JPH09306445A - Organic electrolytic battery - Google Patents

Organic electrolytic battery

Info

Publication number
JPH09306445A
JPH09306445A JP8125815A JP12581596A JPH09306445A JP H09306445 A JPH09306445 A JP H09306445A JP 8125815 A JP8125815 A JP 8125815A JP 12581596 A JP12581596 A JP 12581596A JP H09306445 A JPH09306445 A JP H09306445A
Authority
JP
Japan
Prior art keywords
tetrafluoroethylene
copolymer resin
positive electrode
sealing gasket
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8125815A
Other languages
Japanese (ja)
Inventor
Norishige Yamaguchi
典重 山口
Hiroshi Nagashima
浩 長嶋
Hiroyuki Yamada
弘幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8125815A priority Critical patent/JPH09306445A/en
Publication of JPH09306445A publication Critical patent/JPH09306445A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery which holds superior air tightness for a long time and has high reliability by using one of specific copolymer resins or mixtures of these resins for a sealing gasket for sealing between a positive electrode can and a negative electrode cup. SOLUTION: For example, a coin-shaped lithium battery is so formed that a negative active material 1 composed of lithium, etc., and a positive electrode mix 2 composed of manganese dioxide, or the like are arranged opposed to each other via a separator 4, and a positive electrode can 3 and a negative electrode cup 5 are sealedly fitted to each other via a sealing gasket 6. This gasket 6 is composed of either one of tetrafluoroethylene-ethylene copolymer resin, tetrafluoroethylene-perfluoroalkoxyethylene copolymer resin, or a mixture of tetrafluoroethylene-ethylene copolymer resin and tetrafluoroethylene- perfluoroalkoxyethylene copolymer resin. All of them are superior in elasticity, adhesion, and formability for a long time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機電解質電池に
関し、さらに詳しくは、負極活物質と正極合剤とがセパ
レータを介して対向配置され、電池缶内に封口ガスケッ
トを介して密封される有機電解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte battery, and more specifically, an organic electrolyte in which a negative electrode active material and a positive electrode mixture are opposed to each other with a separator interposed therebetween and sealed in a battery can via a sealing gasket. It relates to an electrolyte battery.

【0002】[0002]

【従来の技術】近年、電子手帳、電子計算機、携帯型電
話機等の小型コードレス電子機器の発達には目を見張る
ものがあり、これ等の電源には長寿命、高電圧、高エネ
ルギー密度および小型であるコイン形リチウム電池等の
有機電解質電池が多く用いられている。この有機電解質
電池の一例であるコイン形リチウム電池の構造について
図1を参照して説明する。
2. Description of the Related Art In recent years, the development of small cordless electronic devices such as electronic notebooks, electronic calculators, and mobile phones has been remarkable, and these power supplies have long life, high voltage, high energy density and small size. The organic electrolyte battery such as a coin-type lithium battery is often used. The structure of a coin-type lithium battery, which is an example of this organic electrolyte battery, will be described with reference to FIG.

