JPH09306915A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH09306915A
JPH09306915A JP12296096A JP12296096A JPH09306915A JP H09306915 A JPH09306915 A JP H09306915A JP 12296096 A JP12296096 A JP 12296096A JP 12296096 A JP12296096 A JP 12296096A JP H09306915 A JPH09306915 A JP H09306915A
Authority
JP
Japan
Prior art keywords
film
wiring
groove
heat treatment
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12296096A
Other languages
Japanese (ja)
Other versions
JP3282496B2 (en
Inventor
Hideji Hirao
秀司 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12296096A priority Critical patent/JP3282496B2/en
Publication of JPH09306915A publication Critical patent/JPH09306915A/en
Application granted granted Critical
Publication of JP3282496B2 publication Critical patent/JP3282496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-reliability Cu wiring by lessening defects caused at forming of Cu grooves wiring by the chemical-mechanical polishing. SOLUTION: The manufacturing process comprises the steps of forming wiring groove 3 into a silicon oxide film 2 on a semiconductor substrate, depositing a TiN film 4 and Cu film 5 as a barrier metal by sputtering, filling the Cu film 5 into the wiring grooves 3 by reflow, then removing the Cu film 5, except its parts in the grooves 3 by chemical-mechanical polishing, heat- treating in a H atmosphere to lessen defects 6 in the obtained Cu wiring.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に関するものであり、特に化学機械研磨を用いて配線
を形成する半導体装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device in which wiring is formed by using chemical mechanical polishing.

【0002】[0002]

【従来の技術】従来より、シリコンよりなる半導体基板
上に形成されたLSIの配線材料としてはアルミニウム
が主に使用されてきたが、近年、半導体集積回路の高集
積化及び高速化のために、アルミニウムよりも低抵抗で
ある共に、高エレクトロマイグレーション(EM)耐性
を有する銅が配線材料として注目されている。
2. Description of the Related Art Conventionally, aluminum has been mainly used as a wiring material for an LSI formed on a semiconductor substrate made of silicon. In recent years, however, in order to achieve high integration and high speed of a semiconductor integrated circuit, Copper, which has lower resistance than aluminum and high electromigration (EM) resistance, has attracted attention as a wiring material.

【0003】上記した銅を主材料とする配線を用いた半
導体装置の製造方法における従来の一例としては、例え
ば、特開平6−120219号公報に記載されたものが
挙げられる。そこで以下では上記した従来の銅配線を有
する半導体装置の製造方法について図面を参照しながら
説明する。
As a conventional example of a method of manufacturing a semiconductor device using the above-mentioned wiring mainly made of copper, there is, for example, one described in Japanese Patent Laid-Open No. 6-120219. Therefore, a method for manufacturing the above-described conventional semiconductor device having copper wiring will be described below with reference to the drawings.

【0004】図2は従来の半導体装置の製造工程断面図
を示したものであり、配線材料としてCuを、バリアメ
タルとしてCrを用いた例である。
FIG. 2 shows a sectional view of a conventional manufacturing process of a semiconductor device, in which Cu is used as a wiring material and Cr is used as a barrier metal.

【0005】まず図2(a)に示すように、半導体基板
1上に絶縁膜としてのシリコン酸化膜2を堆積した後、
このシリコン酸化膜2をエッチングして配線を形成すべ
き溝3を形成する。次に図2(b)に示すように、溝3
を含むシリコン酸化膜2上全面にバリアメタルとしての
Cr膜7及び配線材料としてのCu膜5を順次積層して
形成する。
First, as shown in FIG. 2A, after depositing a silicon oxide film 2 as an insulating film on a semiconductor substrate 1,
This silicon oxide film 2 is etched to form a groove 3 in which a wiring is to be formed. Next, as shown in FIG. 2B, the groove 3
A Cr film 7 as a barrier metal and a Cu film 5 as a wiring material are sequentially laminated and formed on the entire surface of the silicon oxide film 2 including.

