JPH09308985A - Method for reducing residual stress - Google Patents

Method for reducing residual stress

Info

Publication number
JPH09308985A
JPH09308985A JP12561296A JP12561296A JPH09308985A JP H09308985 A JPH09308985 A JP H09308985A JP 12561296 A JP12561296 A JP 12561296A JP 12561296 A JP12561296 A JP 12561296A JP H09308985 A JPH09308985 A JP H09308985A
Authority
JP
Japan
Prior art keywords
heating
cooling
residual stress
coil
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12561296A
Other languages
Japanese (ja)
Other versions
JP3439024B2 (en
Inventor
Takahiro Ota
高裕 太田
Risuke Nayama
理介 名山
Seiji Asada
誠治 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12561296A priority Critical patent/JP3439024B2/en
Publication of JPH09308985A publication Critical patent/JPH09308985A/en
Application granted granted Critical
Publication of JP3439024B2 publication Critical patent/JP3439024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To surely and rapidly reduce the residual stress in an arbitrary place by spraying the coolant from a heating/cooling coil to a part at which the residual stress is desired to be reduced after the desired part is heated above the prescribed temperature, and rapidly coiling it. SOLUTION: A heating/cooling coil 1 is provided with a cooling water flow passage in which the cooling water flows when heating is performed by a heating coil, and a coolant flow passage in which the coolant flows during the cooling and the coolant is sprayed to a part to be cooled for cooling, and the cooling water to constantly cool the coil during the heating flows in the cooling water flow passage. Holes are made in a part of the coolant flow passage opposite to a surface to be rapidly cooled, and the coolant is sprayed against the part for rapid cooling by flowing the coolant during the rapid cooling after the heating. Because heating and cooling can be performed by one coil 1, rapid cooling can be realized. The residual stress can surely be reduced and workability can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は管継手溶接部の引張
残留応力の低減・除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing / removing tensile residual stress in a welded portion of a pipe joint.

【0002】[0002]

【従来の技術】管継手では内外面とも溶接部近傍に引張
の残留応力が発生し、応力腐食割れ(SCC)等が起こ
るため、これを改良する種々の方法が試みられてきた。
例えば、表面に鋼球を打ちつけ表層に塑性変形域を発生
させることにより圧縮の残留応力を負荷するショットピ
ーニングや、外面加熱・内面冷却をすることにより管内
面に引張塑性歪を発生させ、残留応力を低減する方法な
どが提案されている。また、管継手溶接部近傍を均一に
加熱し、その後、残留応力を軽減しようとする側の面を
冷却することにより管継手溶接部の引張残留応力を除去
する加熱・急冷法も提案されている(特開昭57−58
991号公報)が、この方法の場合も、通常は、加熱熱
源としてガスバーナあるいは高周波加熱装置を、冷却治
具としては別設置の冷却治具が用いられていた。
2. Description of the Related Art In a pipe joint, tensile residual stress is generated in the vicinity of the welded portion on both the inner and outer surfaces, and stress corrosion cracking (SCC) or the like occurs. Therefore, various methods have been tried to improve the residual stress.
For example, shot peening that applies a residual compressive stress by hitting a steel ball on the surface to generate a plastic deformation region on the surface, and tensile plastic strain on the inner surface of the pipe by heating the outer surface and cooling the inner surface There have been proposed methods for reducing the above. A heating / quenching method has also been proposed in which the tensile residual stress of the pipe joint weld is removed by uniformly heating the vicinity of the pipe joint weld and then cooling the surface on the side where the residual stress is to be reduced. (JP-A-57-58
However, also in this method, a gas burner or a high-frequency heating device is usually used as a heating heat source, and a separately installed cooling jig is used as a cooling jig.

