗜好品、化粧品、医薬部外品、医薬品などに応用可
能な新規化合物である。
EFFECTS OF THE INVENTION The polyphenol glycoside of the present invention effectively improves the strong astringency and astringency of conventional polyphenols and is not only excellent in taste but also polyphenols in vivo. Since it can be expected to be released, it is a novel compound that can be applied to foods, luxury items, cosmetics, quasi drugs, pharmaceuticals, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (−)−エピガロカテキン3’−O−α−D
−グルコピラノシドの1H−NMRスペクトルである。
FIG. 1 (−)-epigallocatechin 3′-O-α-D
- it is a 1 H-NMR spectrum of glucopyranoside.

【図2】 (−)−エピガロカテキン3’−O−α−D
−グルコピラノシドの13C−NMRスペクトルである。
FIG. 2 (−)-epigallocatechin 3′-O-α-D
-Is a 13 C-NMR spectrum of glucopyranoside.

【図3】 (−)−エピガロカテキン3’−O−α−D
−グルコピラノシドのマススペクトルである。
FIG. 3 (−)-epigallocatechin 3′-O-α-D
-Mass spectrum of glucopyranoside.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08B 37/00 C08B 37/00 G C12P 19/44 C12P 19/44 (72)発明者 万代 隆彦 岡山県岡山市政津1428番地 (72)発明者 渋谷 孝 岡山県総社市下原318番地─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication C08B 37/00 C08B 37/00 G C12P 19/44 C12P 19/44 (72) Inventor Takahiko Bandai Okayama 1428 Masatsu, Okayama City, Japan (72) Inventor Takashi Shibuya 318 Shimohara, Soja City, Okayama Prefecture

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一般式1(式中R1 、R2 はそれぞれ独
立に水酸基あるいは重合度2から10のマルトオリゴ糖
残基、Xは水酸基あるいは水素、Yは水酸基あるいはガ
ロイル基を、またnは1から9の整数を示す。)で表さ
れるポリフェノール配糖体。 【化1】
1. General formula 1 (wherein R 1 and R 2 are each independently a hydroxyl group or a maltooligosaccharide residue having a degree of polymerization of 2 to 10, X is a hydroxyl group or hydrogen, Y is a hydroxyl group or a galloyl group, and n is A polyphenol glycoside represented by the formula 1) to 9). Embedded image
【請求項2】 ポリフェノール配糖体が、一般式2(式
中R1 、R2 はそれぞれ独立に水酸基あるいは重合度2
から10のマルトオリゴ糖残基を、またnは1から9の
整数を示す。)で表されるガロカテキン配糖体である請
求項1記載のポリフェノール配糖体。 【化2】
2. The polyphenol glycoside has the formula 2 (wherein R 1 and R 2 are each independently a hydroxyl group or a polymerization degree 2).
To 10 of maltooligosaccharide residues, and n represents an integer of 1 to 9. The polyphenol glycoside according to claim 1, which is a gallocatechin glycoside represented by Embedded image
【請求項3】 ポリフェノール配糖体が、一般式3(式
中R1 、R2 はそれぞれ独立に水酸基あるいは重合度2
から10のマルトオリゴ糖残基を、またnは1から9の
整数を示す。)で表されるガロカテキン3−O−ガレ−
ト配糖体である請求項1記載のポリフェノール配糖体。 【化3】
3. The polyphenol glycoside has the formula 3 (wherein R 1 and R 2 are each independently a hydroxyl group or a polymerization degree 2).
To 10 of maltooligosaccharide residues, and n represents an integer of 1 to 9. ) Gallocatechin 3-O-galle represented by
The polyphenol glycoside according to claim 1, which is a glycoside. Embedded image
【請求項4】 ポリフェノール配糖体が、一般式4(式
中R1 、R2 はそれぞれ独立に水酸基あるいは重合度2
から10のマルトオリゴ糖残基を、またnは1から9の
整数を示す。)で表されるカテキン3−O−ガレ−ト配
糖体である請求項1記載のポリフェノール配糖体。 【化4】
4. The polyphenol glycoside has the formula 4 (wherein R 1 and R 2 are independently a hydroxyl group or a polymerization degree 2).
To 10 of maltooligosaccharide residues, and n represents an integer of 1 to 9. The polyphenol glycoside according to claim 1, which is a catechin 3-O-gallate glycoside represented by (4). Embedded image
【請求項5】 渋味を低減したことを特徴とする請求項
1記載のポリフェノール配糖体。
5. The polyphenol glycoside according to claim 1, which has reduced astringency.
【請求項6】 エピガロカテキン、ガロカテキン、エピ
ガロカテキン3−O−ガレ−ト、ガロカテキン3−O−
ガレ−ト、エピカテキン、エピカテキン3−O−ガレ−
ト、カテキン3−O−ガレ−トあるいはこれらを2種類
以上含むポリフェノール類混合物とデキストリン、サイ
クロデキストリン、澱粉もしくはこれらの混合物にサイ
クロマルトデキストリングルカノトランスフェラーゼを
作用させることを特徴とする請求項1記載のポリフェノ
ール配糖体の製造方法。
6. Epigallocatechin, gallocatechin, epigallocatechin 3-O-gallate, gallocatechin 3-O-
Galate, epicatechin, epicatechin 3-O-gallate
A cyclomaltodextrin glucanotransferase is allowed to act on dextrin, cyclodextrin, starch, or a mixture of polyphenols, catechin 3-O-gallate, or a polyphenol mixture containing two or more kinds of these, dextrin, cyclodextrin, starch, or a mixture thereof. A method for producing a polyphenol glycoside.
【請求項7】 サイクロマルトデキストリングルカノト
ランスフェラーゼが、バチルス・ステアロサーモフィラ
ス由来のものである請求項6記載のポリフェノール配糖
体の製造方法。
7. The method for producing a polyphenol glycoside according to claim 6, wherein the cyclomaltodextrin glucanotransferase is derived from Bacillus stearothermophilus.
【請求項8】 請求項1記載のポリフェノール配糖体を
含む組成物。
8. A composition comprising the polyphenol glycoside according to claim 1.
【請求項9】 組成物が、飲食物,嗜好品,化粧品,医
薬部外品,医薬品およびそれらの原料のうちのいずれか
である請求項8記載の組成物。
9. The composition according to claim 8, wherein the composition is any one of food and drink, a luxury item, a cosmetic, a quasi drug, a drug, and a raw material thereof.
JP17692395A 1995-06-21 1995-06-21 Novel polyphenol glycoside, its production method and its use Expired - Fee Related JP3712285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17692395A JP3712285B2 (en) 1995-06-21 1995-06-21 Novel polyphenol glycoside, its production method and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17692395A JP3712285B2 (en) 1995-06-21 1995-06-21 Novel polyphenol glycoside, its production method and its use