【0006】この後、図2(c)に示すように、溝3の
領域に凹部を有するCu膜5をエキシマレーザビームの
照射によって流動させてCu膜5の表面を平坦化させ
る。そして、CMP法(化学機械研磨:Chemica
l Mechanical Polishing)を用
いて溝3の領域以外の部分のCu膜5及びCr膜7を除
去し、最終的にはシリコン窒化膜8を全面に堆積して図
1(d)に示すような半導体装置を完成する。
After that, as shown in FIG. 2C, the Cu film 5 having a recess in the region of the groove 3 is made to flow by the irradiation of the excimer laser beam to flatten the surface of the Cu film 5. Then, the CMP method (chemical mechanical polishing: Chemica
1 Mechanical Polishing) to remove the Cu film 5 and the Cr film 7 in a portion other than the region of the groove 3 and finally deposit a silicon nitride film 8 on the entire surface to form a semiconductor as shown in FIG. Complete the device.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記のよ
うな従来の構成では、化学機械研磨により溝以外の配線
材料(Cu)とバリアメタル(Cr)を研磨する際に研
磨溶液(スラリー)中の研磨粒子(例えばアルミナやシ
リカの粒子)によって溝内のCu膜に欠陥が生じ、配線
の信頼性(具体的には、エレクトロマイグレーション耐
性等が挙げられる)を劣化させるという問題点を有して
いた。なお、上記の欠陥としては、例えば0.1〜0.
5μmのサイズのキズ等が挙げられる。
However, in the conventional structure as described above, when polishing the wiring material (Cu) and the barrier metal (Cr) other than the groove by the chemical mechanical polishing, the polishing in the polishing solution (slurry) is performed. There is a problem that particles (for example, particles of alumina or silica) cause defects in the Cu film in the groove and deteriorate the reliability of wiring (specifically, electromigration resistance and the like). The above defects are, for example, 0.1 to 0.
Examples include scratches having a size of 5 μm.

【0008】そして、上記の問題点は粒子を用いた研磨
を行う限り避けられない問題であり、特に銅やアルミニ
ウム等に代表されるように、化学機械研磨に用いられる
研磨溶液中の研磨粒子よりもかなり柔らかい導電性材料
を使用する場合に顕著な問題となる。今後、さらに配線
の微細化が進むことを考慮すると、わずかな配線の欠陥
によっても信頼性を著しく劣化させることが予想され
る。
The above problems are unavoidable as long as the particles are used for polishing. Particularly, as represented by copper, aluminum, etc., it is more difficult than polishing particles in a polishing solution used for chemical mechanical polishing. Is a significant problem when using a fairly soft conductive material. Considering further miniaturization of wirings in the future, even a slight wiring defect is expected to significantly deteriorate reliability.

【0009】従って、本発明は上記の問題点に鑑み、そ
の目的とするところは、化学機械研磨を用いて形成した
配線の高信頼性化を図ることにある。
Therefore, in view of the above problems, the present invention has an object to improve reliability of a wiring formed by chemical mechanical polishing.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は化学機械研磨により形成された金属表面の
欠陥を還元性雰囲気で熱処理することにより低減するも
のである。
In order to achieve the above object, the present invention reduces the defects on the metal surface formed by chemical mechanical polishing by heat treatment in a reducing atmosphere.

【0011】具体的に請求項1の発明が講じた解決手段
は、半導体装置の製造方法を、半導体基板上に絶縁膜を
形成する工程と、前記絶縁膜に開口部を形成する工程
と、前記開口部内を含む前記絶縁膜上に導電膜を形成す
る工程と、前記導電膜よりも硬い研磨粒子を用いた化学
機械研磨によって前記開口部内以外の前記導電膜を除去
する工程と、その後還元性雰囲気中で熱処理を行う工程
とを有する構成とするものである。
Specifically, the solution means taken by the invention of claim 1 is a method of manufacturing a semiconductor device, which comprises a step of forming an insulating film on a semiconductor substrate, a step of forming an opening in the insulating film, A step of forming a conductive film on the insulating film including the inside of the opening, a step of removing the conductive film except the inside of the opening by chemical mechanical polishing using abrasive particles harder than the conductive film, and then a reducing atmosphere And a step of performing heat treatment therein.