【0003】[0003]

【発明が解決しようとする課題】前記方法のうち、ショ
ットピーニングについては、管内面への施工が難しく、
かつ内面への汚染の恐れがあるため、適用範囲が限定さ
れるという問題があった。また、外面加熱・内面冷却方
法では残留応力の低減効果が内面のみに限定されるう
え、内面を冷却しながら加熱する必要があるため、大き
な加熱電源が必要であった。さらに、前記の加熱・急冷
法では加熱電源としてガスバーナを用いる場合には、温
度コントロールが難しく、施工性が極めて悪かった。ま
た、鏡板に溶接された管台の加熱では表面からの加熱と
なるため、残留応力低減に必要な温度分布が得られ難か
った。また、高周波加熱装置を用いる場合には、加熱コ
イルと冷却治具が必要であり、急速な冷却がむずかしい
こと、工数がかかること等の問題があった。
Among the above methods, with regard to shot peening, it is difficult to apply it to the inner surface of the pipe.
Moreover, there is a problem that the application range is limited because there is a risk of contamination on the inner surface. Further, in the method of heating the outer surface and the method of cooling the inner surface, the effect of reducing the residual stress is limited to only the inner surface, and since it is necessary to heat the inner surface while cooling it, a large heating power source is required. Further, in the above heating / quenching method, when a gas burner is used as a heating power source, it is difficult to control the temperature and the workability is extremely poor. Further, heating the nozzle stub welded to the end plate causes heating from the surface, and thus it is difficult to obtain the temperature distribution necessary for reducing the residual stress. Further, when the high frequency heating device is used, a heating coil and a cooling jig are required, and there are problems that rapid cooling is difficult and man-hours are required.

【0004】本発明は以上のような従来技術における問
題点を解決し、任意場所の残留応力を確実に、かつ速や
かに低減することのできる方法を提供しようとするもの
である。
The present invention intends to solve the above problems in the prior art and to provide a method capable of reliably and promptly reducing the residual stress at an arbitrary place.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するため次の構成を採るものである。 (1)管継手溶接部近傍を高周波加熱により均一に加熱
し、その後、残留応力を低減しようとする側の面を冷却
する残留応力低減方法において、高周波加熱コイルを加
熱時に冷却水を流す冷却水流路と冷却時に冷却剤を流し
冷却部に冷却剤を噴射・冷却する冷却剤流路とを備えた
加熱・冷却コイルとし、所定の温度以上に加熱後、前記
加熱・冷却コイルから冷却剤を残留応力を低減させたい
場所に噴射・急冷することを特徴とする管継手溶接部の
残留応力低減方法。
The present invention has the following constitution in order to solve the above problems. (1) In a residual stress reduction method of uniformly heating the vicinity of a welded portion of a pipe joint by high frequency heating and then cooling the surface on the side where residual stress is to be reduced, a cooling water flow in which cooling water is caused to flow when heating the high frequency heating coil. A heating / cooling coil having a passage and a cooling medium passage for injecting / cooling the cooling medium to cool / cool the cooling portion at the time of cooling, and after heating above a predetermined temperature, the cooling medium remains from the heating / cooling coil. A method for reducing residual stress in welded joints of pipe joints, characterized by spraying and quenching at locations where stress is desired to be reduced.

【0006】(2)前記加熱・冷却コイルの巻き数を、
管継手溶接部近傍内外面の被加熱材の熱容量に応じて調
整することを特徴とする前記(1)の残留応力低減方
法。 (3)前記加熱・冷却コイルに流す誘導電流の浸透深さ
が、管の厚さ以上となるように高周波電源の周波数を設
定することを特徴とする前記(1)又は(2)の残留応
力低減方法。
(2) The number of turns of the heating / cooling coil is
The residual stress reducing method according to (1) above, which is adjusted according to the heat capacity of the material to be heated on the inner and outer surfaces in the vicinity of the welded portion of the pipe joint. (3) The residual stress according to (1) or (2) above, wherein the frequency of the high frequency power source is set so that the penetration depth of the induced current flowing through the heating / cooling coil is equal to or greater than the thickness of the tube. Reduction method.

【0007】[0007]

【発明の実施の形態】本発明の方法を用いることによ
り、以下のような作用が望める。部材を均熱、若しくは
表面から残留応力を低減したい深さよりも十分な深さま
で加熱後、残留応力を低減したい面を急冷することによ
り、表面に引張応力が発生し、引張の塑性変形が起こ
る。その後、管の厚さ中央部が温度低下を始めると表面
近傍は既に温度が低下しているので収縮しないため、次
第に応力は圧縮側に転じ、最後には冷却側は圧縮の残留
応力が生じるか、若しくは引張の残留応力が緩和され
る。また、冷却面を管の内外面とすることにより、内面
・外面ともに残留応力を低減できる。これにより、耐S
CC性が向上する。
The following effects can be expected by using the method of the present invention. The member is soaked or heated from the surface to a depth more than the depth for which the residual stress is desired to be reduced, and then the surface for which the residual stress is desired to be reduced is rapidly cooled, whereby tensile stress is generated on the surface, and tensile plastic deformation occurs. After that, when the central part of the tube thickness begins to decrease in temperature, the temperature near the surface has already decreased and it does not shrink, so the stress gradually shifts to the compression side, and finally the residual stress of compression occurs on the cooling side. Or, the residual tensile stress is relieved. Further, by making the cooling surface the inner and outer surfaces of the pipe, residual stress can be reduced on both the inner surface and the outer surface. This makes it resistant to S
CC property improves.