【0003】図1は、コイン形リチウム電池の概略側面
断面図である。リチウムまたはリチウム合金等で構成さ
れた円盤状の負極活物質1が負極カップ5内に収納さ
れ、二酸化マンガンまたはフッ化黒鉛等を導電材や結着
材とともに混合し、ペレット状に成形された正極合剤2
が正極缶3に収納されている。そして、負極活物質1と
正極合剤2とはセパレータ4を介して対向配置され、正
極缶3と負極カップ5とは封口ガスケット6を介する嵌
合により密封されている。この封口ガスケット6は、リ
チウム等の負極活物質1が水分と反応すると閉路電圧特
性や容量保存性等の電気特性が劣化するため、電池缶内
に水分が侵入することを防止する役割も兼ねている。従
来、この封口ガスケット6の構成材質としては、比較的
安価であり且つ射出成形が容易であるポリプロピレン樹
脂やポリエチレン樹脂等のポリオレフィン系樹脂、また
は撥水性が大であるとともに正極缶3や負極カップ5を
構成する金属との密着性も大であるポリテトラフルオロ
エチレン樹脂等のフッ素系樹脂が用いられている。
FIG. 1 is a schematic side sectional view of a coin type lithium battery. A disk-shaped negative electrode active material 1 made of lithium or a lithium alloy is housed in a negative electrode cup 5, and manganese dioxide, fluorinated graphite, or the like is mixed with a conductive material or a binder to form a pellet-shaped positive electrode. Mixture 2
Are stored in the positive electrode can 3. The negative electrode active material 1 and the positive electrode mixture 2 are disposed to face each other with the separator 4 interposed therebetween, and the positive electrode can 3 and the negative electrode cup 5 are hermetically sealed by fitting through the sealing gasket 6. The sealing gasket 6 also serves to prevent moisture from entering the battery can because the negative electrode active material 1 such as lithium reacts with moisture to deteriorate electrical characteristics such as closed-circuit voltage characteristics and capacity preservation. There is. Conventionally, as a constituent material of the sealing gasket 6, a polyolefin resin such as polypropylene resin or polyethylene resin, which is relatively inexpensive and easy to injection-mold, or has a large water repellency, and the positive electrode can 3 or the negative electrode cup 5 is used. A fluorine-based resin such as polytetrafluoroethylene resin, which has a high adhesiveness with the metal constituting the, is used.

【0004】しかしながら、ポリオレフィン系樹脂で構
成された封口ガスケット6は、正極缶3や負極カップ5
を構成する金属との密着性やポリオレフィン系樹脂自体
の弾性が小であり、経時的な弾性の劣化も大であるた
め、正極缶3と負極カップ5との間の気密性を長期間維
持するものとして不十分なものであった。これを改善す
る手段として、アスファルトやクロロスルフォン化ポリ
エチレン樹脂等のシール剤を補充するものもあるが、こ
れ等のシール剤は粘着性を有するため、製造工程で多く
の工数を要し生産性を阻害する一因となっていた。
However, the sealing gasket 6 made of polyolefin resin is used for the positive electrode can 3 and the negative electrode cup 5.
Since the adhesiveness with the metal constituting the above and the elasticity of the polyolefin resin itself are small and the elasticity deteriorates over time, the airtightness between the positive electrode can 3 and the negative electrode cup 5 is maintained for a long time. It was inadequate. As a means to improve this, there is a method of supplementing a sealing agent such as asphalt or chlorosulfonated polyethylene resin, but since these sealing agents have adhesiveness, a lot of man-hours are required in the manufacturing process and productivity is increased. It was one of the factors that hindered it.

【0005】また、フッ素系樹脂で封口ガスケット6を
構成すれば、正極缶3や負極カップ5を構成する金属と
の密着性および弾性ともに大であり、正極缶3と負極カ
ップ5との間の気密性を維持するものとして十分満足す
る性能を有するものとすることができるが、射出成形に
よる複雑な形状の成形が困難であり所望する形状のもの
が得られないと言う問題があった。
Further, if the sealing gasket 6 is made of a fluorine-based resin, the adhesion and elasticity with the metal forming the positive electrode can 3 and the negative electrode cup 5 are large, and the space between the positive electrode can 3 and the negative electrode cup 5 is large. Although it is possible to have a sufficiently satisfactory performance for maintaining the airtightness, there is a problem that it is difficult to mold a complicated shape by injection molding and a desired shape cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、良好
な気密性を長期間維持する封口ガスケット材を提供し、
高信頼性を有する有機電解質電池を提供することであ
る。
An object of the present invention is to provide a sealing gasket material that maintains good airtightness for a long period of time,
An object is to provide an organic electrolyte battery having high reliability.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の有機電解質電池では、封口ガスケットが四
フッ化エチレン・エチレン共重合樹脂、四フッ化エチレ
ン・パーフルオロアルコキシエチレン共重合樹脂、ある
いは四フッ化エチレン・エチレン共重合樹脂と四フッ化
エチレン・パーフルオロアルコキシエチレン共重合樹脂
との混合物の何れかであることを特徴とする。
In order to solve the above problems, in the organic electrolyte battery of the present invention, the sealing gasket has a tetrafluoroethylene / ethylene copolymer resin or a tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin. Or a mixture of a tetrafluoroethylene / ethylene copolymer resin and a tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin.