【0012】請求項2の発明は、半導体装置の製造方法
を、半導体基板上に絶縁膜を形成する工程と、前記絶縁
膜に配線パターンを有する溝を形成する工程と、前記溝
内を含む前記絶縁膜上にバリア膜を形成する工程と、前
記バリア膜上に導電膜を堆積して前記溝内に充填する工
程と、前記導電膜よりも硬い研磨粒子を用いた化学機械
研磨によって前記溝内以外の前記導電膜を除去する工程
と、その後還元性雰囲気中で熱処理を行う工程とを有す
る構成とするものである。
According to a second aspect of the present invention, there is provided a method of manufacturing a semiconductor device, including the steps of forming an insulating film on a semiconductor substrate, forming a groove having a wiring pattern in the insulating film, and including the inside of the groove. A step of forming a barrier film on the insulating film; a step of depositing a conductive film on the barrier film to fill the groove; and a step of chemical mechanical polishing using abrasive particles harder than the conductive film in the groove. It is configured to include a step of removing the conductive film other than the above, and a step of performing heat treatment in a reducing atmosphere thereafter.

【0013】また、請求項3の発明が講じた解決手段
は、特に還元性雰囲気中での熱処理温度が導電膜の堆積
温度または堆積後の処理温度以上の温度であることを特
徴とするものである。
Further, the solution means taken by the invention of claim 3 is characterized in that the heat treatment temperature in a reducing atmosphere is higher than or equal to the deposition temperature of the conductive film or the treatment temperature after the deposition. is there.

【0014】さらに、請求項4の発明が講じた解決手段
は、特に導電膜が銅あるいは銅合金であることを特徴と
するものである。
Further, a solution means taken by the invention of claim 4 is characterized in that the conductive film is copper or a copper alloy.

【0015】そして請求項1または請求項2の構成によ
り、配線パターンを有する溝内あるいは拡散層及び配線
層に達する開口部内を含む絶縁膜上に形成された導電膜
及びバリア膜を化学機械研磨する際に、導電膜表面に生
じた欠陥を還元性雰囲気で熱処理することにより低減す
る。従来のように、化学機械研磨により生じた欠陥を残
したまま配線あるいは電極を形成すると信頼性に悪影響
を及ぼすが、熱処理にる再結晶化によって欠陥を低減す
ることにより、配線及び電極部の信頼性を向上させるこ
とができる。
According to the structure of claim 1 or 2, the conductive film and the barrier film formed on the insulating film in the groove having the wiring pattern or in the diffusion layer and the opening reaching the wiring layer are chemically mechanically polished. At that time, defects generated on the surface of the conductive film are reduced by heat treatment in a reducing atmosphere. When wiring or electrodes are formed while leaving defects caused by chemical mechanical polishing as in the past, the reliability is adversely affected, but by reducing the defects by recrystallization during heat treatment, the reliability of the wiring and electrode parts is reduced. It is possible to improve the sex.

【0016】[0016]

【発明の実施形態】以下本発明の一実施の形態における
半導体装置の製造方法について、図面を参照しながら説
明する。なお、本実施の形態では、本発明の効果が最も
現れる配線材料がCuである場合を例に挙げて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings. In the present embodiment, the case where the wiring material in which the effect of the present invention is most exhibited is Cu will be described as an example.

【0017】図1は本発明の実施の形態における半導体
装置の製造方法の工程断面図を示したものであり、この
図1において、1は半導体基板、2は絶縁膜としてのシ
リコン酸化膜、3は配線パターンを形成するための開口
部としての溝、4はバリアメタル(バリア膜)としての
窒化チタン(TiN)膜、5は銅(Cu)配線、6は研
磨によって生じた欠陥を示している。
FIG. 1 is a process sectional view of a method for manufacturing a semiconductor device according to an embodiment of the present invention. In FIG. 1, 1 is a semiconductor substrate, 2 is a silicon oxide film as an insulating film, and 3 is a semiconductor substrate. Is a groove as an opening for forming a wiring pattern, 4 is a titanium nitride (TiN) film as a barrier metal (barrier film), 5 is a copper (Cu) wiring, and 6 is a defect caused by polishing. .