Publications (2)

Publication Number Publication Date
JPH093089A true JPH093089A (en) 1997-01-07
JP3712285B2 JP3712285B2 (en) 2005-11-02

Family

ID=16022128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17692395A Expired - Fee Related JP3712285B2 (en) 1995-06-21 1995-06-21 Novel polyphenol glycoside, its production method and its use

Country Status (1)

Country Link
JP (1) JP3712285B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031430A3 (en) * 2001-10-04 2004-04-08 Brane Tech S R L Flavonoid compounds and their pharmaceutical uses
WO2005027892A1 (en) * 2003-09-22 2005-03-31 Use-Techno Corporation Early insulin secretion promoter
WO2006124000A1 (en) * 2005-05-20 2006-11-23 Agency For Science, Technology And Research Aldehyde conjugated flavonoid preparations
WO2008088047A1 (en) * 2007-01-19 2008-07-24 Suntory Holdings Limited Method for glycosylation of flavonoid
WO2008088046A1 (en) 2007-01-19 2008-07-24 Suntory Holdings Limited Novel glycosyltransferase and polynucleotide encoding the same
US7858080B2 (en) 2005-05-20 2010-12-28 Agency For Science, Technology And Research Aldehyde conjugated flavonoid preparations
JP2011162506A (en) * 2010-02-12 2011-08-25 Tokyo Institute Of Technology Epigallocatechin gallate derivative and medicinal composition including the same
WO2012013646A1 (en) * 2010-07-29 2012-02-02 Basf Se Process for producing glycosides of acrylate derivates employing polysaccharides and glycosidases or glycosyltransferases
US8486664B2 (en) 2010-07-29 2013-07-16 Basf Se Enzymatic production of an ethylenically unsaturated glycoside using polysaccharides
AU2013201029B2 (en) * 2007-01-19 2014-11-13 Suntory Holdings Limited Method for glycosylation of flavonoid compounds
WO2019045112A1 (en) * 2017-09-04 2019-03-07 昭和電工株式会社 Method for producing inositol derivative