【0008】上述した手段による作用としては、四フッ
化エチレン・エチレン共重合樹脂、四フッ化エチレン・
パーフルオロアルコキシエチレン共重合樹脂、四フッ化
エチレン・エチレン共重合樹脂と四フッ化エチレン・パ
ーフルオロアルコキシエチレン共重合樹脂との混合物の
何れも長期間弾性を有するとともに、四フッ化エチレン
・エチレン共重合樹脂を構成するエチレン、四フッ化エ
チレン・パーフルオロアルコキシエチレン共重合樹脂を
構成するパーフルオロアルコキシエチレンは何れも正極
缶と負極カップを構成する金属との密着性を大とする作
用がある。従って、正極缶と負極カップとの間の気密性
を長期間維持することができる。また、成形性が良く、
所望する形状の封口ガスケットを射出成形により容易に
成形することができる。
The action of the above means is as follows: tetrafluoroethylene / ethylene copolymer resin, tetrafluoroethylene /
Both the perfluoroalkoxyethylene copolymer resin and the mixture of the tetrafluoroethylene / ethylene copolymer resin and the tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin have long-term elasticity and Both ethylene which constitutes the polymer resin and perfluoroalkoxyethylene which constitutes the tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin have an effect of increasing the adhesion between the positive electrode can and the metal constituting the negative electrode cup. Therefore, the airtightness between the positive electrode can and the negative electrode cup can be maintained for a long period of time. Also, the moldability is good,
A sealing gasket having a desired shape can be easily molded by injection molding.

【0009】[0009]

【実施例】以下、具体的な実施例として、四フッ化エチ
レン・エチレン共重合樹脂、四フッ化エチレン・パーフ
ルオロアルコキシエチレン共重合樹脂、四フッ化エチレ
ン・エチレン共重合樹脂と四フッ化エチレン・パーフル
オロアルコキシエチレン共重合樹脂との混合物の三種
類、比較例として従来より使用されているポリオレフィ
ン系樹脂の一例であるポリプロピレン樹脂の、以上四種
類の封口ガスケットを射出成形で作製し、これを用いて
有機電解質電池の一例であるコイン形リチウム電池を各
々作製した。そして、封口ガスケットの気密性の評価方
法としては温度60℃、相対湿度90%の雰囲気に四種
類の封口ガスケットで作製したコイン形リチウム電池を
放置し、放電容量、閉路電圧、内部抵抗および漏液発生
数の経時変化で比較した。
[Examples] The following are specific examples of tetrafluoroethylene / ethylene copolymer resin, tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin, tetrafluoroethylene / ethylene copolymer resin and tetrafluoroethylene.・ Three types of sealing gaskets of three types of mixture with perfluoroalkoxyethylene copolymer resin and polypropylene resin, which is one example of polyolefin resin conventionally used as a comparative example, were prepared by injection molding. A coin-shaped lithium battery, which is an example of an organic electrolyte battery, was produced by using each of the batteries. Then, as a method for evaluating the airtightness of the sealing gasket, a coin-type lithium battery made of four kinds of sealing gaskets is left in an atmosphere of a temperature of 60 ° C. and a relative humidity of 90%, and the discharge capacity, the closed circuit voltage, the internal resistance, and the leakage of liquid. The time-dependent changes in the number of occurrences were compared.

【0010】先ず、放電容量の経時変化を表1に示す。
なお、サンプル数は各々10個であり、表中の数字はそ
の平均値である。
First, Table 1 shows the change with time in discharge capacity.
The number of samples is 10, and the numbers in the table are average values.

【0011】[0011]

【表1】 [Table 1]

【0012】表1において、作製時に対する100日経
過したものの劣化率を見ると、四フッ化エチレン・エチ
レン共重合樹脂のものが−7.5%、四フッ化エチレン
・パーフルオロアルコキシエチレン共重合樹脂のものが
−8%、四フッ化エチレン・エチレン共重合樹脂と四フ
ッ化エチレン・パーフルオロアルコキシエチレン共重合
樹脂との混合物のものが−7.9%に対して、比較例の
ポリプロピレン樹脂のものでは−17.1%であった。
[0012] In Table 1, the deterioration rate of 100 days after the production was examined, and the tetrafluoroethylene / ethylene copolymer resin was -7.5%, and the tetrafluoroethylene / perfluoroalkoxyethylene copolymer was The resin content was -8%, and the mixture content of tetrafluoroethylene / ethylene copolymer resin and tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin was -7.9%. The value was -17.1%.