【0008】本発明の方法において管継手溶接部近傍と
は、溶接時の残留応力が引張となる領域を意味し、ま
た、急冷とは、管の厚さ方向の内外の温度差により、施
工部に塑性歪みが生じるような冷却速度を意味する。
In the method of the present invention, the vicinity of the welded portion of the pipe joint means a region where the residual stress at the time of welding becomes tensile, and the rapid cooling is caused by the temperature difference between the inside and the outside in the thickness direction of the pipe. It means a cooling rate at which plastic strain occurs.

【0009】加熱電源として、高周波誘導加熱を用いる
ことにより、肉厚の管に対しても周波数を適切に設定す
ることにより、管の厚さ内部からも発熱を起こされるた
め、管の厚さ内を均一に加熱することが可能となる。ま
た、本方法では加熱部に温度勾配をつける必要がないた
め、特に大容量の加熱装置は必要としない。ここで言う
適切な周波数とは以下の式で示される誘導電流の浸透深
さが管の厚さ以上となる周波数である。
By using high frequency induction heating as a heating power source, by appropriately setting the frequency even for a thick tube, heat is also generated from inside the thickness of the tube. Can be heated uniformly. Further, in this method, since it is not necessary to provide a temperature gradient in the heating section, a particularly large capacity heating device is not required. The appropriate frequency referred to here is a frequency at which the penetration depth of the induced current represented by the following formula is equal to or greater than the thickness of the tube.

【数1】 浸透深さ=503×{ρ/(μ・f)}1/2 (m) ここで、ρは被加熱材の抵抗率(Ω・m)、μは透磁
率、fは周波数(Hz)を示している。
[Equation 1] Penetration depth = 503 × {ρ / (μ · f)} 1/2 (m) where ρ is the resistivity (Ω · m) of the material to be heated, μ is the magnetic permeability, and f is the frequency. (Hz) is shown.

【0010】本発明においては、加熱コイルを加熱時に
冷却水を流す冷却水流路と冷却時に冷却剤を流し冷却部
に冷却剤を噴射・冷却する冷却剤流路とを備えた加熱・
冷却コイルとし、冷却水流路には加熱中常にコイルを冷
却するための冷却水を流しておく。冷却剤流路には急冷
したい面に対している部分に穴をあけておき(若しくは
ノズルをつけて置き)、加熱後の急冷時に冷却剤(通常
は水)を流すことにより、当該部に冷却剤を噴射・急冷
する。このようなコイルとすることにより加熱と急冷は
一つのコイルで可能であるため、速やかな急冷が可能と
なった。これにより、残留応力の低減が確実に行えると
ともに、施工性が向上した。また、加熱・冷却コイルの
位置と電源電力をコントロールすることにより、加熱状
況を再現できるため、温度コントロールも精度良く行え
るようになり、工法の信頼性が向上した。
In the present invention, the heating / heating device is provided with a cooling water passage for flowing cooling water at the time of heating the heating coil and a cooling agent passage for flowing cooling agent at the time of cooling and injecting / cooling the cooling agent to the cooling portion.
A cooling coil is used, and cooling water for cooling the coil is always flowed through the cooling water flow path during heating. In the coolant channel, make a hole (or place it with a nozzle) in the part that faces the surface you want to quench, and cool the part by flowing a coolant (usually water) when quenching after heating. Spray and quench the agent. By using such a coil, heating and quenching can be performed with one coil, so that rapid quenching is possible. As a result, the residual stress can be reliably reduced and the workability is improved. In addition, the heating situation can be reproduced by controlling the position of the heating / cooling coil and the power supply to the power source, so that the temperature can be controlled accurately and the reliability of the construction method is improved.