【0018】そこで以下では図1(a)〜(e)を参照
しながら本実施の形態における半導体装置の製造方法に
ついて詳細に説明する。
Therefore, a method of manufacturing the semiconductor device according to the present embodiment will be described in detail below with reference to FIGS.

【0019】まず図1(a)に示すように、シリコン等
により構成され、かつトランジスタ素子や容量素子等の
LSIを構成する各素子(図には示していない)が形成
されている半導体基板1上に絶縁膜としてのシリコン酸
化膜2を形成し、その後上記のシリコン酸化膜2をエッ
チングして、シリコン酸化膜2に所望の配線を形成する
ための配線パターンを有する溝3を形成する。
First, as shown in FIG. 1A, a semiconductor substrate 1 is formed of silicon or the like, and on which are formed respective elements (not shown) constituting an LSI such as a transistor element and a capacitive element. A silicon oxide film 2 as an insulating film is formed on the silicon oxide film 2, and then the silicon oxide film 2 is etched to form a groove 3 having a wiring pattern for forming a desired wiring in the silicon oxide film 2.

【0020】次に図1(b)に示すように、バリアメタ
ルとして約20nmの膜厚を有するTiN膜4をCVD
法により堆積した後、スパッタ法により約0.8μmの
Cu膜を堆積する。この時、図に示すように、溝3内は
完全にはCuにより埋め込まれた状態とはなっていな
い。そこで、図1(b)に示された半導体装置に対し
て、ロードロック付きの熱処理炉を用いて水素雰囲気中
で15分間、400℃で加熱するという熱処理を施すこ
とにより、Cu膜5を配線溝3内に充填する(図1
(c))。
Next, as shown in FIG. 1B, a TiN film 4 having a film thickness of about 20 nm is deposited as a barrier metal by CVD.
Then, a Cu film of about 0.8 μm is deposited by the sputtering method. At this time, as shown in the drawing, the groove 3 is not completely filled with Cu. Therefore, the semiconductor device shown in FIG. 1B is subjected to a heat treatment of heating at 400 ° C. for 15 minutes in a hydrogen atmosphere using a heat treatment furnace with a load lock, thereby wiring the Cu film 5. Fill the groove 3 (Fig. 1
(C)).

【0021】なお、本実施の形態では、上記したように
Cu配線のバリア層としてCVD法で堆積したTiN膜
を用いているが、必ずしもTiN膜である必要性はな
く、300℃〜600℃の熱処理によってもシリコン酸
化膜中へCuが拡散しない膜であればよく、例えばプラ
ズマCVDを用いたシリコン窒化膜や、選択CVDを用
いてCu膜上のみに形成するタングステンやアルミニウ
ムなどが挙げられる。また、上記の場合、スパッタ法に
より溝へCuを埋め込んでいるため、その後のロードロ
ック付きの熱処理によりCuを流動させて平坦化を行な
う必要性があり、熱処理を施しているが、例えばCVD
法により配線材料を埋め込むことができれば必ずしもそ
の後の熱処理は必要とはしない。
In the present embodiment, the TiN film deposited by the CVD method is used as the barrier layer of the Cu wiring as described above, but the TiN film is not necessarily a TiN film and may be 300 ° C. to 600 ° C. Any film may be used as long as Cu does not diffuse into the silicon oxide film even by the heat treatment, and examples thereof include a silicon nitride film using plasma CVD, and tungsten and aluminum formed only on the Cu film by using selective CVD. Further, in the above case, since Cu is buried in the groove by the sputtering method, it is necessary to flow Cu for flattening by subsequent heat treatment with a load lock.
If the wiring material can be embedded by the method, the subsequent heat treatment is not always necessary.