【0013】次ぎに、閉路電圧の経時変化を表2に示
す。なお、閉路電圧は−10℃において、負荷抵抗50
0Ωで15秒間放電を行った後、測定したものである。
そして、サンプル数は各々20個であり、表中の数字は
その平均値である。
Next, Table 2 shows changes with time of the closed circuit voltage. The closed circuit voltage is −10 ° C. and the load resistance is 50
It is measured after discharging at 0Ω for 15 seconds.
The number of samples is 20, and the numbers in the table are average values.

【0014】[0014]

【表2】 [Table 2]

【0015】表2において、作製時に対する50日経過
したものの劣化率を見ると、四フッ化エチレン・エチレ
ン共重合樹脂のものが−4.5%、四フッ化エチレン・
パーフルオロアルコキシエチレン共重合樹脂のものが−
4.5%、四フッ化エチレン・エチレン共重合樹脂と四
フッ化エチレン・パーフルオロアルコキシエチレン共重
合樹脂との混合物のものが−4.7%に対して、比較例
のポリプロピレン樹脂のものでは−7.3%であった。
In Table 2, the deterioration rate after 50 days from the time of production is examined. The tetrafluoroethylene / ethylene copolymer resin is -4.5%, and the tetrafluoroethylene / ethylene tetrafluoride
Perfluoroalkoxy ethylene copolymer resin-
4.5%, a mixture of a tetrafluoroethylene / ethylene copolymer resin and a tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin was -4.7%, whereas a polypropylene resin of Comparative Example It was -7.3%.

【0016】次ぎに、内部抵抗の経時変化を表3に示
す。なお、内部抵抗は20℃において、正弦波交流法
(1K Hz)で測定したものである。そして、サンプル
数は各々20個であり、表中の数字はその平均値であ
る。
Next, Table 3 shows changes in internal resistance over time. The internal resistance was measured at 20 ° C. by the sine wave AC method (1 KHz). The number of samples is 20, and the numbers in the table are average values.

【0017】[0017]

【表3】 [Table 3]

【0018】表3において、作製時に対する50日経過
したものの増加率を見ると、四フッ化エチレン・エチレ
ン共重合樹脂のものが+50%、四フッ化エチレン・パ
ーフルオロアルコキシエチレン共重合樹脂のものが+4
8.4%、四フッ化エチレン・エチレン共重合樹脂と四
フッ化エチレン・パーフルオロアルコキシエチレン共重
合樹脂との混合物のものが+50.8%に対して、比較
例のポリプロピレン樹脂のものでは+92.1%であっ
た。
In Table 3, looking at the rate of increase after 50 days from the time of production, the tetrafluoroethylene / ethylene copolymer resin was + 50%, and the tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin was + 50%. Is +4
8.4%, + 50.8% for a mixture of tetrafluoroethylene / ethylene copolymer resin and tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin, whereas +92 for the polypropylene resin of Comparative Example. It was 0.1%.

【0019】次ぎに、漏液発生数の経時変化を表4に示
す。なお、漏液発生数は目視で発生数を調べた。そし
て、サンプル数は各々20個である。
Next, Table 4 shows the changes over time in the number of leaks generated. The number of liquid leaks was visually checked. The number of samples is 20 each.

【0020】[0020]

【表4】 [Table 4]

【0021】表4において、比較例のポリプロピレン樹
脂のものでは、30日経過した時点で1/20、40日
経過した時点で2/20、50日経過した時点で6/2
0の割合で漏液の発生が見られたが、四フッ化エチレン
・エチレン共重合樹脂、四フッ化エチレン・パーフルオ
ロアルコキシエチレン共重合樹脂、四フッ化エチレン・
エチレン共重合樹脂と四フッ化エチレン・パーフルオロ
アルコキシエチレン共重合樹脂との混合物の何れも漏液
の発生は見られなかった。
In Table 4, for the polypropylene resin of the comparative example, 1/20 after 30 days, 2/20 after 40 days, and 6/2 after 50 days.
Although leakage was observed at a rate of 0, tetrafluoroethylene / ethylene copolymer resin, tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin, tetrafluoroethylene /
No liquid leakage was observed in any of the mixture of the ethylene copolymer resin and the tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin.