【0011】このような冷却水流路と冷却剤流路を備え
た加熱・冷却コイルの例を図2に示す。図2の加熱・冷
却コイル1は管A及び管Bをろう付けにより接合し、耐
熱性絶縁テープ2で被覆した2連管構造で、一方の管A
にはコイルを冷却するための冷却水を加熱中常に流し、
他方の管Bには急冷したい面に対している部分に管壁穴
3が開けられ、加熱後の急冷時に冷却剤を流すことによ
り、当該部に冷却剤を噴射・急冷できるように構成され
ている。なお、管Bも加熱コイルの機能を有しており、
加熱時には管Aの冷却水により冷却されている。
FIG. 2 shows an example of a heating / cooling coil provided with such a cooling water flow path and a coolant flow path. The heating / cooling coil 1 of FIG. 2 has a double pipe structure in which a pipe A and a pipe B are joined by brazing and covered with a heat-resistant insulating tape 2, and one pipe A
The cooling water for cooling the coil always flows during heating,
On the other side of the pipe B, a pipe wall hole 3 is formed in a portion facing the surface to be rapidly cooled, and by flowing the coolant at the time of rapid cooling after heating, it is possible to inject and rapidly cool the coolant to that part. There is. In addition, the tube B also has a function of a heating coil,
At the time of heating, it is cooled by the cooling water of the pipe A.

【0012】例えば、本発明の方法により厚板の容器に
貫通溶接されている管の溶接部近傍の残留応力を低減し
ようとする場合、厚板の内部の部分と、厚板外の部分で
は加熱部の熱容量に大きな差があるため、巻き数の均一
なコイルを用いた加熱方法では厚板外の部分が加熱さ
れ、厚板の内部の部分は温度があまり上昇せず、均一な
加熱が望めない。そこで、コイルの巻き数を調整し、熱
容量の多い部分にはコイルを密に設置し、熱容量の少な
い部分にはコイルを粗に、あるいは設置しないことによ
り、均一な加熱が達成できる。その後、急冷することに
より、各場所で均一な残留応力の低減が可能となる。
For example, when it is desired to reduce the residual stress in the vicinity of the welded portion of a pipe which is through-welded to a thick plate container by the method of the present invention, heating is applied to the inner portion of the thick plate and the outer portion of the thick plate. Since there is a large difference in heat capacity between the parts, the heating method using a coil with a uniform number of turns heats the part outside the thick plate, and the temperature inside the part does not rise so much that uniform heating is desired. Absent. Therefore, uniform heating can be achieved by adjusting the number of windings of the coil, densely installing the coil in a portion having a large heat capacity, and roughly or not installing the coil in a portion having a small heat capacity. After that, rapid cooling enables uniform reduction of residual stress at each place.

【0013】また、誘導電流の浸透深さが管の厚さ以上
となるように高周波電源の周波数を設定することによ
り、管の厚さ全体にわたって均一な加熱を行うことがで
きる。
Further, by setting the frequency of the high frequency power source so that the penetration depth of the induced current is equal to or greater than the thickness of the tube, uniform heating can be performed over the entire thickness of the tube.

【0014】[0014]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。この例では板厚160mmの鏡板に45
°の角度を持って溶接された管台(外径100mm、板
厚15mm)へ本発明の残留応力低減法を適用した。図
1に溶接部近傍の断面図を示す。鏡板4は低合金鋼で、
表面にはステンレス鋼(クラッド)6が厚さ約5mmで
肉盛りされている。また、管台5はインコネル合金であ
るため、溶接部に予めインコネル合金を肉盛り溶接しイ
ンコネル合金肉盛溶接部7を形成させている。ステンレ
ス鋼6及びインコネル合金を肉盛り溶接後、鏡板4につ
いて600℃で応力除去焼鈍を行っている。管台5の溶
接は応力除去焼鈍後に実施した。
EXAMPLES The method of the present invention will be described more specifically with reference to the following examples. In this example, the end plate with a thickness of 160 mm is 45
The residual stress reduction method of the present invention was applied to a nozzle (outer diameter 100 mm, plate thickness 15 mm) welded at an angle of °. FIG. 1 shows a sectional view in the vicinity of the welded portion. End plate 4 is low alloy steel,
On the surface, stainless steel (clad) 6 is overlaid with a thickness of about 5 mm. Further, since the nozzle 5 is made of Inconel alloy, the Inconel alloy is welded to the welded portion in advance to form the Inconel alloy welded welded portion 7. After the build-up welding of the stainless steel 6 and the Inconel alloy, the end plate 4 is subjected to stress relief annealing at 600 ° C. The welding of the nozzle 5 was carried out after the stress relief annealing.