【0022】次に図1(d)に示すように、化学機械研
磨によって配線溝3内部以外のCu膜5及びTiN膜4
を除去してCu溝配線を形成する。その後、基板に残存
する研磨液及び研磨粒子等を除去するための洗浄処理を
行うわけであるが、図1(d)に示すように、化学機械
研磨後には、研磨液(スラリー)内の研磨粒子によって
Cu配線表面に欠陥が生じているため、この欠陥が生じ
た配線をそのまま放置しておくとCu配線の信頼性が低
下してしまう。
Next, as shown in FIG. 1D, the Cu film 5 and the TiN film 4 other than inside the wiring groove 3 are formed by chemical mechanical polishing.
Is removed to form a Cu groove wiring. After that, a cleaning process for removing the polishing liquid, polishing particles, and the like remaining on the substrate is performed. As shown in FIG. 1D, after chemical mechanical polishing, polishing in the polishing liquid (slurry) is performed. Since particles cause defects on the surface of the Cu wiring, if the wiring having the defects is left as it is, the reliability of the Cu wiring deteriorates.

【0023】そこで本発明では、上記の欠陥を低減する
ために、図1(d)に示す状態の半導体装置に対して、
再度ロードロック付きの熱処理炉を用いて水素雰囲気中
で430℃、15分間の熱処理を行い、Cu膜5の配線
の表面の欠陥を低減させる(図1(e))。
Therefore, in the present invention, in order to reduce the above defects, the semiconductor device in the state shown in FIG.
The heat treatment furnace with a load lock is used again to perform heat treatment at 430 ° C. for 15 minutes in a hydrogen atmosphere to reduce defects on the surface of the wiring of the Cu film 5 (FIG. 1E).

【0024】上記のように図1(e)に示す工程におい
て、ロードロック付きの熱処理炉を使用するのは、ウエ
ハを炉内に挿入する際に大気の巻き込みによってCu膜
表面が熱酸化されることを防止するためである。また水
素雰囲気で熱処理を行うのは、Cu表面に形成された自
然酸化膜を還元し、Cu膜の欠陥を低減し易くする為で
あるが、本実施の形態においては、上記のように必ずし
もCu膜表面に形成された欠陥を低減する熱処理を水素
雰囲気中で行う必要性はなく、Cu膜表面に形成されて
いる自然酸化膜を還元できるものであれば、水素を含む
雰囲気あるいはアンモニアガスを含む雰囲気でもよい。
As described above, in the step shown in FIG. 1 (e), the heat treatment furnace with a load lock is used because the surface of the Cu film is thermally oxidized by the entrainment of air when the wafer is inserted into the furnace. This is to prevent this. Further, the heat treatment is performed in a hydrogen atmosphere in order to reduce the natural oxide film formed on the Cu surface and to easily reduce defects in the Cu film. However, in the present embodiment, as described above, the Cu film is not always required. It is not necessary to perform the heat treatment for reducing defects formed on the film surface in a hydrogen atmosphere, and an atmosphere containing hydrogen or an ammonia gas is included as long as it can reduce the natural oxide film formed on the Cu film surface. Atmosphere is okay.

【0025】そして本実施の形態では、上記したよう
に、化学機械研磨により平坦化を行なう前の熱処理(言
い換えれば、配線パターンを有する溝への充填の為の熱
処理)時の温度よりも高い温度で化学機械研磨の際に生
じた欠陥を低減する熱処理を行なっているが、このよう
に、銅の堆積時の温度あるいは配線パターンを有する溝
への充填の為の熱処理温度以上の温度で欠陥回復の為の
熱処理を行えば、埋め込まれたCu等の配線材料の結晶
性が更に改善されるため、本発明の効果は大きくなる。
In the present embodiment, as described above, a temperature higher than the temperature during the heat treatment before the planarization by chemical mechanical polishing (in other words, the heat treatment for filling the groove having the wiring pattern). In this way, heat treatment is performed to reduce the defects generated during chemical mechanical polishing. In this way, the defect recovery is performed at the temperature at the time of copper deposition or at a temperature higher than the heat treatment temperature for filling trenches with wiring patterns. If the heat treatment for this purpose is performed, the crystallinity of the embedded wiring material such as Cu is further improved, and the effect of the present invention is enhanced.