【0022】以上、表1ないし表4から明らかなよう
に、有機電解質電池の封口ガスケット材として四フッ化
エチレン・エチレン共重合樹脂、四フッ化エチレン・パ
ーフルオロアルコキシエチレン共重合樹脂、四フッ化エ
チレン・エチレン共重合樹脂と四フッ化エチレン・パー
フルオロアルコキシエチレン共重合樹脂との混合物の何
れのものも、従来用いられていたポリプロピレン樹脂の
ものよりも放電容量、閉路電圧、内部抵抗および漏液発
生数の経時変化では何れも大きく改善されており、良好
な気密性を長期間維持したことが明白となった。また、
本実施例で作製した封口ガスケット形状は四フッ化エチ
レン・エチレン共重合樹脂、四フッ化エチレン・パーフ
ルオロアルコキシエチレン共重合樹脂、四フッ化エチレ
ン・エチレン共重合樹脂と四フッ化エチレン・パーフル
オロアルコキシエチレン共重合樹脂との混合物の何れの
ものも容易に射出成形することができたが、ポリテトラ
フルオロエチレン樹脂等のフッ素系樹脂では射出成形が
困難であった。
As is clear from Tables 1 to 4, as a sealing gasket material for organic electrolyte batteries, tetrafluoroethylene / ethylene copolymer resin, tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin, tetrafluoride are used. Any of the mixture of ethylene / ethylene copolymer resin and tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin has discharge capacity, closed circuit voltage, internal resistance and liquid leakage more than those of polypropylene resin used conventionally. The time-dependent changes in the number of occurrences were all significantly improved, and it became clear that good airtightness was maintained for a long time. Also,
The shape of the sealing gasket produced in this example is tetrafluoroethylene / ethylene copolymer resin, tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin, tetrafluoroethylene / ethylene copolymer resin and tetrafluoroethylene / perfluoro resin. Although any of the mixtures with the alkoxyethylene copolymer resin could be easily injection-molded, injection molding was difficult with a fluororesin such as polytetrafluoroethylene resin.

【0023】[0023]

【発明の効果】本発明の有機電解質電池によれば、正極
缶と負極カップとの間の気密性を長期間維持することが
できるので、高信頼性を有する有機電解質電池を提供す
ることができる。
According to the organic electrolyte battery of the present invention, since the airtightness between the positive electrode can and the negative electrode cup can be maintained for a long time, an organic electrolyte battery having high reliability can be provided. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 コイン形リチウム電池の概略側面断面図であ
る。
FIG. 1 is a schematic side sectional view of a coin type lithium battery.

【符号の説明】[Explanation of symbols]

1…負極活物質、2…正極合剤、3…正極缶、4…セパ
レータ、5…負極カップ、6…封口ガスケット
DESCRIPTION OF SYMBOLS 1 ... Negative electrode active material, 2 ... Positive electrode mixture, 3 ... Positive electrode can, 4 ... Separator, 5 ... Negative electrode cup, 6 ... Seal gasket