【0015】以上の条件から、溶接部8に本発明の残留
応力低減法を適用する場合、最高加熱温度は応力除去焼
鈍温度(この場合600℃)以下にする必要があり、最
高加熱温度を500℃とした。
From the above conditions, when the residual stress reduction method of the present invention is applied to the welded portion 8, the maximum heating temperature must be lower than the stress relief annealing temperature (600 ° C. in this case), and the maximum heating temperature is 500. ℃ was made.

【0016】また、溶接により残留応力が引張となって
いるのは溶接部8の前後50mmの範囲であるため、こ
の範囲を適当な温度に加熱する必要がある(図1の加熱
対象範囲9)。一方、管台5の上部では加熱を実施した
い範囲が管台5のみであるのに対して、下部では管台5
と鏡板4の両者となるため、熱容量に大きな差が生じ
る。また、加熱したい領域(加熱対象範囲9)も45°
程度の傾きを持って分布することになる。
Since the residual stress due to welding is tensile in the range of 50 mm before and after the welded portion 8, it is necessary to heat this range to an appropriate temperature (heating target range 9 in FIG. 1). . On the other hand, in the upper part of the nozzle 5, only the nozzle 5 needs to be heated, whereas in the lower part, the nozzle 5 is heated.
Therefore, there is a large difference in heat capacity. Also, the area to be heated (heating target range 9) is 45 °
It will be distributed with a gradient.

【0017】そこで、加熱コイル1には図1に示すよう
な、管台5の内外部に巻き付けるようなコイルとし、か
つ、熱容量の変化を考慮して、内面のコイルの形状と位
置を決定した。すなわち、熱容量の少ない管台5上部に
は内面コイルを設置せず、管台5下部に集中的に設置す
ることにした。加熱・冷却コイル1は図2に示したよう
な管A及びBの2連管構造とし、一方の管Aにはコイル
を冷却するための冷却水を加熱中常に流しておく。他方
の管Bには管台5の内面及び溶接ビード部に対している
部分に穴をあけておき、加熱後の急冷時に冷却剤を流す
ことにより、当該部に冷却剤を噴射・急冷するようにし
た。
Therefore, the heating coil 1 is a coil which is wound around the inside and outside of the nozzle 5 as shown in FIG. 1, and the shape and position of the coil on the inner surface are determined in consideration of the change in heat capacity. . That is, the inner surface coil is not installed on the upper part of the nozzle 5, which has a small heat capacity, but is concentrated on the lower part of the nozzle 5. The heating / cooling coil 1 has a double pipe structure of pipes A and B as shown in FIG. 2, and cooling water for cooling the coil is constantly supplied to one pipe A during heating. On the other side of the pipe B, holes are made in the inner surface of the nozzle stub 5 and a portion corresponding to the weld bead portion, and the coolant is injected and rapidly cooled by flowing the coolant at the time of rapid cooling after heating. I chose

【0018】また、加熱用の高周波電源の周波数は管台
5の厚さ15mmと材質(ρ=1μΩ・m、μ=1.
0)を考慮して、1kHzとした。この周波数での浸透
深さは約16mmとなり、管台5の厚さ全域に渦電流が
発生する。図1の加熱・冷却コイル1を用いて、管台5
の溶接部内面の前後50mmを350℃〜500℃に、
溶接ビード部を約400℃〜500℃に加熱できた。ま
た管台5の厚さ内外面の温度差も50℃以内であること
を確認できた。
The frequency of the high frequency power source for heating is 15 mm in thickness of the nozzle 5 and the material (ρ = 1 μΩ · m, μ = 1.
Considering 0), it was set to 1 kHz. The penetration depth at this frequency is about 16 mm, and an eddy current is generated in the entire thickness of the nozzle 5. Using the heating / cooling coil 1 shown in FIG.
50mm before and after the inner surface of the welded part of 350 to 500 ℃,
The weld bead could be heated to about 400-500 ° C. It was also confirmed that the temperature difference between the inner and outer surfaces of the nozzle stub 5 was within 50 ° C.