【0026】なお、本実施の形態においては、Cu膜表
面に形成された欠陥を低減する還元性雰囲気での熱処理
はロードロック付き熱処理炉を使用したが、Cu膜表面
に熱酸化膜を形成しないような方法であれば、RTA
(Rapid ThermalAnneal)装置や加
熱機構を備えた真空チャンバーを用いることも可能であ
る。
In the present embodiment, a heat treatment furnace with a load lock is used for the heat treatment in a reducing atmosphere for reducing defects formed on the Cu film surface, but a thermal oxide film is not formed on the Cu film surface. If it is such a method, RTA
It is also possible to use a vacuum chamber equipped with a (Rapid Thermal Anneal) device and a heating mechanism.

【0027】また、本実施の形態においては、配線パタ
ーンを有する溝へのCuの充填と化学機械研磨によりC
u配線を形成したが、本発明は必ずしも、絶縁膜に形成
された溝に対してCu配線を埋め込むものにしか適用で
きないものではなく、半導体基板上の拡散層や配線層へ
達する開口部へ金属電極を形成する場合においても効果
があることは言うまでもない。その具体的な例を挙げる
と、例えばコンタクトホールやスルーホールへ選択CV
D法によってAl、W、Cu等の金属を成長させ、ホー
ルより溢れた金属を除去する場合や、上記した実施の形
態における溝への埋め込み配線の材料としてCu−Ti
や他のCu合金、アルミニウムやその合金等の化学機械
研磨に使用する研磨粒子よりも柔らかい金属を用いる場
合である。上記のうち、Al等を配線材料として用いる
場合は、バリアメタルを必ずしも形成する必要性はな
く、本発明は、シリコン酸化膜等の絶縁膜にエッチング
により形成された溝に対して埋め込まれた導電膜を化学
機械研磨により平坦化するような場合全てに対して適用
することができるものである。
Further, in this embodiment, C is filled by filling Cu into the groove having the wiring pattern and performing chemical mechanical polishing.
Although the u wiring is formed, the present invention is not necessarily applicable only to the one in which the Cu wiring is embedded in the groove formed in the insulating film, and the metal is formed in the opening reaching the diffusion layer or the wiring layer on the semiconductor substrate. It goes without saying that it is also effective when forming electrodes. To give a specific example, for example, select CV for contact holes and through holes.
When a metal such as Al, W, or Cu is grown by the D method to remove the metal overflowing from the holes, or Cu-Ti is used as a material for the buried wiring in the groove in the above-described embodiment.
This is the case when using a metal softer than the abrasive particles used for chemical mechanical polishing such as Cu, other Cu alloys, aluminum and its alloys. Of the above, when Al or the like is used as the wiring material, it is not always necessary to form the barrier metal, and the present invention provides a conductive film embedded in a groove formed by etching an insulating film such as a silicon oxide film. It can be applied to all cases where a film is planarized by chemical mechanical polishing.

【0028】さらに、本実施の形態では、ロードロック
付きの熱処理炉を再度用いて水素雰囲気中での熱処理を
行い、Cuの配線の表面の欠陥を低減させているが、C
uを配線材料として用いた場合など、埋め込まれた配線
上に再度バリアメタルを形成するような場合は、このバ
リア膜堆積装置内でバリア膜堆積前に還元性雰囲気中で
欠陥低減の為の熱処理を行うとより効率的に化学機械研
磨の際に生じた欠陥の低減を図ることができる。
Furthermore, in the present embodiment, the heat treatment furnace with a load lock is used again to perform heat treatment in a hydrogen atmosphere to reduce defects on the surface of Cu wiring.
When a barrier metal is formed again on the embedded wiring, for example, when u is used as a wiring material, heat treatment for reducing defects in a reducing atmosphere in the barrier film deposition apparatus before the barrier film is deposited. By performing the above, it is possible to more efficiently reduce the defects generated during the chemical mechanical polishing.