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031430A3 (en) * 2001-10-04 2004-04-08 Brane Tech S R L Flavonoid compounds and their pharmaceutical uses
WO2005027892A1 (en) * 2003-09-22 2005-03-31 Use-Techno Corporation Early insulin secretion promoter
US7858080B2 (en) 2005-05-20 2010-12-28 Agency For Science, Technology And Research Aldehyde conjugated flavonoid preparations
WO2006124000A1 (en) * 2005-05-20 2006-11-23 Agency For Science, Technology And Research Aldehyde conjugated flavonoid preparations
US8410165B2 (en) 2005-05-20 2013-04-02 Agency For Science, Technology And Research Aldehyde conjugated flavonoid preparations
US8138163B2 (en) 2005-05-20 2012-03-20 Agency For Science, Technology And Research Aldehyde conjugated flavonoid preparations
EP2128265A4 (en) * 2007-01-19 2013-07-03 Suntory Holdings Ltd Method for glycosylation of flavonoid
WO2008088047A1 (en) * 2007-01-19 2008-07-24 Suntory Holdings Limited Method for glycosylation of flavonoid
EP2128265A1 (en) * 2007-01-19 2009-12-02 Suntory Holdings Limited Method for glycosylation of flavonoid
US9364492B2 (en) 2007-01-19 2016-06-14 Suntory Holdings Limited Method for glycosylation of flavonoid compounds
AU2013201029B2 (en) * 2007-01-19 2014-11-13 Suntory Holdings Limited Method for glycosylation of flavonoid compounds
JP2008174507A (en) * 2007-01-19 2008-07-31 Suntory Ltd Method for glycosidizing flavonoid
US8278088B2 (en) 2007-01-19 2012-10-02 Suntory Holdings Limited Polynucleotide encoding a polypeptide having glycosylation activity on a flavonoid
US8383384B2 (en) 2007-01-19 2013-02-26 Suntory Holdings Limited Polypeptide having glycosylation activity on a flavonoid
WO2008088046A1 (en) 2007-01-19 2008-07-24 Suntory Holdings Limited Novel glycosyltransferase and polynucleotide encoding the same
CN101605905A (en) * 2007-01-19 2009-12-16 三得利控股株式会社 The glucosides method of flavonoid class
EP2728008A1 (en) 2007-01-19 2014-05-07 Suntory Holdings Limited Method for glycosylation of flavonoid compounds
JP2011162506A (en) * 2010-02-12 2011-08-25 Tokyo Institute Of Technology Epigallocatechin gallate derivative and medicinal composition including the same
US8486664B2 (en) 2010-07-29 2013-07-16 Basf Se Enzymatic production of an ethylenically unsaturated glycoside using polysaccharides
WO2012013646A1 (en) * 2010-07-29 2012-02-02 Basf Se Process for producing glycosides of acrylate derivates employing polysaccharides and glycosidases or glycosyltransferases
WO2019045112A1 (en) * 2017-09-04 2019-03-07 昭和電工株式会社 Method for producing inositol derivative
JPWO2019045112A1 (en) * 2017-09-04 2020-08-20 昭和電工株式会社 Method for producing inositol derivative
US11384372B2 (en) 2017-09-04 2022-07-12 Showa Denko K.K. Method for producing inositol derivative

Also Published As

Publication number Publication date
JP3712285B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
KR0181013B1 (en) Crystalline 2-0-alpha-d-glucopyranosyl-l-ascorbic caid and its preparation and uses
KR100194270B1 (en) Foods Containing Alpha-Glycosyl-L-ascorbic Acid
US20090143317A1 (en) Quercetin Glycoside Composition and Method of Preparing the Same
KR0165956B1 (en) PROCESS FOR PREPARATION OF FOODS CONTAINING Ñß-GLYCOSYL-RUTIN
EP3453766B1 (en) Method for producing flavonoid inclusion compounds
EP1426380B1 (en) Association compound of trehalose or maltitol with metal ion compound
JP5000373B2 (en) Water-soluble flavonoid composition and production method thereof, food containing water-soluble flavonoid composition, etc.
JP4574788B2 (en) Proanthocyanidin-containing composition
KR0173435B1 (en) 4g-alpha-d-glucopyranosyl rutin and its preparation and uses
JP3712285B2 (en) Novel polyphenol glycoside, its production method and its use
JP2008189628A (en) Novel methylated catechin and composition comprising the same
JP4502549B2 (en) Water-dispersible or water-soluble ginkgo biloba extract composition
JP3746078B2 (en) Polyphenol glycoside
JP3072535B2 (en) 5-O-α-D-glucopyranosyl-L-ascorbic acid, its production method and use
JP4837816B2 (en) Free radical scavenger
TWI287985B (en) Water-soluble isoflavone composition, manufacture method and usage thereof
JP4051482B2 (en) Pharmaceutical composition comprising α-glycosyl hesperidin
JPH06263790A (en) 2-o-beta-d-galactopyranosyl-l-ascorbic acid or its salt, its production and use thereof
JP2004043354A (en) Hyaluronidase inhibitor
JP7272882B2 (en) Crystals of phloretin-4-α-glucoside
JP3474517B2 (en) Anti-sensitive disease agent containing 4G-α-D-glucopyranosyl rutin
JPWO2007105547A1 (en) How to improve the absorption of myricetin in the body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050816

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

LAPS Cancellation because of no payment of annual fees