【0019】加熱時は均熱に加熱するため、加熱・冷却
コイル1を図1の位置に設置したが、残留応力を低減さ
せたい位置とコイルの位置がずれているため、コイルの
位置を急冷する位置に合わせるために加熱・冷却コイル
1を50mm上昇させ、管Bに冷却水を流して内外面を
水冷した。冷却水の流量は約45リットル/minであ
る。内外面を急冷(約350℃/sec)した場合の残
留応力分布を図3及び図4に示す。内外面ともに残留応
力が大きく低減していることがわかる。以上のように本
発明の方法を用いることにより、不均一な形状の溶接部
に対しても残留応力を確実に、かつ、迅速に低減させる
ことができる。
The heating / cooling coil 1 was installed at the position shown in FIG. 1 for uniform heating during heating. However, since the position where the residual stress is desired to be reduced and the position of the coil are displaced, the position of the coil is rapidly cooled. The heating / cooling coil 1 was moved up by 50 mm in order to match the position to be performed, and cooling water was flown through the pipe B to cool the inner and outer surfaces with water. The flow rate of cooling water is about 45 liters / min. 3 and 4 show residual stress distributions when the inner and outer surfaces are rapidly cooled (about 350 ° C./sec). It can be seen that the residual stress is greatly reduced on both the inner and outer surfaces. As described above, by using the method of the present invention, residual stress can be reliably and quickly reduced even in a welded portion having an uneven shape.

【0020】[0020]

【発明の効果】本発明の残留応力低減方法を用いること
により、以下のような効果がある。 施工面の残留応力を確実に低減できるため、耐SCC
性や疲労強度を向上できる。しかも、施工温度を材料の
組織変化を及ぼさない温度とできるので、いずれの場所
にも悪影響はない。 加熱コイルと冷却治具が同じであるため、施工方法が
極めて簡易となった。このため、施工時間を短くするこ
とができた。 加熱に高周波電源を用いるので、加熱温度の制御が容
易になった。また、加熱時にいかなる場所の冷却も必要
でないため、加熱電源に高価な大容量電源は必要でな
い。
The following effects are obtained by using the residual stress reducing method of the present invention. Since the residual stress on the construction surface can be reliably reduced, SCC resistance
And fatigue strength can be improved. Moreover, since the construction temperature can be a temperature that does not change the structure of the material, there is no adverse effect on any place. Since the heating coil and cooling jig are the same, the construction method has become extremely simple. Therefore, the construction time could be shortened. Since a high-frequency power source is used for heating, the heating temperature can be controlled easily. Further, since it is not necessary to cool any place at the time of heating, an expensive large capacity power source is not necessary for the heating power source.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における溶接部近傍の断面図。FIG. 1 is a sectional view of the vicinity of a welded portion in an embodiment of the present invention.

【図2】本発明で使用する冷却水流路と冷却剤流路を備
えた加熱・冷却コイルの1例を示す断面図。
FIG. 2 is a cross-sectional view showing an example of a heating / cooling coil having a cooling water channel and a coolant channel used in the present invention.

【図3】本発明の実施例における残留応力分布図。FIG. 3 is a residual stress distribution diagram in the example of the present invention.