【0029】[0029]

【発明の効果】以上のように本発明はCu溝配線を化学
機械研磨で形成する際のCu配線の欠陥を水素雰囲気の
熱処理によって改善することによって、高信頼性を有す
るCu溝配線を形成することができる。
As described above, according to the present invention, a Cu groove wiring having high reliability is formed by improving defects of the Cu wiring when the Cu groove wiring is formed by chemical mechanical polishing by heat treatment in a hydrogen atmosphere. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態における半導体装置の製造
工程断面図
FIG. 1 is a sectional view of a manufacturing process of a semiconductor device according to an embodiment of the present invention.

【図2】従来の半導体装置の製造工程断面図FIG. 2 is a sectional view of a conventional semiconductor device manufacturing process.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 シリコン酸化膜 3 配線パターンを有する溝 4 窒化チタン(TiN)膜 5 銅(Cu)膜 6 研磨によって生じた欠陥 7 クロム(Cr)膜 8 シリコン窒化膜 1 semiconductor substrate 2 silicon oxide film 3 groove having wiring pattern 4 titanium nitride (TiN) film 5 copper (Cu) film 6 defects caused by polishing 7 chromium (Cr) film 8 silicon nitride film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に絶縁膜を形成する工程と、
前記絶縁膜に開口部を形成する工程と、前記開口部内を
含む前記絶縁膜上に導電膜を形成する工程と、前記導電
膜よりも硬い研磨粒子を用いた化学機械研磨によって前
記開口部内以外の前記導電膜を除去する工程と、その後
還元性雰囲気中で熱処理を行う工程とを有する半導体装
置の製造方法。
A step of forming an insulating film on a semiconductor substrate;
A step of forming an opening in the insulating film; a step of forming a conductive film on the insulating film including the inside of the opening; and a step other than the inside of the opening by chemical mechanical polishing using abrasive particles harder than the conductive film. A method of manufacturing a semiconductor device, comprising: a step of removing the conductive film; and a step of subsequently performing heat treatment in a reducing atmosphere.
【請求項2】半導体基板上に絶縁膜を形成する工程と、
前記絶縁膜に配線パターンを有する溝を形成する工程
と、前記溝内を含む前記絶縁膜上にバリア膜を形成する
工程と、前記バリア膜上に導電膜を堆積して前記溝内に
充填する工程と、前記導電膜よりも硬い研磨粒子を用い
た化学機械研磨によって前記溝内以外の前記導電膜を除
去する工程と、その後還元性雰囲気中で熱処理を行う工
程とを有する半導体装置の製造方法。
2. A step of forming an insulating film on a semiconductor substrate,
Forming a groove having a wiring pattern in the insulating film, forming a barrier film on the insulating film including the inside of the groove, and depositing a conductive film on the barrier film to fill the inside of the groove A method for manufacturing a semiconductor device, which comprises a step, a step of removing the conductive film other than in the groove by chemical mechanical polishing using abrasive particles harder than the conductive film, and a step of performing heat treatment in a reducing atmosphere thereafter. .
【請求項3】還元性雰囲気中での熱処理温度が導電膜の
堆積温度または堆積後の処理温度以上の温度であること
を特徴とする請求項1または2に記載の半導体装置の製
造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the heat treatment temperature in the reducing atmosphere is equal to or higher than the deposition temperature of the conductive film or the processing temperature after deposition.
【請求項4】導電膜が銅あるいは銅合金であることを特
徴とする請求項1〜3何れかに記載の半導体装置の製造
方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein the conductive film is copper or a copper alloy.
JP12296096A 1996-05-17 1996-05-17 Method for manufacturing semiconductor device Expired - Lifetime JP3282496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12296096A JP3282496B2 (en) 1996-05-17 1996-05-17 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12296096A JP3282496B2 (en) 1996-05-17 1996-05-17 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH09306915A true JPH09306915A (en) 1997-11-28
JP3282496B2 JP3282496B2 (en) 2002-05-13