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質と正極合剤とがセパレータを
介して対向配置され、 電池缶内に封口ガスケットを介して密封される有機電解
質電池において、 前記封口ガスケットが、四フッ化エチレン・エチレン共
重合樹脂で成形されたものであることを特徴とする有機
電解質電池。
1. An organic electrolyte battery in which a negative electrode active material and a positive electrode mixture are opposed to each other with a separator interposed therebetween and which is hermetically sealed in a battery can via a sealing gasket, wherein the sealing gasket is tetrafluoroethylene / ethylene. An organic electrolyte battery, characterized by being formed of a copolymer resin.
【請求項2】 前記封口ガスケットが、四フッ化エチレ
ン・パーフルオロアルコキシエチレン共重合樹脂で成形
されたものであることを特徴とする請求項1に記載の有
機電解質電池。
2. The organic electrolyte battery according to claim 1, wherein the sealing gasket is formed of tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin.
【請求項3】 前記封口ガスケットが、四フッ化エチレ
ン・エチレン共重合樹脂と、 四フッ化エチレン・パーフルオロアルコキシエチレン共
重合樹脂との混合物で成形されたものであることを特徴
とする請求項1に記載の有機電解質電池。
3. The sealing gasket is formed of a mixture of a tetrafluoroethylene / ethylene copolymer resin and a tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin. 1. The organic electrolyte battery according to 1.
JP8125815A 1996-05-21 1996-05-21 Organic electrolytic battery Pending JPH09306445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8125815A JPH09306445A (en) 1996-05-21 1996-05-21 Organic electrolytic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8125815A JPH09306445A (en) 1996-05-21 1996-05-21 Organic electrolytic battery

Publications (1)

Publication Number Publication Date
JPH09306445A true JPH09306445A (en) 1997-11-28

Family

ID=14919624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8125815A Pending JPH09306445A (en) 1996-05-21 1996-05-21 Organic electrolytic battery

Country Status (1)

Country Link
JP (1) JPH09306445A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297447B2 (en) 2001-12-11 2007-11-20 Hitachi Maxell, Ltd. Non-aqueous electrolyte battery
JP2010056079A (en) * 2008-08-01 2010-03-11 Panasonic Corp Flat nonaqueous electrolyte secondary battery
JP2011071003A (en) * 2009-09-28 2011-04-07 Panasonic Corp Flat type nonaqueous electrolyte secondary battery
WO2014050056A1 (en) * 2012-09-28 2014-04-03 パナソニック株式会社 Nonaqueous electrolytic battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297447B2 (en) 2001-12-11 2007-11-20 Hitachi Maxell, Ltd. Non-aqueous electrolyte battery
US7384708B2 (en) * 2001-12-11 2008-06-10 Hitachi Maxell, Ltd. Non-aqueous electrolyte battery
JP2010056079A (en) * 2008-08-01 2010-03-11 Panasonic Corp Flat nonaqueous electrolyte secondary battery
JP2011071003A (en) * 2009-09-28 2011-04-07 Panasonic Corp Flat type nonaqueous electrolyte secondary battery
WO2014050056A1 (en) * 2012-09-28 2014-04-03 パナソニック株式会社 Nonaqueous electrolytic battery
JPWO2014050056A1 (en) * 2012-09-28 2016-08-22 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte battery
US9502698B2 (en) 2012-09-28 2016-11-22 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte battery

Similar Documents

Publication Publication Date Title
CN100502092C (en) Nonaqueous cell with improved thermoplastic sealing member
US8722236B2 (en) Battery
US8216716B2 (en) Lithium rechargeable battery having an internal space
US5900333A (en) Method of forming a battery and such battery formed
JPWO2014050056A1 (en) Non-aqueous electrolyte battery
CN201032638Y (en) Safety lithium ionic cell
JPH09306445A (en) Organic electrolytic battery
KR100686857B1 (en) Can type secondary battery and method of fabricating the same
JP2009146800A (en) Flat nonaqueous electrolyte secondary battery
CN213071199U (en) Secondary button cell
KR101253359B1 (en) Nonaqueous cell with improved thermoplastic sealing member
JP2009533832A (en) Liquid lithium ion storage battery with aluminum / plastic composite seal
JPS6166360A (en) Organic electrolyte cell
JPH05198292A (en) Nonaqueous electrolyte battery
JPH01320769A (en) Manufacture of organic electrolyte battery
KR101023145B1 (en) Wrapping material for Secondary Batteries
JPS612260A (en) Nonaqueous electrolyte battery
JPH09129201A (en) Sealed battery
JPS5776758A (en) Production of positive electrode for organic solvent battery
JPS57145266A (en) Organic solvent battery
CN114552084A (en) High-sealing-performance lithium ion battery cap and manufacturing method thereof
JPH09129198A (en) Flat organic electrolyte battery
JPS62103965A (en) Alkaline cell
JPH05211057A (en) Alkaline battery
JPH0265051A (en) Nonaqueous battery