【図4】本発明の実施例における残留応力分布図。FIG. 4 is a residual stress distribution diagram in an example of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 管継手溶接部近傍を高周波加熱により均
一に加熱し、その後、残留応力を低減しようとする側の
面を冷却する残留応力低減方法において、高周波加熱コ
イルを加熱時に冷却水を流す冷却水流路と冷却時に冷却
剤を流し冷却部に冷却剤を噴射・冷却する冷却剤流路と
を備えた加熱・冷却コイルとし、所定の温度以上に加熱
後、前記加熱・冷却コイルから冷却剤を残留応力を低減
させたい場所に噴射・急冷することを特徴とする管継手
溶接部の残留応力低減方法。
1. A residual stress reducing method for uniformly heating the vicinity of a welded portion of a pipe joint by high-frequency heating, and then cooling the surface on the side where residual stress is to be reduced. A heating / cooling coil having a cooling water flow path and a cooling agent flow path for injecting / cooling the cooling agent into the cooling part when cooling is performed, and after heating to a predetermined temperature or higher, the cooling agent from the heating / cooling coil A method for reducing residual stress in welds of pipe joints, characterized by spraying and quenching at a place where residual stress is desired to be reduced.
【請求項2】 前記加熱・冷却コイルの巻き数を、管継
手溶接部近傍内外面の被加熱材の熱容量に応じて調整す
ることを特徴とする請求項1に記載の残留応力低減方
法。
2. The method for reducing residual stress according to claim 1, wherein the number of turns of the heating / cooling coil is adjusted according to the heat capacity of the material to be heated on the inner and outer surfaces near the welded portion of the pipe joint.
【請求項3】 前記加熱・冷却コイルに流す誘導電流の
浸透深さが、管の厚さ以上となるように高周波電源の周
波数を設定することを特徴とする請求項1又は2に記載
の残留応力低減方法。
3. The residue according to claim 1, wherein the frequency of the high frequency power source is set so that the penetration depth of the induction current flowing through the heating / cooling coil is equal to or greater than the thickness of the tube. Stress reduction method.
JP12561296A 1996-05-21 1996-05-21 Residual stress reduction method Expired - Lifetime JP3439024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12561296A JP3439024B2 (en) 1996-05-21 1996-05-21 Residual stress reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12561296A JP3439024B2 (en) 1996-05-21 1996-05-21 Residual stress reduction method

Publications (2)

Publication Number Publication Date
JPH09308985A true JPH09308985A (en) 1997-12-02
JP3439024B2 JP3439024B2 (en) 2003-08-25

Family

ID=14914405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12561296A Expired - Lifetime JP3439024B2 (en) 1996-05-21 1996-05-21 Residual stress reduction method

Country Status (1)

Country Link
JP (1) JP3439024B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320626A (en) * 2004-04-06 2005-11-17 Hitachi Ltd Heat treatment method and apparatus therefor
JP2011510165A (en) * 2007-12-17 2011-03-31 マイクロ モーション インコーポレイテッド How to reduce stress in conduit and brace assemblies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320626A (en) * 2004-04-06 2005-11-17 Hitachi Ltd Heat treatment method and apparatus therefor
JP2011510165A (en) * 2007-12-17 2011-03-31 マイクロ モーション インコーポレイテッド How to reduce stress in conduit and brace assemblies

Also Published As

Publication number Publication date
JP3439024B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
JP5595658B2 (en) Apparatus and method for calculating operating parameters of forge welding apparatus
EP0764493A1 (en) Induction welding method and system for forming a fluidtight joint between metal pipes
EP3523565B1 (en) Methods of joining or repairing lined pipes and associated apparatus
KR20000036060A (en) Method for beam welding of hardenable steels by means of short-time heat treatment
JP2008132511A (en) Method and apparatus for reproducing deteriorated portion
JP3439024B2 (en) Residual stress reduction method
CN111716030B (en) Combined welding method for austenitic stainless steel structural member and low-alloy steel casting
KR20180042538A (en) IN-Situ inductive heat treatment apparatus of operating nuclear power plant piping
JP2002301577A (en) Method of joining martensitic stainless steel
JPH1072623A (en) Method for cooling induction-heated joined part and cooling device therefor
WO2009096004A1 (en) Deteriorated portion reproducing method and deteriorated portion reproducing device
JP3694364B2 (en) Induction heating diffusion bonding method
US8354625B2 (en) Apparatuses for and methods of forge welding elongated articles with electrodes and an induction coil
US4895294A (en) Method and apparatus for controlling solder flow in metallic members
JP3674085B2 (en) Heat treatment method for reactor pressure vessel nozzle
JP3694365B2 (en) Induction heating diffusion bonding method
GB2026044A (en) Heat treating butt welded tubular products
CN107175421B (en) A kind of compressive pre-stress bimetal centrifugal is cast the welding procedures of compound pipe end flanges
JPH11320120A (en) Steel pipe local joining method
KR20180041311A (en) Heat treatment method after dissimilar welding PWSCC reduction in order to improve the material microstructure
CN219709546U (en) Local heat treatment device for special-shaped welding joint
CA1265419A (en) Heat treatment with an autoregulating heater
JPS5941425A (en) Improvement in residual stress of hollow body
JP4782851B2 (en) Brazing method and brazing apparatus
KR101830532B1 (en) Heat treatment method for improving resistivity of heterojunction in nuclear power plant

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

EXPY Cancellation because of completion of term