Family

ID=14848891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12296096A Expired - Lifetime JP3282496B2 (en) 1996-05-17 1996-05-17 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3282496B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716749B2 (en) 1999-08-10 2004-04-06 Renesas Technology Corporation Semiconductor integrated circuit device and manufacturing method of semiconductor integrated circuit device
JP2004523132A (en) * 2001-07-10 2004-07-29 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method for locally increasing sidewall density by ion implantation
KR100469338B1 (en) * 1997-12-30 2005-05-17 주식회사 하이닉스반도체 MOS PET Metal Film Formation Method
JP2006179950A (en) * 2006-02-15 2006-07-06 Renesas Technology Corp Manufacturing method of semiconductor integrated circuit device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469338B1 (en) * 1997-12-30 2005-05-17 주식회사 하이닉스반도체 MOS PET Metal Film Formation Method
US6716749B2 (en) 1999-08-10 2004-04-06 Renesas Technology Corporation Semiconductor integrated circuit device and manufacturing method of semiconductor integrated circuit device
US6756679B2 (en) 1999-08-10 2004-06-29 Hitachi, Ltd. Semiconductor integrated circuit device and manufacturing method of semiconductor integrated circuit device
US6797606B2 (en) 1999-08-10 2004-09-28 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method of semiconductor integrated circuit device
US6797609B2 (en) 1999-08-10 2004-09-28 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method of semiconductor integrated circuit device
US6815330B2 (en) 1999-08-10 2004-11-09 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method of semiconductor integrated circuit device
US6849535B2 (en) 1999-08-10 2005-02-01 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method of semiconductor integrated circuit device
US6864169B2 (en) 1999-08-10 2005-03-08 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method of semiconductor integrated circuit device
JP2004523132A (en) * 2001-07-10 2004-07-29 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method for locally increasing sidewall density by ion implantation
JP2006179950A (en) * 2006-02-15 2006-07-06 Renesas Technology Corp Manufacturing method of semiconductor integrated circuit device

Also Published As

Publication number Publication date
JP3282496B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
TW483105B (en) A semiconductor integrated circuit device and a method of manufacturing the same
JP4350337B2 (en) Semiconductor device
JPWO2004061931A1 (en) Semiconductor device having multilayer wiring structure and method for manufacturing the same
KR100319588B1 (en) Method for forming interconnection structure
JP4567587B2 (en) Manufacturing method of semiconductor device
US6569756B1 (en) Method for manufacturing a semiconductor device
JP4638140B2 (en) Method for forming copper wiring of semiconductor element
US7897508B2 (en) Method to eliminate Cu dislocation for reliability and yield
JP3634994B2 (en) Wiring forming method and semiconductor device manufacturing method
JPH10335657A (en) Manufacture of semiconductor device
JPH09306915A (en) Manufacture of semiconductor device
US6448172B1 (en) Manufacturing method of forming interconnection in semiconductor device
JP2005142481A (en) Manufacturing method of semiconductor device
JPH11191556A (en) Manufacture of semiconductor device and forming method of copper or copper alloy pattern
US6486555B2 (en) Semiconductor device having a contact structure using aluminum
JP4173393B2 (en) Manufacturing method of semiconductor device
JP2007081130A (en) Method of manufacturing semiconductor device
JPH11317452A (en) Semiconductor device and manufacture thereof
JP3189788B2 (en) Method of forming copper wiring
JP2001176872A (en) Method for manufacturing semiconductor device
JP4605995B2 (en) Method for forming wiring structure
JPH118304A (en) Manufacture of semiconductor device
JP2004056096A (en) Method for forming wiring structure
JPH10209159A (en) Method for forming metal wiring
JPH06275620A (en) Wiring structure of semiconductor integrated circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140301

Year of fee payment: 12

EXPY Cancellation because of completion of term